
INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Verification with Automated Reasoning

Simon Foster

Monday 6th March, 2017

into-cps.au.dk

1

http://into-cps.au.dk
into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/


INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Outline

Motivation

Automated Reasoning and Isabelle

Verification by Unifying Theories of Programming

2

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/


INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Outline

Motivation

Automated Reasoning and Isabelle

Verification by Unifying Theories of Programming

3

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/


INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

What is automated reasoning?
I natural language can have ambiguities and imprecision
I formal logic: a branch of mathematics that explores

construction of propositions, theorems, and proofs

time ∈ {23:30 ... 04:00} ⇒ dark

∀ x : N • ∃ y : N • y > x

∀ x , y : Q • x < y ⇒ (∃ z : Q • x < z ∧ z < y)

I allow to precisely form properties, as in Z and Circus
I prove (or falsify) properties using formal deduction rules
I theorem provers allow to (partially) automate this process
I apply to formally verify models and programs

4

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/


INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

What is automated reasoning?
I natural language can have ambiguities and imprecision
I formal logic: a branch of mathematics that explores

construction of propositions, theorems, and proofs

time ∈ {23:30 ... 04:00} ⇒ dark

∀ x : N • ∃ y : N • y > x

∀ x , y : Q • x < y ⇒ (∃ z : Q • x < z ∧ z < y)

I allow to precisely form properties, as in Z and Circus
I prove (or falsify) properties using formal deduction rules
I theorem provers allow to (partially) automate this process
I apply to formally verify models and programs

4

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/


INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

What is automated reasoning?
I natural language can have ambiguities and imprecision
I formal logic: a branch of mathematics that explores

construction of propositions, theorems, and proofs

time ∈ {23:30 ... 04:00} ⇒ dark

∀ x : N • ∃ y : N • y > x

∀ x , y : Q • x < y ⇒ (∃ z : Q • x < z ∧ z < y)

I allow to precisely form properties, as in Z and Circus
I prove (or falsify) properties using formal deduction rules
I theorem provers allow to (partially) automate this process
I apply to formally verify models and programs

4

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/


INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Why theorem proving?
I model checkers like FDR4 struggle with data structures

and infinite state systems
I it is thus difficult to model check Circus
I state explosion problem – limit on the number of states

I theorem provers allow to tackle problems symbolically
I no explicit representation of the state
I e.g. “the current state has x > 5 and x < 10”
I complementary to model checking: not quite “push button”

5

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/


INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Why theorem proving?
I model checkers like FDR4 struggle with data structures

and infinite state systems
I it is thus difficult to model check Circus
I state explosion problem – limit on the number of states
I theorem provers allow to tackle problems symbolically
I no explicit representation of the state
I e.g. “the current state has x > 5 and x < 10”
I complementary to model checking: not quite “push button”

5

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/


INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Cyber-Physical Systems (CPSs)
I current “hot topic” in computer science research
I combine discrete computation (cyber-) with physical world
I interract with environment using sensors and actuators
I a controller makes decisions about behaviour
I can communicate with other systems via a network
I e.g. automated driverless cars
I INTO-CPS explores modelling and verification of CPS

6

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/


INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Agricultural Robot
I example: Robotti agricultural robot (http://agrointelli.com/)

7

http://into-cps.au.dk
http://agrointelli.com/
https://www.youtube.com/watch?v=ErvVxOLp8SY
https://ec.europa.eu/programmes/horizon2020/


INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Agricultural Robot
I example: Robotti agricultural robot (http://agrointelli.com/)

I immersive simulation and design space exploration

8

http://into-cps.au.dk
http://agrointelli.com/
https://ec.europa.eu/programmes/horizon2020/


INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Agricultural Robot
I example: Robotti agricultural robot (http://agrointelli.com/)

I integrated and automated farming processes

9

http://into-cps.au.dk
http://agrointelli.com/
https://ec.europa.eu/programmes/horizon2020/


INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Verifying CPSs
I such systems are complex to model and verify
I controller specified using a discrete notation like Circus
I environment modelled by differential equations
I very large state-space
I complex reasoning about real-numbers (R)
I not simply infinite state, but uncountably infinite
I theorem proving thus an essential verification technique

10

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/


INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Outline

Motivation

Automated Reasoning and Isabelle

Verification by Unifying Theories of Programming

11

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/


INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Formal Proof
I conjecture: under some assumptions, a formula is true
I e.g. “assuming x > 0 then x is a natural number”
I proof shows how to derive conclusion from assumptions
I by application of existing theorems and deduction rules
I analogy with function mapping inputs to outputs
I turns a conjecture into a theorem (or lemma)
I theorem provers and proof assistants aid us in this process

