
A generic framework for population-based algorithms,
implemented on multiple FPGAs

John Newborough and Susan Stepney

Department of Computer Science, University of York, Heslington, York, YO10 5DD, UK

Abstract. Many bio-inspired algorithms (evolutionary algorithms, artificial immune
systems, particle swarm optimisation, ant colony optimisation, …) are based on
populations of agents. Stepney et al [2005] argue for the use of conceptual frameworks
and meta-frameworks to capture the principles and commonalities underlying these, and
other bio-inspired algorithms. Here we outline a generic framework that captures a
collection of population-based algorithms, allowing commonalities to be factored out, and
properties previously thought particular to one class of algorithms to be applied uniformly
across all the algorithms. We then describe a prototype proof-of-concept implementation
of this framework on a small grid of FPGA (field programmable gate array) chips, thus
demonstrating a generic architecture for both parallelism (on a single chip) and distribution
(across the grid of chips) of the algorithms.

1 Introduction

Many bio-inspired algorithms are based on populations of agents trained to solve some
problem such as optimising functions or recognising categories. For example,
Evolutionary Algorithms (EA) are based on analogy to populations of organisms
mutating, breeding and selecting to become “fitter” [Mitchell 1996]. The negative and
clonal selection algorithms of Artificial Immune Systems (AIS) use populations of agents
trained to recognise certain aspects of interest (see de Castro & Timmis [2002] for an
overview): negative selection involves essentially random generation of candidate
recognisers, whilst clonal selection uses reinforcement based on selection and mutation of
the best recognisers. Particle swarm optimisation (PSO) [Kennedy & Eberhart 2001] and
social insect algorithms [Bonabeau 1999] use populations of agents whose co-operations
(direct, or stigmergic) result in problem solving.

Stepney et al [2005] argue for the use of conceptual frameworks and meta-frameworks
to capture the principles and commonalities underlying various bio-inspired algorithms.
We take up this challenge, and, in section 2, outline a generic framework abstracted from
the individual population-based models of the following classes: genetic algorithms (GA),
AIS negative selection, AIS clonal selection, PSO, and ant colony optimisation (ACO).
The framework provides a basis for factoring out the commonalities, and applying various
properties uniformly across all the classes of algorithms, even where they were previously
thought particular to one class (section 3).

susan
TextBox
ICARIS 2005, Banff, Canada, August 2005. LNCS 3627:43-55. Springer, 2005

2

In section 4 we describe our proof-of-concept prototype implementation of the generic
framework on a platform of multiple field programmable gate array (FPGA) chips. Thus
the generic architecture naturally permits both parallelism (multiple individuals executing
on a single chip) and distribution (multiple individuals executing across the array of chips)
of the algorithms. In section 5 we outline what needs to be done next to take these
concepts into a fully rigorous framework architecture and implementation.

2 The generic framework for population algorithms

There are many specific algorithms and implementation variants of the different classes.
To take one case, AIS clonal selection, see, for example [Cutello et al 2004] [Garrett
2004] [Kim & Bentley 2002]. It is not our intention to capture every detail of all the
variants in the literature. Rather, we take a step back from the specifics, and abstract the
basic underlying concepts, particularly the more bio-inspired ones, of each class of
algorithm. So when we refer to “GA” or “AIS clonal selection”, for example, we are not
referring to any one specific algorithm or implementation, but rather of the general
properties of this class. We unify the similarities between these basics in order to develop
a generic framework. The intention is that such a framework provides a useful starting
point for the subsequent development of more sophisticated variants of the algorithms.

Basic underlying concepts

The generic algorithm is concerned with a population of individuals, each of which
captures a possible solution, or part of a solution. Each individual contains a set of
characteristics, which represent the solution. The characteristics define the (phase or
state) space that the population of individuals inhabit. The goal of the algorithm is to find
“good” regions of this space, based on some affinity (a measure that relates position in the
space to goodness of solution, so defining a landscape). The individuals and
characteristics of the specific classes of algorithm are as follows:

GA : the individuals are chromosomes; each characteristic is a gene.
AIS negative selection : the individuals are antibodies; each characteristic is a shape

receptor.
AIS clonal selection : there are two populations. In the main population the

individuals are antibodies; each characteristic is a shape receptor. There is also a
population of memory cells drawn from this main population.

