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Abstract.   Many bio-inspired algorithms (evolutionary algorithms, artificial immune 
systems, particle swarm optimisation, ant colony optimisation, …) are based on 
populations of agents.  Stepney et al  [2005] argue for the use of conceptual frameworks 
and meta-frameworks to capture the principles and commonalities underlying these, and 
other bio-inspired algorithms.  Here we outline a generic framework that captures a 
collection of population-based algorithms, allowing commonalities to be factored out, and 
properties previously thought particular to one class of algorithms to be applied uniformly 
across all the algorithms.  We then describe a prototype proof-of-concept implementation 
of this framework on a small grid of FPGA (field programmable gate array) chips, thus 
demonstrating a generic architecture for both parallelism (on a single chip) and distribution 
(across the grid of chips) of the algorithms. 

1 Introduction 

Many bio-inspired algorithms are based on populations of agents trained to solve some 
problem such as optimising functions or recognising categories.  For example, 
Evolutionary Algorithms (EA) are based on analogy to populations of organisms 
mutating, breeding and selecting to become “fitter” [Mitchell 1996].  The negative and 
clonal selection algorithms of Artificial Immune Systems (AIS) use populations of agents 
trained to recognise certain aspects of interest (see de Castro & Timmis [2002] for an 
overview): negative selection involves essentially random generation of candidate 
recognisers, whilst clonal selection uses reinforcement based on selection and mutation of 
the best recognisers.  Particle swarm optimisation (PSO) [Kennedy & Eberhart 2001] and 
social insect algorithms [Bonabeau 1999] use populations of agents whose co-operations 
(direct, or stigmergic) result in problem solving. 

Stepney et al  [2005] argue for the use of conceptual frameworks and meta-frameworks 
to capture the principles and commonalities underlying various bio-inspired algorithms.  
We take up this challenge, and, in section 2, outline a generic framework abstracted from 
the individual population-based models of the following classes: genetic algorithms (GA), 
AIS negative selection, AIS clonal selection, PSO, and ant colony optimisation (ACO).  
The framework provides a basis for factoring out the commonalities, and applying various 
properties uniformly across all the classes of algorithms, even where they were previously 
thought particular to one class (section 3).   
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In section 4 we describe our proof-of-concept prototype implementation of the generic 
framework on a platform of multiple field programmable gate array (FPGA) chips.  Thus 
the generic architecture naturally permits both parallelism (multiple individuals executing 
on a single chip) and distribution (multiple individuals executing across the array of chips) 
of the algorithms.  In section 5 we outline what needs to be done next to take these 
concepts into a fully rigorous framework architecture and implementation. 

2 The generic framework for population algorithms 

There are many specific algorithms and implementation variants of the different classes.  
To take one case, AIS clonal selection, see, for example [Cutello et al 2004] [Garrett 
2004] [Kim & Bentley 2002].  It is not our intention to capture every detail of all the 
variants in the literature.  Rather, we take a step back from the specifics, and abstract the 
basic underlying concepts, particularly the more bio-inspired ones, of each class of 
algorithm.  So when we refer to “GA” or “AIS clonal selection”, for example, we are not 
referring to any one specific algorithm or implementation, but rather of the general 
properties of this class.  We unify the similarities between these basics in order to develop 
a generic framework.  The intention is that such a framework provides a useful starting 
point for the subsequent development of more sophisticated variants of the algorithms. 

Basic underlying concepts 

The generic algorithm is concerned with a population of individuals, each of which 
captures a possible solution, or part of a solution.  Each individual contains a set of 
characteristics, which represent the solution.  The characteristics define the (phase or 
state) space that the population of individuals inhabit.  The goal of the algorithm is to find 
“good” regions of this space, based on some affinity (a measure that relates position in the 
space to goodness of solution, so defining a landscape).  The individuals and 
characteristics of the specific classes of algorithm are as follows:  

GA : the individuals are chromosomes; each characteristic is a gene. 
AIS negative selection : the individuals are antibodies; each characteristic is a shape 

receptor. 
AIS clonal selection : there are two populations.  In the main population the 

individuals are antibodies; each characteristic is a shape receptor.  There is also a 
population of memory cells drawn from this main population. 