12

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/


INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Automated Theorem Provers

ATPConjecture

Yes + Proof

No + Counterexample

Nothing (runs forever)
∀x. ∃y. P(x,y)

I can also use SMT solvers to prove arithmetic theorems etc.
I usually limited to first-order logic
I e.g. in general cannot handle induction
I induction required for proofs about failures-divergences
I thus we also need Interactive Theorem Proving

13

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/


INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Automated Theorem Provers

ATPConjecture

Yes + Proof

No + Counterexample

Nothing (runs forever)
∀x. ∃y. P(x,y)

I can also use SMT solvers to prove arithmetic theorems etc.
I usually limited to first-order logic
I e.g. in general cannot handle induction
I induction required for proofs about failures-divergences
I thus we also need Interactive Theorem Proving

13

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/


INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Isabelle/HOL

http://isabelle.in.tum.de

I an interactive theorem prover for Higher Order Logic (HOL)
I HOL = a functional specification language
I similarities to both Z and Haskell
I supports data structures, recursive functions, relations etc.
I allows readable proofs in “natural deduction” style
I large online library of formalised mathematics1

I support for verified code generation
I verification tools for Circus in progress

1Archive of Formal Proofs. http://afp.sf.net

14

http://into-cps.au.dk
http://isabelle.in.tum.de
http://afp.sf.net
https://ec.europa.eu/programmes/horizon2020/


INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Proof in Isabelle
I an Isabelle proof is a script that acts on a proof state

Proof
State

Proof
State
Proof
State
Proof
State

Proof
State
Proof
State
Proof
State
Proof
State
Proof
State

No subgoals!

proof
tactic

proof
tactic

proof
tactic(s)

Conjecture
(goal)

I “divide and conquer” approach to proof
I uses proof tactics to subdivide and eliminate proof goals

I simp – perform equational simplification (1 + 2 3)
I blast and auto – automated deduction
I sledgehammer – call external ATPs to find a proof
I nitpick – try to find a counterexample

I proof as a game where the winning condition is QED

15

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/


INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Proof in Isabelle
I an Isabelle proof is a script that acts on a proof state

Proof
State

Proof
State
Proof
State
Proof
State

Proof
State
Proof
State
Proof
State
Proof
State
Proof
State

No subgoals!

proof
tactic

proof
tactic

proof
tactic(s)

Conjecture
(goal)

I “divide and conquer” approach to proof
I uses proof tactics to subdivide and eliminate proof goals

I simp – perform equational simplification (1 + 2 3)
I blast and auto – automated deduction
I sledgehammer – call external ATPs to find a proof
I nitpick – try to find a counterexample

I proof as a game where the winning condition is QED

15

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/


INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Proof in Isabelle
I an Isabelle proof is a script that acts on a proof state

Proof
State

Proof
State
Proof
State
Proof
State

Proof
State
Proof
State
Proof
State
Proof
State
Proof
State

No subgoals!

proof
tactic

proof
tactic

proof
tactic(s)

Conjecture
(goal)

I “divide and conquer” approach to proof
I uses proof tactics to subdivide and eliminate proof goals

I simp – perform equational simplification (1 + 2 3)
I blast and auto – automated deduction
I sledgehammer – call external ATPs to find a proof
I nitpick – try to find a counterexample

I proof as a game where the winning condition is QED

15

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/


INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

An aside

2

2Tobias Nipkow. Teaching Semantics with a Proof Assistant

16

http://into-cps.au.dk
https://www21.in.tum.de/~nipkow/pubs/vmcai12.pdf
https://ec.europa.eu/programmes/horizon2020/


INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Demo 1: Isabelle proof goals

17

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/


INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Demo 2: Isabelle functions and theorems

18

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/


INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Outline

Motivation

Automated Reasoning and Isabelle

Verification by Unifying Theories of Programming

19

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/


INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Programs-as-predicates and the UTP
I how do we apply tools like Isabelle to program verification?