Swarms : the individuals are boids; the characteristics are position, velocity and
neighbourhood group (the other visible individuals).

Ants: the individuals are the complete paths (not the ants, which are merely
mechanisms to construct the complete paths from path steps); the characteristics are the
sequence of path steps, where each step has an associated characteristic of length and
pheromone level.

A generic framework for population-based algorithms, implemented on multiple FPGAs 3

Algorithm stages

The different specific algorithms each exhibit six clearly distinct stages, comprising a
generation. These are generalised as:
1. Create : make novel members of the population
2. Evaluate : evaluate each individual for its affinity to the solution
3. Test : test if some termination condition has been met
4. Select : select certain individuals from the current generation, based on their affinity, to

be used in the creation of the next generation
5. Spawn : create new individuals for the next generation
6. Mutate : change selected individuals

We describe each of these stages, covering the generic properties, and how they are
instantiated for each specific class of algorithm. Using this framework results in
descriptions that sometimes differ from, but are equivalent to, the traditional descriptions
of the algorithms. For example, rather than saying that some individuals survive from
generation to generation, for uniformity we consistently consider each generation to be a
completely fresh set of individuals, with some possibly being copies of previous
generation individuals. As another example, the pheromone changes in the Ant algorithm
is mapped to the generic mutate step.

Create

Creation makes novel members of the populations. In the first generation, the whole
population is set up, and the members have their characteristics initialised. On subsequent
generations, creation “tops up” the population with fresh individuals, as necessary.

GA: an individual chromosome is created usually with random characteristics, giving a
broad coverage of the search space

AIS negative selection : an individual antibody is created usually with random shape
receptors

AIS clonal selection : an individual antibody in the main population is created usually
with random shape receptors; memory cells are not created, rather they are spawned from
the main population

Swarms : an individual boid is created usually with random position and velocity
characteristics, giving a broad coverage of the search space; the neighbourhood
characteristic is usually set to implement a ring, grid or star connection topology

Ants : each path step is initially set up usually with a fixed pheromone level, and with
the relevant (fixed) path length; the population of paths is created by the ants from these
steps each generation

4

Evaluate

The affinity measures how well each individual solves (part of) the problem. It is a user-
defined function of (some of) an individual’s characteristics. This function should ideally
(but does not always) have the structure of a metric over the space defined by the
characteristics.

GA : the affinity is the fitness function, a function of the values of the genes
AIS : the affinity is a measure of how closely the shape receptors complement the

target of recognition, inspired by the “lock and key” metaphor
Swarms : the affinity, or fitness function, is a function of the current position
Ants : the affinity is the (inverse of the) path length

Test

The test for termination is either (a) a sufficiently good solution is found, or (b) enough
generations have been run without finding a sufficiently good solution. On termination,
the solution is:

GA, Swarms, Ants : the highest affinity (fittest) individual
AIS negative selection : the set of individuals with above-threshold affinities
AIS clonal selection : the population of memory cells

Select

High affinity individuals are selected to contribute somehow to the next generation’s
population. There are several selection algorithms commonly used. n best selects the n
highest affinity individuals from the current population. Threshold selects all the
individuals with an affinity greater than some given threshold value. Roulette wheel
selection randomly chooses a given number of individuals, with probability of selection
proportional to their affinity, or to their ranking. Tournament randomly selects teams of
individuals, and then selects a subset of individuals from each team.

GA : different variants use any of the above methods of selection, to find the parents
that will produce the next generation

AIS negative selection : threshold selection is used to find the next generation
AIS clonal selection : a combination of n best and threshold selection is used to find

the next generation of the main population; all individuals of the memory cell population
are selected to become the basis of its next generation

Swarms : all individuals are selected to become the basis of the next generation
Ants : no individuals are specifically selected to become the next generation: each

generation is created afresh from the path steps (whose characteristics are changed by the
mutate step)

A generic framework for population-based algorithms, implemented on multiple FPGAs 5

Spawn

Production of new individuals for the next generation usually involves combining the
characteristics of parent individuals from the selected population (ants are a special case).

