A Hierarchical Loss for Semantic Segmentation

Bruce R. Muller1 and William A. P. Smith1,2

1Department of Computer Science, University of York, York, UK
\{brm512, william.smith\}@york.ac.uk

Keywords: Semantic segmentation, class hierarchies, scene understanding.

Abstract: We exploit knowledge of class hierarchies to aid the training of semantic segmentation convolutional neural networks. We do not modify the architecture of the network itself, but rather propose to compute a loss that is a summation of classification losses at different levels of class abstraction. This allows the network to differentiate serious errors (the wrong superclass) from minor errors (correct superclass but incorrect finescale class) and to learn visual features that are shared between classes that belong to the same superclass. The method is straightforward to implement (we provide a PyTorch implementation that can be used with any existing semantic segmentation network) and we show that it yields performance improvements (faster convergence, better mean Intersection over Union) relative to training with a flat class hierarchy and the same network architecture. We provide results for the Helen facial and Mapillary Vistas road-scene segmentation datasets.

1 INTRODUCTION

The visual world is full of structure, from relationships between objects to scenes and objects composed of hierarchical parts. For example, at the most abstract level, a road scene could be segmented into three parts: ground plane, objects on the ground plane and the sky. The next finer level of abstraction might differentiate the ground plane into road and pavement, then the road into lanes, white lines and so on. Human perception exploits this structure in order to reason abstractly without having to cope with the deluge of information when all features and parts are considered simultaneously. Moreover, it is quite easy for a human to describe this structure in a consistent way and to reflect it in annotations or labels. It is therefore surprising that the vast majority of work on learning-based object recognition, object detection, semantic segmentation and many other tasks completely ignores this structure. Classification tasks are usually solved with a flat class hierarchy, but in this paper we seek to utilise this structure. Another motivation is that there is often inhomogeneity between datasets in terms of labelling. For example, the LFW parts label database [1] segments face images into background, hair and skin, while the segment annotations [2] for the Helen dataset [3] define 11 segments. Utilising both datasets to train a single network, while retaining the richness of the labels in the latter one, is not straightforward. Depending on the application, we may also wish to be able to vary the granularity of labels provided by the same network.

In this paper, we tackle the problem of semantic segmentation and introduce the idea of hierarchical classification loss functions. The idea is very simple. Any existing semantic segmentation architecture that outputs one logit per class per pixel (and which would conventionally be trained using a single classification loss such as cross entropy) can compute a sum of losses at each level of abstraction within the class hierarchy. The benefit is to differentiate serious errors from less serious. In the toy example shown in Fig. 1, a face/hair error would be penalised less severely than a background/face error since both face and hair belong to the superclass head and so L_1 would not penalise the error. This encourages the network to learn visual features that are shared between classes belonging to the same superclass, i.e. the knowledge conveyed by the class hierarchy allows the network to exploit regularity in appearance. Since coarser classification into fewer abstract classes is presumably simpler than finescale classification, it also means that the learning process can naturally proceed in a coarse to fine manner, learning the more abstract classes earlier.

The approach is very simple to implement, requiring only a few lines of code to compute the hierarchical losses once the tree has been constructed.

1https://orcid.org/0000-0003-3682-9032
2https://orcid.org/0000-0002-6047-0413
2 RELATED WORK

Semantic segmentation The state-of-the-art in semantic segmentation has advanced rapidly in the last 5 years thanks to end-to-end learning with fully convolutional networks (Long et al., 2015). The field is large, so we provide only a brief summary here. A landmark paper was SegNet (Badrinarayanan et al., 2017) which utilised an encoder-decoder architecture with skip connections with a novel unpooling operation for upsampling. Wu et al. (Wu et al., 2019) recently explored extensions of this architecture. Güçlü et al. (Güçlü et al., 2017) perform facial semantic segmentation by augmenting a convolutional neural network (CNN) with conditional random fields and an adversarial loss. Ning et al. (Ning et al., 2018) achieve very fast performance using hierarchical dilation units and feature refinement. Current state-of-the-art facial segmentation is achieved by Lin et al. (Lin et al., 2019) using a spatial focusing transform and a Mask R-CNN/Resnet-18-FPN region-of-interest network for segmenting facial subcomponents into a whole. Rota Bulò et al. (Rota Bulò et al., 2018) achieve state-of-the-art road scene semantic segmentation performance. They combine a DeepLabv3 head with a wideResNet body and propose a special form of activated batch normalisation which saves memory and allowing for a larger network throughput. Zhao et al. (Zhao et al., 2017) proposed Pyramid Scene Parsing Network (PSPNet) which utilises a new architecture module to capture contextual information. Chen et al. (Chen et al., 2018) extend DeepLabv3 by adding a decoder module based on atrous separable convolution. None of these methods exploit scene structure provided by class hierarchies.

