Privacy-Preserving Implicit Authentication

Nashad Safa Rei Safavi-Naini Siamak Shahandashti
Outline

• Device, Implicit Authentication
 • Usage patterns, authentication decision making
 • Cost: privacy!

• Our Basic Protocol
 • Preserves privacy against carrier, benign illegitimate users

• Our Improved Protocol
 • Preserves privacy against malicious illegitimate users as well

• Privacy Guarantees, Computation & Communication Cost

• Concluding Remarks
Implicit Authentication

- Idea: authentication by device usage pattern
 - Implicit: does not need user interaction, runs in the background
- Usage pattern is compared with history
 - If conforming: no action
 - If not conforming: user asked to provide the first factor for authentication
- Result: legitimate user not burdened much, illegitimate user caught
Example Scenario

4. Auth. Response

1. Service Request

2. Auth. Request

3. Authentication Protocol

5. Service Response
Storage of Usage Pattern History

Usage pattern history needs to be stored on the carrier side!

- Otherwise, loss of device = loss of usage pattern history
 - = ability to mimic (physically or artificially) the usage pattern
 - = loss of authentication security!
 - = loss of privacy!
Usage Pattern Data

• 3 categories of usage pattern data:
 • 3rd party (App server / cloud) data: app usage pattern, app data, ...
 • Carrier data: call, sms, data usage patterns, location pattern, ...
 • Device data: WiFi usage pattern, sensor data, device usage pattern, ...

• Device (3rd party) data needs to be shared with carrier for effective implicit authentication

• We claim this is unnecessary!

• and propose “privacy-preserving implicit authentication”

• Idea: store encrypted usage pattern data
User Profiles & Authentication

• User profile: vector of features
• Each feature belongs to a user-specific distribution
• Feature distributions are approximated by feature history
• On a new reading, a decision is made if it belongs to the distribution

• Observation: often the distribution is a collection of clusters
e.g. based on time of day
A Simple Decision Maker

• For a distribution D, calculate a measure of dispersion d
 • E.g. standard deviation, average absolute deviation (AAD)
• On a new reading x, calculate the area under the distribution curve between $x - d$ and $x + d$
 • This ‘similarity measure’ is between 0 and 1
 • Can be approximated by the number of points recorded in the history
• Only needs comparison, addition, calculation of dispersion d
Calculation in the Ciphertext Space

• **Homomorphic Encryption (HE):** enables addition in ciphertext space
 • \(H.\text{Enc}(a + b) = H.\text{Enc}(a) \oplus H.\text{Enc}(b) \)
 • Hence, \(H.\text{Enc}(c \cdot a) = c \odot H.\text{Enc}(a) \)

• Comparison in the ciphertext space
 • Possible using homomorphic encryption, but needs interaction
 • **Order-Preserving Symmetric Encryption (OPSE)**
 • \(a > b \iff OP.\text{Enc}(a) > OP.\text{Enc}(b) \)

Boldyreva et al. EuroCrypt’09
Our Protocol: Idea, Pre-computation

Basic idea:
• Device sends *encrypted* readings to carrier periodically, which are stored on the carrier side as history:

\[H.\text{Enc}(v(t_i)), \ OP.\text{Enc}(v(t_i)) \]

Pre-computation:
• Carrier finds order in history using order-preserving encryptions, finds encrypted median, calculates average absolute deviation (AAD):

\[H.\text{Enc}(\text{AAD}(v)) \]
Our Protocol: Authentication, Update

Authentication:

- Carrier calculates, sends them to device:

 $$H.\text{Enc}(v(t_i) - AAD(v)), \quad H.\text{Enc}(v(t_i) + AAD(v))$$

- Device decrypts, calculates OP encryptions, sends back:

 $$OP.\text{Enc}(v(t_i) - AAD(v)), \quad OP.\text{Enc}(v(t_i) + AAD(v))$$

- Carrier locates values, counts no. of ciphertexts within the range

Update:

- If authentication succeeds (either implicit or explicit), update AAD

 - Only needs a few calculations to account for the difference
Privacy of our Protocol

- Definition based on secure two-party computation guarantees:
 - Device only learns AAD of history
 - Carrier only learns order of current reading compared to history

- Proven our protocol secure against an *honest-but-curious* device, an *honest-but-curious* carrier
 - User privacy is preserved against carrier
 - If device stolen or lost, user privacy preserved against illegitimate users, as long as the device is not ‘hacked’
 - For ‘hacked’ devices, need to consider privacy against *malicious* devices
Improving Security

• To achieve security against malicious devices:
 • Device required to send a *proof of knowledge* of plaintext with the ciphertext $H.\text{Enc}(v(t_i))$
 • Order-preserving encryption replaced by interaction with device to compare ciphertexts
 • Compare $OP.\text{Enc}(v(t_i) \pm \text{AAD}(v))$ with history records via binary tree search
 • $\log \ell$ rounds of interaction for a history of size ℓ

• Proven our protocol secure against a *malicious* device
 • If device stolen or lost, user privacy preserved, even if device ‘hacked’
Comparing Homomorphic Ciphertexts

• Goal: compare a, b given $H. Enc(a), H. Enc(b)$, device has key
• Naïve: send to device, get response, but device learns a, b, might cheat
• Equivalent: Calculate $H. Enc(a - b)$, compare with zero
• Randomise: $H. Enc(r(a - b))$, so device does not learn $a - b$, but still might cheat
• Mix with $k - 1$ other values $H. Enc(c_i)$ for known c_i, now device might still cheat, but will be caught with high probability
Computation & Communication Cost

Cost of privacy for device: encryption

• Basic protocol:
 • 3 homomorphic, 3 order-preserving encryptions
 • Authentication: 300ms on 2.66 GHz single-core processor
 • Only 2 rounds of communication

• Improved protocol:
 • $k \log \ell$ homomorphic encryptions for security parameter k
 • Authentication failure discovered 4 seconds with $k = 2, \ell = 100$
 • $\log \ell$ rounds of communication
Final Remarks

• Implicit authentication improves security without degrading usability
• However it requires giving up on privacy! Is this necessary?
• We proposed privacy-preserving implicit authentication
• Guarantees privacy against carrier, also illegitimate users in case of loss of device
• Does not incur prohibitive extra computation, communication cost
• A step towards showing that

 the trade-off between privacy & security is a false one!
Thank you!

Full version: eprint.iacr.org/2014/203

Contact me: siamak.shahandashti@ncl.ac.uk

www.esperez.com