Swarms : the individuals are boids; the characteristics are position, velocity and 
neighbourhood group (the other visible individuals). 

Ants: the individuals are the complete paths (not the ants, which are merely 
mechanisms to construct the complete paths from path steps); the characteristics are the 
sequence of path steps, where each step has an associated characteristic of length and 
pheromone level. 
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Algorithm stages  

The different specific algorithms each exhibit six clearly distinct stages, comprising a 
generation.  These are generalised as: 
1.  Create : make novel members of the population 
2.  Evaluate : evaluate each individual for its affinity to the solution 
3.  Test : test if some termination condition has been met 
4.  Select : select certain individuals from the current generation, based on their affinity, to 

be used in the creation of the next generation 
5.  Spawn : create new individuals for the next generation 
6.  Mutate : change selected individuals 

 
We describe each of these stages, covering the generic properties, and how they are 
instantiated for each specific class of algorithm.  Using this framework results in 
descriptions that  sometimes differ from, but are equivalent to, the traditional descriptions 
of the algorithms.  For example, rather than saying that some individuals survive from 
generation to  generation, for uniformity we consistently consider each generation to be a 
completely fresh set of individuals, with some possibly being copies of previous 
generation individuals.  As another example, the pheromone changes in the Ant algorithm 
is mapped to the generic mutate step. 

Create 

Creation makes novel members of the populations.  In the first generation, the whole 
population is set up, and the members have their characteristics initialised.  On subsequent 
generations, creation “tops up” the population with fresh individuals, as necessary. 

GA: an individual chromosome is created usually with random characteristics, giving a 
broad coverage of the search space 

AIS negative selection : an individual antibody is created usually with random shape 
receptors 

AIS clonal selection : an individual antibody in the main population is created usually 
with random shape receptors; memory cells are not created, rather they are spawned from 
the main population 

Swarms : an individual boid is created usually with random position and velocity 
characteristics, giving a broad coverage of the search space; the neighbourhood 
characteristic is usually set to implement a ring, grid or star connection topology 

Ants : each path step is initially set up usually with a fixed pheromone level, and with 
the relevant (fixed) path length; the population of paths is created by the ants from these 
steps each generation 
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Evaluate 

The affinity measures how well each individual solves (part of) the problem.  It is a user-
defined function of (some of) an individual’s characteristics.  This function should ideally 
(but does not always) have the structure of a metric over the space defined by the 
characteristics. 

GA : the affinity is the fitness function, a function of the values of the genes 
AIS : the affinity is a measure of how closely the shape receptors complement the 

target of recognition, inspired by the “lock and key” metaphor 
Swarms : the affinity, or fitness function, is a function of the current position 
Ants : the affinity is the (inverse of the) path length 

Test  

The test for termination is either (a) a sufficiently good solution is found, or (b) enough 
generations have been run without finding a sufficiently good solution.  On termination, 
the solution is: 

GA, Swarms, Ants : the highest affinity (fittest) individual 
AIS negative selection : the set of individuals with above-threshold affinities 
AIS  clonal selection : the population of memory cells 

Select 

High affinity individuals are selected to contribute somehow to the next generation’s 
population.  There are several selection algorithms commonly used.  n best selects the n 
highest affinity individuals from the current population.  Threshold selects all the 
individuals with an affinity greater than some given threshold value.  Roulette wheel 
selection randomly chooses a given number of individuals, with probability of selection 
proportional to their affinity, or to their ranking.  Tournament randomly selects teams of 
individuals, and then selects a subset of individuals from each team. 

GA : different variants use any of the above methods of selection, to find the parents 
that will produce the next generation 

AIS negative selection : threshold selection is used to find the next generation 
AIS clonal selection : a combination of n best and threshold selection is used to find 

the next generation of the main population; all individuals of the memory cell population 
are selected to become the basis of its next generation 

Swarms : all individuals are selected to become the basis of the next generation 
Ants : no individuals are specifically selected to become the next generation: each 

generation is created afresh from the path steps (whose characteristics are changed by the 
mutate step) 
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Spawn 

Production of new individuals for the next generation usually involves combining the 
characteristics of parent individuals from the selected population (ants are a special case).   

GA : the characteristics of pairs of selected parents are combined by using a crossover 
mask (predefined or randomly generated) to generate two new individuals.  If the 
crossover mask is set to the identity, then the two new individuals are clones of the two 
parents.  

