
A Memory Arbitration Scheme for

Mixed-Criticality Multicore Platforms

Bekim Cilku∗, Alfons Crespo†, Peter Puschner∗, Javier Coronel‡ and Salvador Peiro†
∗Vienna University of Technology, Vienna, Austria

{bekim,peter}@vmars.tuwien.ac.at
†Universidad Politecnica de Valencia, Valencia, Spain

{acrespo,speiro}@ai2.upv.es
‡fentISS, Valencia, Spain

jcoronel@fentiss.com

Abstract—In mixed-criticality systems, applications of different crit-
icality levels share the same computing platform. To avoid spatial and
temporal interference of the applications, the computing platform must
implement measures for spatial and temporal isolation. In this paper
we show how the enhancement of a static memory arbiter by a second,
dynamic arbitration layer facilitates the interference-free integration of
mixed-criticality applications with different performance requirements.
This paper (a) compares the performance tradeoffs of the new dual-layer
arbiter and a COTS arbiter and (b) evaluates the performance of an
XtratuM hypervisor system running on a platform with this dual-layer
arbiter.

I. INTRODUCTION

The high processing capability that multi-core embedded systems

have reached allows us to run multiple applications on a single shared

hardware platform [1]. However, some of the integrated applications

may have firm real-time constraints that require a formal proof that the

deadlines are met, while the others may be less demanding. For such

a mixed-criticality system, only the set of critical applications needs

to be certified; the rest of the applications do not need certification

or may be certified to a lower level [2]. Obtaining a certification

only for critical applications can become a difficult task due to

the hardware sharing dependency and the diversity of functionalities

that the system performs concurrently. The key approach towards a

complexity reduction is to prevent the interference between integrated

applications both in the temporal and spatial domain [3]. Temporal

isolation preserves the timing behavior of applications such that

they do not affect one another while executing concurrently on the

shared platform [4]. Spatial isolation protects memory elements of

applications so they cannot be accessed by the other applications.

For a multi-core platform with shared main memory, spatial

isolation between applications can be achieved simply by integrating a

Memory Management Unit (MMU) [5] as part of the memory-address

translation process. The MMU table is set up to assign a different

memory space to each application. In this way, the MMU table

protects the given memory space of applications against possible vi-

olations from the other ones. Establishing temporal isolation between

time-critical applications is a more complex problem. This comes as

a consequence of the resource sharing between applications on the

same core, as well as from the sharing of resources (main memory

and I/O components) between applications running on different cores.

In this paper we present the MultiPARTES1 platform that provides

full temporal isolation for time-critical applications at all levels of a

computing system. This platform consists of multi-core hardware with

1www.multipartes.eu

a shared bus on top of which the XtratuM [6] hypervisor executes

(Figure 1).

Fig. 1: MultiPARTES Platform

The hypervisor eliminates the possibility of interference between

virtual partitions running on the same CPU by implementing a static

cyclic scheduling where each virtual partition is associated with a

fixed number of CPU cycles. At runtime, each partition is activated

based on the static schedule and gets a predefined amount of processor

time. Applications of different criticality level are mapped on different

virtual partitions. However, the hypervisor is not able to ensure

temporal isolation of the critical partitions when they access a shared

bus. To eliminate the inter-core interference we have designed a new

bus-arbiter scheme that preserves the isolation properties for critical

virtual partitions and provides better utilization of shared resources

for non-critical ones. The arbiter is based on a hierarchical, two-layer

arbitration scheme that switches between a critical and non-critical

mode.

The paper is organized as follows. The next section describes

the hardware architecture of the MultiPARTES platform, the new

bus-arbiter scheme and presents preliminary results on arbiter perfor-

mance. Section 3 describes the XtratuM hypervisor and its integration

to the multi-core platform. Temporal interference and preformance

evaluation of the whole platform are shown in Section 4. Section 5

concludes the paper.

II. HARDWARE PLATFORM FOR MIXED-CRITICALITY

MULTICORE SYSTEMS

The hardware used in MultiPARTES consists of a multi-core

LEON3 processor that is interconnected with a memory controller and

27



I/O resources through a shared AMBA bus. LEON3 is a synthesizable

VHDL model of a 32-bit processor compliant with the SPARC V8

architecture. Multi-core LEON3 systems are highly customizable with

respect to the processor core and periphery features. LEON3 has

a seven-stage pipeline with a Harvard architecture, separate caches

for instructions and data, a hardware multiplier and divider, on-

chip debug support, an MMU with a configurable TLB, and multi-

processor extensions [7].