GA : the characteristics of pairs of selected parents are combined by using a crossover
mask (predefined or randomly generated) to generate two new individuals. If the
crossover mask is set to the identity, then the two new individuals are clones of the two
parents.

AIS negative selection : the selected parents become the basis of the new generation
(which is topped up to the population size by creating sufficient new individuals). If the
threshold is a constant value throughout the run, this has the effect that an individual, once
selected, continues from generation to generation, and only the newly created individuals
need be evaluated.

AIS clonal selection : in the main population new individuals are spawned as clones of
each parent, with the number of clones being produced proportional to the parent’s
affinity; in the memory cell population, the selected parents become the basis of the new
generation, and a new individual is spawned, as (a copy of) the best individual of the main
population.

Swarms : a new individual is spawned from the sole parent and the highest affinity
individual in that parent’s neighbourhood group, with the intention of making the new
individual “move towards” the best neighbour. The new position is derived from the
parent’s position and velocity, the velocity is modified to point towards the best
neighbour, and the neighbourhood group is copied from the parent.

Ants : no individuals are specifically spawned for the next generation: each generation
is created afresh from the path steps (whose characteristics are changed by the mutate
step)

Mutate

Mutation involves altering the characteristics of single individuals in the population. It
would be possible to unify spawning and mutation into a single generate stage, but since
most algorithms consider these to be separate processes, we have followed that view,
rather than strive for total generality at this stage. The mutation rate might be globally
random, or based on the value of a characteristic or the affinity of each individual. How a
characteristic is mutated depends on its type: a boolean might be flipped, a numerical
value might be increased or decreased by an additive or multiplicative factor, etc.

GA, Swarms : individuals are mutated, usually randomly, in order to reintroduce lost
values of characteristics; evolutionary strategy algorithms encode mutation rates as
characteristics

AIS negative selection : no mutation occurs. (That is, the next generation consists of
copies of the selected above threshold individuals, topped up with newly created
individuals. An alternative, but equivalent, formulation in terms of this framework would

6

be to consider that all the individuals are selected, and that only the below-threshold
individuals are mutated, into completely random individuals. However, this is at odds
with the traditional description of the algorithm, and also with the view that mutation
makes relatively small alterations.)

AIS clonal selection : the new clone individuals are mutated, by an amount inversely
proportional to their affinity.

Ants : new pheromone is laid on each path step by an amount proportional to the
affinity of the complete paths in which it occurs, and decreased by a constant decay factor.

3 Generalising across algorithms and implementations

Once we have all the algorithms in a common framework, we can see ways of
generalising each in a natural manner (that is bio-inspired, but by a different aspect of
biology). We discuss two such cases here – niching and elitism – and outline other
possibilities.

Niching

Some population-based algorithms include “niching”: developing sub-populations
separately, with occasional migration of individuals [Brits et al 2002] [Mahfoud 1995]
[Watkins & Timmis 2004]. Niching is motivated by the biological evolution of
populations on separate islands. It is useful for solving multi-objective problems, with
sub-populations focussing on separate objectives, but we do not here consider that aspect.
Here we are interested in its use for efficiently distributing the algorithm across multiple
processors, by minimising the amount of communication (of details of the high affinity
individuals) needed between processors. We use these ideas to add a migrate step to the
generic framework.

In niching, we have N islands of separately developing sub-populations, with each
island following the simple algorithm, and each having a neighbourhood that is of a subset
of the other islands (capturing locality of islands). Every g generations, modify the
current population by replacing n individuals (suitably selected to be of low affinity, or
chosen randomly) with n migrants from the neighbourhood (suitably selected to be of high
affinity, or chosen randomly). This results in the following specifics:

GA: migration is simple population replacement; the solution is the fittest individual
across all islands.

AIS negative selection: migration is simple population replacement; the solution is the
union of all above-threshold individuals across all islands.