AIS negative selection : the selected parents become the basis of the new generation 
(which is topped up to the population size by creating sufficient new individuals).  If the 
threshold is a constant value throughout the run, this has the effect that an individual, once 
selected, continues from generation to generation, and only the newly created individuals 
need be evaluated. 

AIS clonal selection : in the main population new individuals are spawned as clones of 
each parent, with the number of clones being produced proportional to the parent’s 
affinity; in the memory cell population, the selected parents become the basis of the new 
generation, and a new individual is spawned, as (a copy of) the best individual of the main 
population. 

Swarms : a new individual is spawned from the sole parent and the highest affinity 
individual in that parent’s neighbourhood group, with the intention of making the new 
individual “move towards” the best neighbour.  The new position is derived from the 
parent’s position and velocity, the velocity is modified to point towards the best 
neighbour, and the neighbourhood group is copied from the parent.   

Ants : no individuals are specifically spawned for the next generation: each generation 
is created afresh from the path steps (whose characteristics are changed by the mutate 
step) 

Mutate 

Mutation involves altering the characteristics of single individuals in the population.  It 
would be possible to unify spawning and mutation into a single generate stage, but since 
most algorithms consider these to be separate processes, we have followed that view, 
rather than strive for total generality at this stage.  The mutation rate might be globally 
random, or based on the value of a characteristic or the affinity of each individual.  How a 
characteristic is mutated depends on its type: a boolean might be flipped, a numerical 
value might be increased or decreased by an additive or multiplicative factor, etc. 

GA, Swarms : individuals are mutated, usually randomly, in order to reintroduce lost 
values of characteristics; evolutionary strategy algorithms encode mutation rates as 
characteristics 

AIS negative selection : no mutation occurs. (That is, the next generation consists of 
copies of the selected above threshold individuals, topped up with newly created 
individuals.  An alternative, but equivalent, formulation in terms of this framework would 
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be to consider that all the individuals are selected, and that only the below-threshold 
individuals are mutated, into completely random individuals.  However, this is at odds 
with the traditional description of the algorithm, and also with the view that mutation 
makes relatively small alterations.) 

AIS clonal selection : the new clone individuals are mutated, by an amount inversely 
proportional to their affinity. 

Ants : new pheromone is laid on each path step by an amount proportional to the 
affinity of the complete paths in which it occurs, and decreased by a constant decay factor. 

3 Generalising across algorithms and implementations 

Once we have all the algorithms in a common framework, we can see ways of 
generalising each in a natural manner (that is bio-inspired, but by a different aspect of 
biology).  We discuss two such cases here – niching and elitism – and outline other 
possibilities. 

Niching 

Some population-based algorithms include “niching”: developing sub-populations 
separately, with occasional migration of individuals [Brits et al 2002] [Mahfoud 1995] 
[Watkins & Timmis 2004].  Niching is motivated by the biological evolution of 
populations on separate islands.  It is useful for solving multi-objective problems, with 
sub-populations focussing on separate objectives, but we do not here consider that aspect.  
Here we are interested in its use for efficiently distributing the algorithm across multiple 
processors, by minimising the amount of communication (of details of the high affinity 
individuals) needed between processors.  We use these ideas to add a migrate step to the 
generic framework. 

In niching, we have N islands of separately developing sub-populations, with each 
island following the simple algorithm, and each having a neighbourhood that is of a subset 
of the other islands (capturing locality of islands).  Every g generations, modify the 
current population by replacing n individuals (suitably selected to be of low affinity, or 
chosen randomly) with n migrants from the neighbourhood (suitably selected to be of high 
affinity, or chosen randomly).  This results in the following specifics: 

GA: migration is simple population replacement; the solution is the fittest individual 
across all islands. 

AIS negative selection: migration is simple population replacement; the solution is the 
union of all above-threshold individuals across all islands. 

AIS clonal selection : migration can occur for both the main population and the 
memory cell population; the solution is the union of all memory cell populations across all 
islands. 
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Swarms: migration is simple population replacement, where the replaced individuals 
copy in the position and velocity characteristics of the migrants, but retain their original 
neighbourhood characteristic; the solution is the fittest individual across all islands.  
(Swarms admit another distribution strategy that can be efficiently implemented if the 
nearest individual neighbourhood relation is that of a simple ring topology.  A single 
swarm can be distributed across a ring of processors, with the only communication 
between processors being the very local neighbourhood properties.)   