Hierarchical methods Existing hierarchy-based methods have focused on hierarchical architectures, i.e. methods that specifically adapt the architecture of the network to the specific hierarchy for a particular task. This is typified by Branch-CNN (Zhu and Bam, 2017) and Hierarchical Deep CNN (Yan et al., 2015) in which a network architecture is constructed to reflect the classification hierarchy. Luo et al. (Luo et al., 2012) use face and component detections to constrain face segmentation. Deng et al. (Deng et al., 2014) encode class relationships in a Hierarchy and Exclusion (HEX) graph. This enables them to reason probabilistically about label relations using a CRF. While very powerful, this also makes inference on their model more expensive and defining a HEX graph requires richer information than we use.

Srivastava and Salakhutdinov (Srivastava and Salakhutdinov, 2013) similarly take a probabilistic approach and attempt to learn a hierarchy as part of the training process. This does not necessarily reflect the semantic class structure but is rather chosen to optimise subsequent classification performance. Again, inference is more complex and expensive.

Meletis et al. (Meletis and Dubbelman, 2018) use a restricted set of classifiers in a hierarchical fashion on the output of a standard deep learning architecture to harness differing levels of semantic description.

3 HIERARCHY DESIGN

Our approach requires a predefined hierarchy, which we assume is designed based on expert human knowledge. In the case of objects composed of parts, this is straightforward since the parts can naturally be described hierarchically. For more general scenes this may require specific domain knowledge in order to be able to group related objects together into the same
Figure 2: Our hierarchy for the Helen segment classes. Note that the classes in the original dataset (Smith et al., 2013) are the leaves in our hierarchy.

We represent our class hierarchy using a tree (We represent our class hierarchy using a tree) and the hierarchical losses. In this section we describe our representation for each of the classes corresponding to leaf nodes in the tree. In order to use the approach, one simply needs a class hierarchy defined by a tree and a segmentation architecture that outputs a classification hierarchy. In order to use the approach, one simply needs a class hierarchy defined by a tree and an ordered set of vertices and edges. If \(v_i \) is a parent of \(v_j \) then \((v_i, v_j) \in E \) encodes that \(v_i \) is a parent of \(v_j \). We assume that the first \(m \) nodes correspond to leaves in the tree, i.e. \(\exists v_j \in V, (v_i, v_j) \in E \Rightarrow 1 \leq i \leq m \). These nodes correspond to the finest scale classes. If \((v_i, v_j) \in E \) then \(v_i \) is more general, more abstract, superclass of \(v_j \). The label for a pixel, \(c \), should be at the finest level of classification, i.e. \(c \in \{1, \ldots, m\} \).

We define \(\text{depth}(v_i) \) to mean the number of edges between vertex \(v_i \) and the root node. Hence, the depth of the tree is given by \(D_{\text{max}} = \max \text{depth}(v_i) \). We define \(\text{ancestor}(v_i, v_j) \) to be true if \(v_i \) is an ancestor of \(v_j \), i.e. that \(v_i \) is a superclass of \(v_j \) and false otherwise.

Inferring coarse classes from fine We assume that the segmentation CNN outputs one logit, \(x_i \), per pixel per leaf node, i.e. the output of the network is of size \(H \times W \times m \). Hence, the probability, \(p_i \), associated with node \(i \) can be computed by applying the softmax function, \(\sigma : \mathbb{R} \mapsto [0,1] \), to \(x_i \). The probability associated with non-leaf nodes is defined recursively by summing the probabilities of its children until leaf nodes are reached:

\[
p_i = \begin{cases}
\sigma(x_i) & \text{if } 1 \leq i \leq m \\
c(x_i) \sum_{(v_i, v_j) \in E} p_j & \text{otherwise}
\end{cases}
\]

Note that any summation is over a subset of leaf-nodes whose total sum is one so any \(p_i \) is \(\leq 1 \).