I UTP: encode programs as logical predicates
I allows to combine specifications and programs (as in Z)

x := v , x ′ = v ∧ y ′ = y

P ; Q , ∃ x0 • P [x0/x ′] ∧ Q [x0/x ]

PC bBQ , (b ∧ P) ∨ (¬b ∧Q)

while b do P , µX • ((P ; X )C bB II)

I encoding programs in this way allows us to verify them
I program refinement: Spec v Impl ⇔ (∀ v • Impl⇒ Spec)
I Isabelle/UTP – automated reasoning for UTP

20

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/


INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Programs-as-predicates and the UTP
I how do we apply tools like Isabelle to program verification?
I UTP: encode programs as logical predicates
I allows to combine specifications and programs (as in Z)

x := v , x ′ = v ∧ y ′ = y

P ; Q , ∃ x0 • P [x0/x ′] ∧ Q [x0/x ]

PC bBQ , (b ∧ P) ∨ (¬b ∧Q)

while b do P , µX • ((P ; X )C bB II)

I encoding programs in this way allows us to verify them
I program refinement: Spec v Impl ⇔ (∀ v • Impl⇒ Spec)
I Isabelle/UTP – automated reasoning for UTP

20

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/


INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Programs-as-predicates and the UTP
I how do we apply tools like Isabelle to program verification?
I UTP: encode programs as logical predicates
I allows to combine specifications and programs (as in Z)

x := v , x ′ = v ∧ y ′ = y

P ; Q , ∃ x0 • P [x0/x ′] ∧ Q [x0/x ]

PC bBQ , (b ∧ P) ∨ (¬b ∧Q)

while b do P , µX • ((P ; X )C bB II)

I encoding programs in this way allows us to verify them
I program refinement: Spec v Impl ⇔ (∀ v • Impl⇒ Spec)
I Isabelle/UTP – automated reasoning for UTP

20

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/


INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Programs-as-predicates and the UTP
I how do we apply tools like Isabelle to program verification?
I UTP: encode programs as logical predicates
I allows to combine specifications and programs (as in Z)

x := v , x ′ = v ∧ y ′ = y

P ; Q , ∃ x0 • P [x0/x ′] ∧ Q [x0/x ]

PC bBQ , (b ∧ P) ∨ (¬b ∧Q)

while b do P , µX • ((P ; X )C bB II)

I encoding programs in this way allows us to verify them
I program refinement: Spec v Impl ⇔ (∀ v • Impl⇒ Spec)
I Isabelle/UTP – automated reasoning for UTP

20

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/


INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Demo 3: Library in UTP

21

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/


INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Demo 4: CSP in Isabelle

22

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/


INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Formal Semantics
I failures-divergences is a particular “semantic model”
I but it is just one of many theories of concurrency
I what about other models of concurrency? (e.g. mobility)
I object-orientation?
I real-time systems?
I hybrid systems and differential equations?
I and all combinations of the above?
I multi-paradigm languages are semantically heterogeneous

23

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/


INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Unifying Theories of Programming
I treat all the different theories as building blocks
I isolate them and study their fundamental laws
I construct foundations for heterogeneous languages
I CyPhyCircus – Circus + support for differential equations
I will enable formal modelling of examples like Robotti

24

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/


INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Conclusion
I theorem proving is an essential verification technique
I can be used to verify infinite state systems
I requires more input from the user
I however automation is improving all the time
I goal of the UTP is to formalise core computational theories
I Isabelle/UTP – mechanised programming laws
I we are applying it to verifying Cyber-Physical Systems

25

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/


INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Interested?
I Isabelle/UTP: https://github.com/isabelle-utp/utp-main
I Projects:

I Integrating Theorem Proving and Computer Algebra Systems
(simonf.isabelle-cas)

I Mechanising the refinement calculus in Isabelle/UTP
(simonf.refine-calc)

I Automatic Translation from CSPm into Isabelle/UTP (zeyda.01)
I Compositional analysis of interacting state machines for robotic

applications (ahm504.02)
I Formal refinement for a state-rich process algebra in Isabelle/HOL

(ahm504.03)
I Refinement support for a state-rich process algebra in Eclipse

(ahm504.04)

26

http://into-cps.au.dk
https://github.com/isabelle-utp/utp-main
https://www.cs.york.ac.uk/projects/allocation/project/simonf.isabelle-cas/
https://www.cs.york.ac.uk/projects/allocation/project/simonf.refine-calc/
https://www.cs.york.ac.uk/projects/allocation/project/zeyda.01/
https://www.cs.york.ac.uk/projects/allocation/project/ahm504.02/
https://www.cs.york.ac.uk/projects/allocation/project/ahm504.03/
https://www.cs.york.ac.uk/projects/allocation/project/ahm504.04/
https://ec.europa.eu/programmes/horizon2020/

	Motivation
	Automated Reasoning and Isabelle
	Verification by Unifying Theories of Programming