Ants: migration is simple population replacement; the solution is the fittest individual 
(shortest path) across all islands.  The (affinity of the) migrated paths will affect only the 
pheromone update stage; the migrated paths need not be recreated in the next generation.  

Elitism 

Some GAs include ad hoc elitism: copying the best individual(s) into the next generation, 
in order to preserve the currently best solution (and hence make the best solution 
monotonic with generations).  This is not a particularly bio-inspired process.  AIS 
algorithms with their (constant) threshold selection, on the other hand, are naturally elitist: 
if an antibody exceeds the threshold, (a copy of) it survives in future generations.  We use 
these ideas to modify the spawn step, and add generic elitism to the framework. 

When spawning the next generation, copy the n best of the previous population, as well 
as spawning any new individuals from the selected parents.  Also, these particular n 
individuals should be exempt from mutation in this stage.  This results in the following 
specific modifications: 

GA : n fewer individuals need to be spawned by crossover 
AIS : no change, provided n individuals are above the threshold 
Swarms : the solution is a property of the position characteristic only, and the position 

is modified by the velocity.  So the previous best solution is copied, with its velocity set to 
zero, so that it “hovers” over the current best solution 

Ants : an “elite ant” recreates the current shortest path, ensuring that the solution 
remains in the population, and that its steps get their pheromone levels updated 

Other generalisations 

The generic framework allows further features of one specific algorithm to be generalised 
to the others.  
• Evolutionary Strategies encode the mutation rates as characteristics: a similar approach 

can be used in the other algorithms.  For example, the ant algorithm could allow the 
pheromone decay rate to be a characteristic. 

• Genetic Algorithms use crossover to combine characteristics of parents: a similar 
spawn operator can be used in the other algorithms.  For example, AIS clonal selection 
could spawn new antibodies by crossover. 
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• Traditionally unchanging characteristics could be mutated, for example, swarm 
neighbourhood. 

• AIS use affinity-based mutation, to preferentially shake up poorer solutions: all 
mutation schemes could take this approach. 

• AIS clonal selection increases the number of good solutions by affinity based cloning 
(thereby increasing their probability of being selected, so allowing more exploration of 
the nearby space).  The other algorithms could be adapted to variable population size 
with cloning. 

• The range of selection strategies can be employed across all the algorithms that have a 
non-trivial selection stage.  In particular, AIS clonal selection has two populations: 
selection strategies could be used on the memory cell population too. 

4 The prototype implementation 

There is much opportunity for parallelism in these algorithms: individuals can (to some 
degree) be evaluated, selected, and created in parallel.  This suggests efficiency gains by 
executing these algorithms on parallel hardware.   

FPGAs and Handel-C 

We chose as our prototype implementation platform a small grid of FPGAs, executing the 
framework implemented in Handel-C.   

An FPGA is programmable hardware: its array of logic gates can be configured and 
connected for each specific program.  This removes the need to fetch and decode 
instructions, fetch data, and store results; it is programmed to be a direct hardware 
representation of the code.  It can be configured to provide genuine parallel execution (see 
for example [Brown & Rose 1996]).  So each individual FPGA can host multiple 
individuals executing in parallel, and multiple FPGAs allow distributed implementations. 

The framework described above has been prototyped as a proof of concept.  It 
demonstrates that a suitably flexible generic framework can indeed be developed to 
support multiple classes of population-based algorithms, and that it can be distributed on a 
grid of FPGAs.  It has been tested on an array of four FPGA algorithm engines, each 
connected to a fifth monitoring FPGA, in turn connected to a PC.   

The prototype framework is implemented in Handel-C [Celoxica 2004], a (relatively) 
high level language designed specifically for writing applications for FPGAs.  Handel-C 
code is compiled down into the relevant FPGA net-list, which specifies how the FPGA is 
to be configured.   