Depth dependent losses The appropriate label varies depending on the level of abstraction, i.e. the depth considered in the tree. We define the correct class at a depth \(d \in \{0, \ldots, D_{\text{max}}\} \) to be:

\[
c_d = \begin{cases}
1 & \text{if } \text{depth}(v_i) \leq d \\
c \text{ otherwise}
\end{cases}
\]

where \(\text{anc}(v_i, v_c) \) denotes the ancestor of nodes \(v_i \) and \(v_c \). The classification loss at depth \(d \) is computed using the negative log loss as \(L_d = - \log(p_{c_d}) \). Note that \(L_0 = 0 \). The total hierarchical loss is then a summation over all depths in the tree: \(L = \sum_{d=0}^{D_{\text{max}}} L_d \).
5 IMPLEMENTATION

In this section we describe implementation details for our hierarchical loss function. Our implementation is written using standard PyTorch layers and we make it publicly available in a form that is easy to integrate with any existing semantic segmentation architecture. We also explain how to ensure numerical stability in the computation of these losses.

Tree structure The hierarchical class structure is provided as a text file using indentation to signify parent/child relationships. For example the Helen hierarchy we use in Fig. 2 is written as a text file as shown in Fig. 3 (left). Loading the text file, we internally store the tree as a structure of linked python objects called nodes. Each leaf-node in the hierarchy represents a class in our dataset and encapsulates an integer representing the channel it will use in the output of the neural network. Additionally we ensure to keep consistent the integer numbering between class labels in the training data and python hierarchical leaf-nodes.

To implement our hierarchical loss, we precompute lists representing the set of leaf node classes that belong to each superclass (see Fig. 3 (right) for an example on the Helen dataset). We may think of the hierarchy in terms of various levels of abstraction. For example, the hierarchy in Fig. 1 has two abstraction levels: the base level where we take all leaf-nodes, and the level up where we have background and head (which is inferred from hair and face). In that case we could precompute the lists [[background], [hair], [face]] and [[background, [hair, face]] for the base and more abstract level respectively. For our Helen dataset we have four levels of abstraction as shown by the hierarchy in Figures 2 and 3.

It is important to note that every leaf class will contribute to the same number of losses regardless of the hierarchical depth, and we are not assigning different weights to different classes based on how deep they are in the class hierarchy.

To illustrate the simplicity and generalisability of our idea, we have included the code snippet in Listing 1. Note that for clarity, we ignore the numerical stability issues (discussed below) in this snippet. Here we illustrate exactly how the output of any neural network semantic segmentation classification layer can be processed to compute hierarchical loss from an easily designed semantic hierarchy. The output from the CNN is deep copied for each depth in the tree to compute the separate level losses.

Each level loss list represents the branches with which we need to sum probabilities. We use the level loss list for a particular abstraction level to extract the softmaxed CNN output channels to be summed over (lines 6 to 14 of Listing 1). Every summed slice of a branch is inserted into each channel associated with that branch for ease of implementation (lines 18 and 19 of Listing 1). While this step duplicates probability slices in summed_probabilities for a particular abstraction level, it allows us to easily pass into any PyTorch loss. Finally to compute the loss for each abstraction level, we take the log of the summed proba-
Listing 1: PyTorch snippet for computing the inferred probabilities at the abstraction levels in our hierarchy. The hierarchy of classes is represented by `level_loss_list`, which is a list of lists composed of integers representing our branching classes.

```python
| probabilities = softmax(cnn_output; dim = 1) ; loss = 0
| for level_loss_list in precomputed_hierarchy_list
|   probabilities_tosum = probabilities.clone()
|   summed_probabilities = probabilities_tosum
| for branch in level_loss_list:
|   # Extract the relevant probabilities according to a branch in our hierarchy.
|   branch_probs = torch FloatTensor()
|   for channel in branch:
|       branch_probs = torch.cat((branch_probs, probabilities_tosum[:, channel, :].unsqueeze(1)), 1)
|   # Sum these probabilities into a single slice; this is hierarchical inference.
|   summed_tree_branch_slice = branch_probs.sum(1, keepdim=True)
|   # This duplicates probabilities for easy passing to standard loss functions such as nll_loss.
|   for channel in branch:
|       summed_probabilities[:, channel (channel+1) :, : ] = summed_tree_branch_slice
| level_loss = nll_loss(log(summed_probabilities), target)
| loss = loss + level_loss
| return (loss)
```