AIS clonal selection : migration can occur for both the main population and the
memory cell population; the solution is the union of all memory cell populations across all
islands.

A generic framework for population-based algorithms, implemented on multiple FPGAs 7

Swarms: migration is simple population replacement, where the replaced individuals
copy in the position and velocity characteristics of the migrants, but retain their original
neighbourhood characteristic; the solution is the fittest individual across all islands.
(Swarms admit another distribution strategy that can be efficiently implemented if the
nearest individual neighbourhood relation is that of a simple ring topology. A single
swarm can be distributed across a ring of processors, with the only communication
between processors being the very local neighbourhood properties.)

Ants: migration is simple population replacement; the solution is the fittest individual
(shortest path) across all islands. The (affinity of the) migrated paths will affect only the
pheromone update stage; the migrated paths need not be recreated in the next generation.

Elitism

Some GAs include ad hoc elitism: copying the best individual(s) into the next generation,
in order to preserve the currently best solution (and hence make the best solution
monotonic with generations). This is not a particularly bio-inspired process. AIS
algorithms with their (constant) threshold selection, on the other hand, are naturally elitist:
if an antibody exceeds the threshold, (a copy of) it survives in future generations. We use
these ideas to modify the spawn step, and add generic elitism to the framework.

When spawning the next generation, copy the n best of the previous population, as well
as spawning any new individuals from the selected parents. Also, these particular n
individuals should be exempt from mutation in this stage. This results in the following
specific modifications:

GA : n fewer individuals need to be spawned by crossover
AIS : no change, provided n individuals are above the threshold
Swarms : the solution is a property of the position characteristic only, and the position

is modified by the velocity. So the previous best solution is copied, with its velocity set to
zero, so that it “hovers” over the current best solution

Ants : an “elite ant” recreates the current shortest path, ensuring that the solution
remains in the population, and that its steps get their pheromone levels updated

Other generalisations

The generic framework allows further features of one specific algorithm to be generalised
to the others.
• Evolutionary Strategies encode the mutation rates as characteristics: a similar approach

can be used in the other algorithms. For example, the ant algorithm could allow the
pheromone decay rate to be a characteristic.

• Genetic Algorithms use crossover to combine characteristics of parents: a similar
spawn operator can be used in the other algorithms. For example, AIS clonal selection
could spawn new antibodies by crossover.

8

• Traditionally unchanging characteristics could be mutated, for example, swarm
neighbourhood.

• AIS use affinity-based mutation, to preferentially shake up poorer solutions: all
mutation schemes could take this approach.

• AIS clonal selection increases the number of good solutions by affinity based cloning
(thereby increasing their probability of being selected, so allowing more exploration of
the nearby space). The other algorithms could be adapted to variable population size
with cloning.

• The range of selection strategies can be employed across all the algorithms that have a
non-trivial selection stage. In particular, AIS clonal selection has two populations:
selection strategies could be used on the memory cell population too.

4 The prototype implementation

There is much opportunity for parallelism in these algorithms: individuals can (to some
degree) be evaluated, selected, and created in parallel. This suggests efficiency gains by
executing these algorithms on parallel hardware.

FPGAs and Handel-C

We chose as our prototype implementation platform a small grid of FPGAs, executing the
framework implemented in Handel-C.

An FPGA is programmable hardware: its array of logic gates can be configured and
connected for each specific program. This removes the need to fetch and decode
instructions, fetch data, and store results; it is programmed to be a direct hardware
representation of the code. It can be configured to provide genuine parallel execution (see
for example [Brown & Rose 1996]). So each individual FPGA can host multiple
individuals executing in parallel, and multiple FPGAs allow distributed implementations.

The framework described above has been prototyped as a proof of concept. It
demonstrates that a suitably flexible generic framework can indeed be developed to
support multiple classes of population-based algorithms, and that it can be distributed on a
grid of FPGAs. It has been tested on an array of four FPGA algorithm engines, each
connected to a fifth monitoring FPGA, in turn connected to a PC.

The prototype framework is implemented in Handel-C [Celoxica 2004], a (relatively)
high level language designed specifically for writing applications for FPGAs. Handel-C
code is compiled down into the relevant FPGA net-list, which specifies how the FPGA is
to be configured.