The interconnection between cores with main memory and I/O

components is realized through the Advanced Microcontroller Bus

Architecture (AMBA). AMBA is an open standard specification

that defines an on-chip communication standard for designing high-

performance embedded systems [8]. It is widely used in network

interconnect chips, RAM controllers, Flash memory controllers and

SoCs (System on Chips) [9]. It consists of a high-performance system

backbone bus (AHB) on which the CPUs, on-chip memories and other

DMA devices reside, and a low bandwidth bus (APB) to which most

of the system peripheral devices are connected. The APB is optimized

for low power consumption and reduced interface complexity.

The AHB and the APB are connected via a bus bridge. Com-

ponents which can initiate read or write operations are called AHB

master while those which respond to a read/write operation are called

AHB slave. Since the bus is shared between all master components,

only one master is allowed to initiate a transfer at any time. AMBA

uses a centralized arbiter to determine which master gets the right to

commence a transfer and also ensures that at any given time at most

a single transfer is in progress. The decision for granting the bus

is based on an arbitration algorithm. The basic requirements for an

arbitration policy are that it should guarantee the fairness of accesses

between master components and it has to prevent the starvation of

the masters.

A. Dual-Layer Arbitration Scheme

The MultiPARTES platform uses a two-layer arbitration scheme

for accesses to the shared-memory bus. The first layer is based on time
division multiple access (TDMA) and is responsible for guaranteeing

the temporal properties of critical partitions, while the other layer

employs a round-robin (RR) arbitration policy that controls the bus

access for non-critical partitions.

TDMA is an arbitration policy that guarantees a fixed bus

bandwidth by a priory assigning time slots of fixed length to each

master. In contrast, the RR arbitration scheme grants bus access to

every master on the bus in a circular manner. A master relinquishes

control over the bus when it no longer has data to transfer. When a

master has completed its transfer, it passes control to the next master

in line [10].

The TDMA scheme is the main bus access driver. Each core

that runs time-critical applications has an a-priori assigned time slot

to guarantee access on the bus. Individual cores that need higher

bandwidth can be assigned multiple slots within the scheduling frame.

A few sequential time slots from TDMA arbitration are reserved for

cores with non-critical applications. On top of these slots the RR is

built. During this RR time interval, dynamic arbitration is activated

and all transactions of non-critical cores are competing for the access

to the memory bus. To ensure that non-critical cores cannot interfere

with the critical ones, an additional rule has to be enforced. The

dynamic arbiter (RR) must not serve any request that is issued after

the start of the last timeslot in the sequence of the dynamic time slots.

Otherwise, such a request could overlap with the next static time slot

for the critical cores, thus invalidating the time predictability of the

TDMA scheme.

Fig. 2: Dual-policy arbitration scheme

An example of dual-layer arbitration for four-core hardware is

presented in Figure 2. The first two cores (core 0 and core 1) are

running time-critical applications while the other two cores (core 2

and 3) are executing non-critical ones. The scheduling frame has nine

slots where four are assigned to critical cores (core 0 is assigned

three slots under the assumption that it needs more bandwidth), the

next four slots are reserved for non-critical cores and the last slot is

reserved for the completion of ongoing non-critical transactions. Core

0 and 1 are granted to start bus transactions only at the beginning

of their assigned slots in order to guarantee the non-interference of

transactions. In contrast, cores 2 and 3 are accessing the bus when

dynamic arbitration (RR) is active. The last slot, does not allow

for any bus access but only serves the completion of the ongoing

transaction of core 2.

B. Hardware Architecture of the Dual-Layer Arbiter

The arbiter architecture consists of a TDMA and an RR com-

ponent (Figure 3). The TDMA components has a wrap incremental

counter, a shift register and a controller. The wrap counter is incre-

mented at each clock cycle with a maximal value equal to the number

of cycles for one slot. The function of this unit is to shift the token

in a shift register at the end of the time slot. The shift register keeps

record of the slots. Depending on the active slot, the controller either

grants access to an critical request (HBUSREQ0 or HBUSREQ1) or

activates/deactivates the RR arbiter.

All request signals from non-critical partitions are connected to

the RR-arbiter queue. When the RR arbiter is activated, it grants

partitions bus access in the same order as the requests have arrived

(HBUSREQ2 or HBUSREQ3).