Figure 4: Training behaviour versus epoch on Helen dataset. Left: Mean IOU. In both cases we show results trained with vanilla (U-Net) and hierarchical (U-Net+HL) losses. Right: Classification loss for each depth $D = 1..4$.

Numerical stability Evaluating cross entropy (log) loss of a probability computed using softmax is numerically unstable and can easily lead to overflow or underflow. In most implementations, this is circumvented using the “log-sum-exp trick” (Murphy, 2006) derived from the identity $\exp(x) = \exp(x - b + b) = \exp(x - b)\exp(b)$:

$$L = - \log p_i = - \log \left(\frac{\exp(x_i)}{\sum_{j=1}^{n} \exp(x_j)} \right) = - x_i + b + \log \sum_{j=1}^{n} \exp(x_j - b), \quad (3)$$

where $b = \max_{i \in \{1, \ldots, n\}} x_i$ is chosen so that the maximum exponential has value one and thus avoids overflow, while at least one summand will avoid underflow and hence avoid taking a logarithm of zero.

Our hierarchical classification losses involve computing log losses on internal nodes in the class hierarchy tree. The probabilities in these nodes are in turn formed by summing probabilities computed by applying softmax to CNN outputs. This leads to evaluation of losses of the form $- \log(\sum_{i \in C} p_i)$ where C is the set of leaf nodes contributing to the superclass. This can be made numerically stable by double application of the log-sum-exp trick:

$$L = - \log \sum_{i \in C} p_i = - \log \left(\frac{\sum_{i \in C} \exp(x_i)}{\sum_{j=1}^{n} \exp(x_j)} \right) = b + \log \sum_{j=1}^{n} \exp(x_j - b) - b_C - \log \sum_{i \in C} \exp(x_i - b_C). \quad (4)$$

b is defined as before while $b_C = \max_{i \in C} x_i$. The use of two different shifts for the two logarithm terms is required to avoid underflow when $b_C \ll b$.

6 EXPERIMENTS

We seek to investigate the relative performance gain in using the hierarchical loss versus training simply on a flat hierarchy. To this end, in our experiments we train two networks for each task. One is a “vanilla” U-Net (Kronenberger et al., 2013), the other is exactly the same U-net architecture but trained with hierarchical loss (referred to as U-Net+HL). We train U-Net/U-Net+HL models simultaneously such that they receive identical data input at each iteration. Note that we do not seek nor achieve state-of-the-art performance. A more complex architecture, problem-specific tuning and so on would lead to improved performance but our goal here is to assess relative performance.
Training Process (Epoch)

Mean IoU (%)

<table>
<thead>
<tr>
<th></th>
<th>U-Net</th>
<th>U-Net+HL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background</td>
<td>92.04</td>
<td>92.65</td>
</tr>
<tr>
<td>Face skin</td>
<td>86.53</td>
<td>87.04</td>
</tr>
<tr>
<td>Left eye</td>
<td>63.98</td>
<td>67.81</td>
</tr>
<tr>
<td>Nose</td>
<td>84.05</td>
<td>82.55</td>
</tr>
<tr>
<td>Upper lip</td>
<td>52.88</td>
<td>56.48</td>
</tr>
<tr>
<td>Lower lip</td>
<td>65.64</td>
<td>67.92</td>
</tr>
<tr>
<td>Hair</td>
<td>65.41</td>
<td>66.11</td>
</tr>
<tr>
<td>Mean</td>
<td>69.49</td>
<td>71.65</td>
</tr>
<tr>
<td>Mean</td>
<td>69.69</td>
<td>71.65</td>
</tr>
</tbody>
</table>

Table 1: Mean and class IOU (%) on Helen and Vistas (subset selected) datasets at training convergence.