Handel-C is based on the process calculus of CSP (Communicating Sequential
Processes) [Hoare 1985]. Handel-C is essentially an executable subset of CSP [Stepney
2003], with some extensions to support FPGA hardware. In particular, it has explicit
support for parallel execution of processes:

A generic framework for population-based algorithms, implemented on multiple FPGAs 9

for (i=0; i < imax; i++) {
 // the imax iterations execute in sequence
 // and occupy space independent of imax
}

par (i=0; i < imax; i++) {
 // the imax iterations execute in parallel
 // and occupy space proportional to imax
}

Being based on CSP, Handel-C uses synchronous communication between its parallel
processes. There is currently no Handel-C language support for programs distributed
across multiple FPGAs, and such configurations do not support synchronous
communication between chips as a primitive. It would have been possible to design a
protocol to implement this, allowing the distributed program to be (very close to) a pure
Handel-C program. However, the communication between chips is deliberately restricted,
to just the occasional migration data. So for this prototype, a simple handshaking protocol
has been used, and the inter-chip communication hidden in a wrapper.

The implemented framework

The prototype implementation of the framework provides much of the functionality
described above. The genericity means that there are many parameters and options: the
prototype includes support for specific options, and hooks for a range of user-definable
functions. The framework is structured so that the basic algorithm needs no alteration: the
user merely selects certain features (such as population sizes, characteristics, mutation
rates, style of creation and selection, crossover masks, number of FPGAs, and number of
islands per chip), and provides the code for certain functions (the evaluation function and
stopping condition, and, as required, creation, selection, spawning, and mutation
functions).

The framework code and user-defined functions, both written in Handel-C, are
compiled on the PC, then downloaded on to the FPGA array to run. The Handel-C
compiler optimises away dead code, so options that are not selected by the user (such as
various choices of creation or selection functions) do not appear in the compiled code.

When the algorithm terminates, the relevant results are communicated back to the PC.
It is also possible to return intermediate results every generation, to allow investigation of
the performance, or for debugging, but this introduces a communication bottleneck.

Each individual is represented as a bit string, with each bit or combination of bits in the
string representing a characteristic. A user-specified flag selects whether these bits are
initialised to 0s, to 1s, to random bit values, or to a user-defined alternative. Each FPGA
chip holds a certain number of islands, each of which holds its individuals. Migration
information is passed between the islands, and hence between the chips, as required.

Ideally, all individuals should be able to evaluate their own affinity in parallel, by a call
to the user-defined evaluation function. For completely parallel implementation on an

10

FPGA, this would require one copy of the function per individual. This can result in
much of the FPGA’s resource being used by evaluation functions, limiting the number of
individuals per chip. The framework instead allows a trade-off between number of
individuals and amount of parallelism. During certain of the algorithm steps, the
individuals in an island are considered to be grouped into f families, each with m
members, giving at total of f × m individuals. Families are processed in parallel, but the
members of a family are processed in sequence. Thus each family requires only one copy
of each function, and space is proportional to f and execution time is proportional to m:

par (family=0; family < f; family++) {
 for (member=0; member < m; member++) {
 // ... code for individual[family*m + member]
 }
}

The prototype implementation provides a timer function, to help the user chose a suitable
trade-off for each step, and for each application.

The probabilistic nature of (parts of) the algorithm require the use of random numbers.
The implementation provides one 32-bit linear feedback shift register per family for this
purpose.

Tournament selection is used to divide the population into teams. If no tournament is
required, the entire population forms one large team. Then the appropriate selection
method is used on each team in parallel.

Restrictions due to the platform choice

Some of the design decisions for the framework prototype are due to specific features and
limitations of FPGAs and Handel-C, and different platform choices could result in
different decisions. For example, the use of families is to cope with the limited size of the
FPGAs.