Handel-C is based on the process calculus of CSP (Communicating Sequential 
Processes) [Hoare 1985].  Handel-C is essentially an executable subset of CSP [Stepney 
2003], with some extensions to support FPGA hardware.  In particular, it has explicit 
support for parallel execution of processes: 
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for (i=0; i < imax; i++) { 
  // the imax iterations execute in sequence 
  // and occupy space independent of imax 
} 
 
par (i=0; i < imax; i++) { 
  // the imax iterations execute in parallel 
  // and occupy space proportional to imax 
} 
 

Being based on CSP, Handel-C uses synchronous communication between its parallel 
processes.  There is currently no  Handel-C language support for programs distributed 
across multiple FPGAs, and such configurations do not support synchronous 
communication between chips as a primitive.  It would have been possible to design a 
protocol to implement this, allowing the distributed program to be (very close to) a pure 
Handel-C program.  However, the communication between chips is deliberately restricted, 
to just the occasional migration data.  So for this prototype, a simple handshaking protocol 
has been used, and the inter-chip communication hidden in a wrapper. 

The implemented framework 

The prototype implementation of the framework provides much of the functionality 
described above.  The genericity means that there are many parameters and options: the 
prototype includes support for specific options, and hooks for a range of user-definable 
functions.  The framework is structured so that the basic algorithm needs no alteration: the 
user merely selects certain features (such as population sizes, characteristics, mutation 
rates, style of creation and selection, crossover masks, number of FPGAs, and number of 
islands per chip), and provides the code for certain functions (the evaluation function and 
stopping condition, and, as required, creation, selection, spawning, and mutation 
functions).   

The framework code and user-defined functions, both written in Handel-C, are 
compiled on the PC, then downloaded on to the FPGA array to run.  The Handel-C 
compiler optimises away dead code, so options that are not selected by the user (such as 
various choices of creation or selection functions) do not appear in the compiled code. 

When the algorithm terminates, the relevant results are communicated back to the PC.  
It is also possible to return intermediate results every generation, to allow investigation of 
the performance, or for debugging, but this introduces a communication bottleneck. 

Each individual is represented as a bit string, with each bit or combination of bits in the 
string representing a characteristic.  A user-specified flag selects whether these bits are 
initialised to 0s, to 1s, to random bit values, or to a user-defined alternative.  Each FPGA 
chip holds a certain number of islands, each of which holds its individuals.  Migration 
information is passed between the islands, and hence between the chips, as required. 

Ideally, all individuals should be able to evaluate their own affinity in parallel, by a call 
to the user-defined evaluation function.  For completely parallel implementation on an 
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FPGA, this would require one copy of the function per individual.  This can result in 
much of the FPGA’s resource being used by evaluation functions, limiting the number of 
individuals per chip.  The framework instead allows a trade-off between number of 
individuals and amount of parallelism.  During certain of the algorithm steps, the 
individuals in an island are considered to be grouped into f  families, each with m 
members, giving at total of f × m individuals.  Families are processed in parallel, but the 
members of a family are processed in sequence.  Thus each family requires only one copy 
of each function, and space is proportional to f and execution time is proportional to m: 

 
par (family=0; family < f; family++) { 
  for (member=0; member < m; member++) { 
    // ... code for  individual[family*m + member] 
  } 
} 
 

The prototype implementation provides a timer function, to help the user chose a suitable 
trade-off for each step, and for each application. 

The probabilistic nature of (parts of) the algorithm require the use of random numbers.  
The implementation provides one 32-bit linear feedback shift register per family for this 
purpose. 

Tournament selection is used to divide the population into teams.  If no tournament is 
required, the entire population forms one large team.  Then the appropriate selection 
method is used on each team in parallel. 

Restrictions due to the platform choice  

Some of the design decisions for the framework prototype are due to specific features and 
limitations of FPGAs and Handel-C, and different platform choices could result in 
different decisions.  For example, the use of families is to cope with the limited size of the 
FPGAs. 

Another example of this choice is the selection implementation.  Although each team 
performs selection in parallel, the selection within each team is sequential.  One might 
think that roulette wheel, or even a random, selection from a collection of individuals 
could be performed in parallel.  However, this would result in the need for many parallel 
accesses to random number generators, and the FPGA’s silicon would quickly become 
dedicated to these.  Certain parts of the selection can be performed in parallel, for 
example, to find the n best, where each individual can read the affinity of all its team-
mates in parallel.  Even so, care needs to be taken, because the highly interconnected read 
accesses can result in quite complex (and therefore slow to compile) routing.  