Datasets

For experimenting with hierarchical losses on segmentation we chose two very different datasets: the Helen (Le et al., 2012) facial dataset and Mapillary’s Vistas (Neuhold et al., 2017) road scene dataset. The Helen dataset covers a wide variety of facial types (age, ethnicity, colour/grayscale, expression, facial pose), originally built for facial feature localisation (Le et al., 2012). We use an augmented Helen (Smith et al., 2013) dataset with semantic segmentation labels. Helen contains 2000, 230 and 100 images/annotations for training, validation and testing respectively, for 11 classes (10 facial and background, see Tab. 1(left)). It should be noted that the ground truth annotations are occasionally inaccurate, particularly for hair which makes it challenging to learn. The road scene Vistas dataset (Neuhold et al., 2017) is composed of 25000 images/annotations (18000 training, 2000 validation, 5000 testing), with 66 classes. As Vistas contains too many classes to easily illustrate we have chosen only a representative subset in Tab. 1(right) which show a significant difference in performance and given the mean over all classes. Further, our intention is to indicate the performance improvement by using hierarchical learning, rather than to compare between datasets. The Vistas hierarchy is three levels deep, contains 66 leaf nodes, and 11 internal nodes.

Results

Fig. 4(right) shows losses for each abstraction depth of the class hierarchy for the Helen experiment. Note that the deeper loss is always larger than a shallower one, suggesting that our hierarchically trained method significantly benefits from the hierarchical structure in the class labels, particularly in the early phase of training, learning much faster than the vanilla model. Fig. 4(left) illustrates the mean Intersection over Union (IOU) during training. Performance gain is most significant post epoch 35 and can be observed in the qualitative results from Fig. 6. At performance convergence we observe some qualitative differences between the hierarchically trained network and the vanilla. For example, in Fig. 6 U-net+HL predictions at epoch 200 have somewhat less hair artefacts, while the 1st example shows improvement over a difficult angled facial pose. Epoch 50 results clearly show faster convergence.

For Vistas, the IOU performance gain is less notable than on Helen, but we show the hierarchically trained model outperforming the vanilla model in both level losses and mean IOU (Fig. 5 and Tab. 1(right)). The qualitative results in Fig. 7 illustrate predictions for both methods at epoch 1 and 80. Most interestingly, after 1 epoch the hierarchically trained model is able to classify correctly a significant proportion of lane-markings whereas the vanilla trained model cannot, showing how quickly our hierarchical model is learning. Relative to the vanilla model, our hierarchically trained model achieves a 3% and 7% relative improvement for Helen and Vistas respectively (see Tab. 1).

7 CONCLUSIONS

Our results illustrate the great potential of using losses that encourage semantically similar classes within a hierarchy to be classified close together, where the model parameters are guided towards a solution not only better quantitatively, but faster in training than using a standard loss implementation. We speculate that the hierarchically trained models perform better due to learning more robust features from visually similar classes which are close within the tree struc-
The hierarchy is providing the network with more information (e.g., a pixel belongs to an eyebrow, which belongs to a face and so on), which can be exploited to learn shared and more robust features. There is a possible link to metric learning here where, rather than positive and negative class labels, we are provided with classes that can be more or less similar within a hierarchy. A particular advantage of this work is its generality and self-contained nature allows the possibility of plugging this hierarchical loss on the end of any deep learning architecture. Taking advantage of the hierarchical cues readily apparent to us can help train a deep network faster and with greater accuracy. Moreover, any hierarchical structure can be provided to help train your model. We also contribute a numerically stable formulation for computing log and softmax of a network output separately, a necessity for summing preferences according to a hierarchical structure. Future work could include learning the hierarchy itself which best solves your task. Additionally, we would like to use our ideas to construct a level of abstraction segmenter for tree-based labels on hierarchically trained models. Ability to extract segmentations at multiple levels in a hierarchy describing your data is quite useful, intuitive and is not something commonly achieved by semantic segmentation solvers in the current community.

REFERENCES

Figure 7: Qualitative comparisons on Vistas. From left to right: raw input image, ground truth annotation, vanilla trained U-Net prediction at 1 epoch, hierarchically trained U-Net prediction at 1 epoch, vanilla trained U-Net prediction at 80 epochs, hierarchically trained U-Net prediction at 80 epochs.