Another example of this choice is the selection implementation. Although each team
performs selection in parallel, the selection within each team is sequential. One might
think that roulette wheel, or even a random, selection from a collection of individuals
could be performed in parallel. However, this would result in the need for many parallel
accesses to random number generators, and the FPGA’s silicon would quickly become
dedicated to these. Certain parts of the selection can be performed in parallel, for
example, to find the n best, where each individual can read the affinity of all its team-
mates in parallel. Even so, care needs to be taken, because the highly interconnected read
accesses can result in quite complex (and therefore slow to compile) routing.

Handel-C supports variable bit-width values, requiring explicit casting between values
with different widths. This can lead to arcane code, particularly when trying to write
generic routines. For example, consider the case where some particular size n (such as
population size) is a power of 2. Then the variable that stores the size is one bit larger

A generic framework for population-based algorithms, implemented on multiple FPGAs 11

than the variable used for indexing into an array of this size, running from 0 to n−1, so
comparing the index and the size requires some fancy casting.

5 Preliminary results

Sizes: The number of (families of) individuals possible per chip varies depending on the
settings. For example, if no survival, generation, or niching is done, it is possible to have
30−40 individuals per chip, each with 8 bit-characteristics. With all the capabilities
turned on, this number drops to about 18 individuals run sequentially, or four if run in
parallel, the reduction being due to the increased routing and copies of code. The
limiting constraint is routing tables rather than logic gates: every individual is accessed by
each of the six algorithm stage functions, and the implementation uses all the routing
tables, but only about 10-15% of the logic gates. Similar size results apply when hosting
two islands on a single chip: this halves the total population possible, because of code
replication and routing constraints.

The FPGAs being used (300K gate Xilinx SpartanIIE chips) are relatively small: it was
thought more important for this proof of concept work to get the maximum number of
FPGAs for the budget, rather than the maximum size of each one. Clearly, more
individuals would be possible with larger FPGAs. However, the architectural design
needs to be done carefully to optimise use of the resources: design experience of these
style of algorithms for FPGAs is still in its infancy.

Parallelism: How much speedup does parallelism give?

The experiment compares running four individuals in parallel (the most supportable in
this experiment) against running four in sequence, solving a simple optimisation problem.
Linear speedup would result in a 400% improvement, but the parallel form has a speed-up
of only about 30% over the sequential form. This low value indicates that there is still a
great deal of sequential execution in this prototype implementation. This sequential
bottleneck occurs mainly in the select stage of the framework: the speedup in the evaluate
stage (calculation of the affinity function) is essentially linear. More complicated
evaluation functions would therefore result in an increase in the parallel efficiency, but
would also increase the demand on silicon resource if the complicated functions
physically took up more space.

Parallelism versus population size: more parallelism takes up more silicon, resulting in
few individuals being supportable. Parallelism lets the algorithm run faster, in that each
generation takes less time to execute, but larger populations allow greater diversity and
exploration of the search space per generation, so the algorithm could require fewer
generations to find a solution. What is better: more parallelism or a larger population?

The experiment compares running four individuals in parallel (the most supportable in
this experiment) against running 12 in sequence (the most supportable sequential
individuals in this experiment). The parallel form gives no speed-up overall compared to

12

the sequential form. However, looking at only the evaluate stage shows the sequential
form taking about twice as long as the parallel form. Given the linear speedup noted
above, the sequential case takes 12 times as long per generation, and so is executing only
about one sixth the number of generations before finding a solution. Even so, the parallel
form is taking less time overall (in the evaluate state), suggesting that parallelism
outweighs population size in this case.

However, these experiments need to be tried on larger populations, and a wider range
of affinity function complexity (which affects the parallel to sequential population size
ratio), before any more definitive statements can be made.

Niching: What is the effect of using multiple chips? How much speedup does
distribution give?

The experiment compares running four individuals in parallel on one chip versus four
individuals in parallel on each of the five chips (20 individuals in total), migrating the two
best individuals every 100 generations. There is a speedup of about a factor of two (over
the whole algorithm run, not just the evaluate stage). These experiments need to be
repeated for different migration rates to see if there is an optimum rate.