Handel-C supports variable bit-width values, requiring explicit casting between values 
with different widths.  This can lead to arcane code, particularly when trying to write 
generic routines.  For example, consider the case where some particular size n (such as 
population size) is a power of 2.  Then the variable that stores the size is one bit larger 
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than the variable used for indexing into an array of this size, running from 0 to n−1, so 
comparing the index and the size requires some fancy casting. 

5 Preliminary results 

Sizes:  The number of (families of) individuals possible per chip varies depending on the 
settings.  For example, if no survival, generation, or niching is done, it is possible to have 
30−40 individuals per chip, each with 8 bit-characteristics.  With all the capabilities 
turned on, this number drops to about 18 individuals run sequentially, or four if run in 
parallel, the reduction being due to the increased routing and copies of code.  The  
limiting constraint is routing tables rather than logic gates: every individual is accessed by 
each of the six algorithm stage functions, and the implementation uses all the routing 
tables, but only about 10-15% of the logic gates.  Similar size results apply when hosting 
two islands on a single chip: this halves the total population possible, because of code 
replication and routing constraints. 

The FPGAs being used (300K gate Xilinx SpartanIIE chips) are relatively small: it was 
thought more important for this proof of concept work to get the maximum number of 
FPGAs for the budget, rather than the maximum size of each one.  Clearly, more 
individuals would be possible with larger FPGAs.  However, the architectural design 
needs to be done carefully to optimise use of the resources: design experience of these 
style of algorithms for FPGAs is still in its infancy. 
 
Parallelism:  How much speedup does parallelism give? 

The experiment compares running four individuals in parallel (the most supportable in 
this experiment) against running four in sequence, solving a simple optimisation problem.  
Linear speedup would result in a 400% improvement, but the parallel form has a speed-up 
of only about 30% over the sequential form.  This low value indicates that there is still a 
great deal of sequential execution in this prototype implementation.  This sequential 
bottleneck occurs mainly in the select stage of the framework: the speedup in the evaluate 
stage (calculation of the affinity function) is essentially linear.  More complicated 
evaluation functions would therefore result in an increase in the parallel efficiency, but 
would also increase the demand on silicon resource if the complicated functions 
physically took up more space. 
 
Parallelism versus population size:  more parallelism takes up more silicon, resulting in 
few individuals being supportable.  Parallelism lets the algorithm run faster, in that each 
generation takes less time to execute, but larger populations allow greater diversity and 
exploration of the search space per generation, so the algorithm could require fewer 
generations to find a solution.  What is better: more parallelism or a larger population?   

The experiment compares running four individuals in parallel (the most supportable in 
this experiment) against running 12 in sequence (the most supportable sequential 
individuals in this experiment).  The parallel form gives no speed-up overall compared to 
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the sequential form.  However, looking at only the evaluate stage shows the sequential 
form taking about twice as long as the parallel form.  Given the linear speedup noted 
above, the sequential case takes 12 times as long per generation, and so is executing only 
about one sixth the number of generations before finding a solution.  Even so, the parallel 
form is taking less time overall (in the evaluate state), suggesting that parallelism 
outweighs population size in this case.   

However, these experiments need to be tried on larger populations, and a wider range 
of affinity function complexity (which affects the parallel to sequential population size 
ratio), before any more definitive statements can be made. 

 
Niching: What is the effect of using multiple chips?  How much speedup does 
distribution give? 

The experiment compares running four individuals in parallel on one chip versus four 
individuals in parallel on each of the five chips (20 individuals in total), migrating the two 
best individuals every 100 generations.  There is a speedup of about a factor of two (over 
the whole algorithm run, not just the evaluate stage).  These experiments need to be 
repeated for different migration rates to see if there is an optimum rate. 

6 Discussion and future work 

The unified framework allows the generalisation of concepts from across a range of 
algorithms types, for example, elitism and niching.  Thus we have a chimerical 
computational framework that is inspired by biology, but not restricted to any one 
particular biological domain.  Implementation of the framework on parallel and 
distributed architectures is (relatively) straightforward, and provides performance benefits 
(although currently significantly less than linear improvement).  So this proof of concept 
has shown that the approach to generalising and parallelising population-based algorithms 
is feasible and useful.  Thus it is worth pursuing the approach with more rigour and detail.  

The relatively small speedups indicate the need for removing the remaining sequential 
bottlenecks, and the constraints on parallel individuals caused by routing limitations 
indicate the need for a more sophisticated parallelisation architecture targeted at the 
opportunities and limitations of FPGAs.  Allowing six islands per chip to use the 
hardware for the six algorithm steps in a pipeline might provided further speedup.   

An alternative distributed architecture would be to dedicate certain chips to algorithm 
steps, and move the individuals around.  Different numbers of chips could be dedicated to 
each step, depending on the complexity of that step, to balance the processing load. 

The prototype framework needs to be extended with more built-in options, and made 
more usable, by providing a configuration language for selecting parameter values, etc.  It  
also needs to be made more flexible to accommodate other arrangements of FPGA arrays.   

Future work also includes formalising the generic framework, to make it clearer which 
features of each algorithm are being represented and captured, and to generalise and 
include more details and capabilities from the range of variant algorithms in the literature.  



A generic framework for population-based algorithms, implemented on multiple FPGAs      13 

A more rigorous framework will allow analysis at the generic and specific levels, 
comparison of instantiations, and further generalisations of various properties. 

7 Acknowledgments 

We would like to thank Wilson Ifill and AWE, who provided funding for the FPGAs used 
in this work.  Also thanks to Neil Audsley and Michael Ward for turning a large box of 
components into a usable FPGA grid, and to Fiona Polack and Jon Timmis for detailed 
comments on earlier versions. 

8 References 

[1] E.W. Bonabeau, M. Dorigo, G. Theraulaz.  Swarm Intelligence: from natural to 
artificial systems.  Addison Wesley, 1999 

[2] R. Brits, A.P. Engelbrecht, F. van den Bergh.  A niching Particle Swarm Optimizer.  
4th Asia-Pacific Conference on Simulated Evolution and Learning, 2002. 

[3] S. Brown, J. Rose.  Architecture of FPGAs and CPLDs: a tutorial.  IEEE Design and 
Test of Computers, 13(2):42-57, 1996. 

[4] Celoxica.  Handel-C Reference Manual, development kit v3.0.  2004  
http://www.celoxica.com/techlib/files/CEL-W0410251JJ4-60.pdf 

[5] V. Cutello, G. Nicosia, M. Pavone.  Exploring the capability of immune algorithms: a 
characterization of hypermutation operators.  ICARIS 2004, LNCS 3239:263-276 

[6] L.N. de Castro, J. Timmis.  Artificial Immune Systems: A New Computational 
Intelligence Approach.  Springer, 2002 

[7] S.M. Garrett.  Parameter-free, adaptive clonal selection.  CEC 2004, pp 1052-1058.  
IEEE Press, 2004 

[8] C.A.R. Hoare.  Communicating Sequential Processes.  Prentice Hall, 1985 
[9] J. Kennedy, R.C. Eberhart.  Swarm Intelligence.  Morgan Kaufmann, 2001 
[10] J. Kim, P.J. Bentley.  Immune memory in the dynamic clonal selection algorithm.  

ICARIS 2002, pp 59-67, Kent, 2002 
[11] S.W. Mahfoud.  A comparison of parallel and sequential niching methods.  In L.J. 

Eshelman, ed, Proc. 6th International Conference on Genetic Algorithms, pp 136-143.  
Morgan Kaufmann, 1995. 

[12] M. Mitchell.  An Introduction to Genetic Algorithms.  MIT Press, 1996 
[13] S. Stepney.  CSP/FDR2 to Handel-C translation.  Technical Report YCS-2003-357, 

University of York.  June 2003. 
[14] S. Stepney, R.E. Smith, J. Timmis, A.M. Tyrrell, M.J. Neal, A.N.W. Hone.   

Conceptual Frameworks for Artificial Immune Systems.  Int. J. Unconventional 
Computing. 1(3) 2005 

[15] A. Watkins, J. Timmis. Exploiting Parallelism Inherent in AIRS, an Artificial 
Immune Classifier. ICARIS 2004, LNCS 3239:427-438.  Springer, 2004. 