6 Discussion and future work

The unified framework allows the generalisation of concepts from across a range of
algorithms types, for example, elitism and niching. Thus we have a chimerical
computational framework that is inspired by biology, but not restricted to any one
particular biological domain. Implementation of the framework on parallel and
distributed architectures is (relatively) straightforward, and provides performance benefits
(although currently significantly less than linear improvement). So this proof of concept
has shown that the approach to generalising and parallelising population-based algorithms
is feasible and useful. Thus it is worth pursuing the approach with more rigour and detail.

The relatively small speedups indicate the need for removing the remaining sequential
bottlenecks, and the constraints on parallel individuals caused by routing limitations
indicate the need for a more sophisticated parallelisation architecture targeted at the
opportunities and limitations of FPGAs. Allowing six islands per chip to use the
hardware for the six algorithm steps in a pipeline might provided further speedup.

An alternative distributed architecture would be to dedicate certain chips to algorithm
steps, and move the individuals around. Different numbers of chips could be dedicated to
each step, depending on the complexity of that step, to balance the processing load.

The prototype framework needs to be extended with more built-in options, and made
more usable, by providing a configuration language for selecting parameter values, etc. It
also needs to be made more flexible to accommodate other arrangements of FPGA arrays.

Future work also includes formalising the generic framework, to make it clearer which
features of each algorithm are being represented and captured, and to generalise and
include more details and capabilities from the range of variant algorithms in the literature.

A generic framework for population-based algorithms, implemented on multiple FPGAs 13

A more rigorous framework will allow analysis at the generic and specific levels,
comparison of instantiations, and further generalisations of various properties.

7 Acknowledgments

We would like to thank Wilson Ifill and AWE, who provided funding for the FPGAs used
in this work. Also thanks to Neil Audsley and Michael Ward for turning a large box of
components into a usable FPGA grid, and to Fiona Polack and Jon Timmis for detailed
comments on earlier versions.

8 References

[1] E.W. Bonabeau, M. Dorigo, G. Theraulaz. Swarm Intelligence: from natural to
artificial systems. Addison Wesley, 1999

[2] R. Brits, A.P. Engelbrecht, F. van den Bergh. A niching Particle Swarm Optimizer.
4th Asia-Pacific Conference on Simulated Evolution and Learning, 2002.

[3] S. Brown, J. Rose. Architecture of FPGAs and CPLDs: a tutorial. IEEE Design and
Test of Computers, 13(2):42-57, 1996.

[4] Celoxica. Handel-C Reference Manual, development kit v3.0. 2004
http://www.celoxica.com/techlib/files/CEL-W0410251JJ4-60.pdf

[5] V. Cutello, G. Nicosia, M. Pavone. Exploring the capability of immune algorithms: a
characterization of hypermutation operators. ICARIS 2004, LNCS 3239:263-276

[6] L.N. de Castro, J. Timmis. Artificial Immune Systems: A New Computational
Intelligence Approach. Springer, 2002

[7] S.M. Garrett. Parameter-free, adaptive clonal selection. CEC 2004, pp 1052-1058.
IEEE Press, 2004

[8] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985
[9] J. Kennedy, R.C. Eberhart. Swarm Intelligence. Morgan Kaufmann, 2001
[10] J. Kim, P.J. Bentley. Immune memory in the dynamic clonal selection algorithm.

ICARIS 2002, pp 59-67, Kent, 2002
[11] S.W. Mahfoud. A comparison of parallel and sequential niching methods. In L.J.

Eshelman, ed, Proc. 6th International Conference on Genetic Algorithms, pp 136-143.
Morgan Kaufmann, 1995.

[12] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1996
[13] S. Stepney. CSP/FDR2 to Handel-C translation. Technical Report YCS-2003-357,

University of York. June 2003.
[14] S. Stepney, R.E. Smith, J. Timmis, A.M. Tyrrell, M.J. Neal, A.N.W. Hone.

Conceptual Frameworks for Artificial Immune Systems. Int. J. Unconventional
Computing. 1(3) 2005

[15] A. Watkins, J. Timmis. Exploiting Parallelism Inherent in AIRS, an Artificial
Immune Classifier. ICARIS 2004, LNCS 3239:427-438. Springer, 2004.