C. Evaluation of the Arbiter

We implemented and deployed the dual-layer bus arbiter on

an FPGA development kit (terasic DE2-115) to demonstrate the

feasibility of the Dual-Layer arbiter and to evaluate its performance.

The arbiter is written in VHDL language and deployed as part of the

28



Fig. 3: Arbiter architecture for mixed-criticality systems

Grlib IP library [11]. The interconnection with the memory controller

and the I/O resources is done through the AMBA bus. The bus is

configured not to support split transactions.

For this evaluation a bubble sort algorithm was chosen. The

algorithm sorts vectors of sizes from 100 to 1000 elements. In

this evaluation, the algorithm is executed on a bare-metal processor,

without any operating system in order to avoid the overhead generated

from the hypervisor. All four cores were executing the same code. The

goal was to test the temporal isolation for time-critical cores and also

to compare the execution performance of the noncritical partitions.

For comparison we used three different bus arbitration policies: pure

TDMA, RR and our Dual-Layer (DL) policy.

The TDMA scheduling frame consisted of four slots and each

slot was assigned to a core. The DL arbiter used five slots where

the critical CPUs (CPU0 and CPU1) were assigned to the first two

slots (slot 0 and 1) while the non-critical CPUs were allowed on the

following two slots. No arbitration was allowed on the fifth slot (see

above). The slot size was 20 clock cycles (the longest transfer was

taking 18 cycles).

Figure 4 shows the observed execution time of the bubble sort

algorithm for different vector sizes. The execution time of non-critical

partitions is illustrated for TDMA, RR and DL. From the results we

see that the execution time of the algorithm in non-critical cores with

DL arbitration is 3.1 time shorter than in a system with pure TDMA.

Compared to pure RR, the execution of bubble sort with DL lasts 1.2

times longer. For critical partitions the execution time with TDMA

and DL is the same.

In summary, the results of this experiment suggest that DL

arbitration improves the performance of non-critical partitions without

affecting the time properties of the critical ones.

III. THE XTRATUM HYPERVISOR

A. Introduction of XtratuM

XtratuM [12], [13] is a bare-metal hypervisor specifically de-

signed for embedded real-time systems that uses para-virtualization

100 200 300 400 500 600 700 800 900 1000

Number of Elements

C
lo

ck
 C

yc
le

s

0
20

00
00

40
00

00
60

00
00

80
00

00 TDMA
Dual−Layer
Round−Robin

Fig. 4: Execution time of bubble sort algorithm

techniques to emulate hardware behaviour. The para-virtualized model

offers potential performance benefits when a guest operating system

or application is aware that it is running within a virtualized environ-

ment, and it has been modified to exploit this. One potential downside

of this approach is that such modified guests cannot ever be migrated

back to run on physical hardware.

XtratuM has been designed to achieve real-time constraints with

a set of properties that strongly follow certification issues. These

properties can be summarised as:

• Spatial isolation: A partition is completely allocated to

isolated memory regions. The hypervisor guarantees the

spatial isolation of the partitions.

• Temporal isolation: A partition is executed at specified

and fixed temporal intervals. A cyclic scheduling policy

is implemented by the hypervisor. The temporal allocation

of time to a partition is not impacted by the execution of

other partitions, although shared resources could produce

interference in the execution time duration of its activities.

• Predictability: A partition with real-time constraints has to

execute its code in a predictable way. It can be influenced by

the underlying layers of software (guest-OS and hypervisor)

and by the hardware. From the hypervisor point of view, the

predictability applies to the provided services, the operations

involved in the partition execution and internal operations

(partition context switch, interrupt management, etc.).

• Fault isolation and management: Fault management is a

fundamental aspect in critical systems, and it is strongly

related with certification issues. Faults, when they occur, are

detected and handled via Health Monitor which is statically

configured.

• Static resource allocation: The system architect is responsi-

ble for the system definition and resource allocation. This

29



system definition is detailed in the system’s configuration

file, which specifies all system resources, namely number of

CPUs, memory layout, peripherals, partitions, the execution

plan of each CPU, etc.

B. Integration on the Multicore Platform

XtratuM has been adapted to multi-core systems [14] based on

LEON4 processors and x86 and LEON3-bicore in the MultiPARTES

project [15], [16]. In the multi-core approach, the hypervisor can

provide several virtual CPUs to the partitions. A partition can be

mono or multi-core. Different partitions (from the point of view of

the number of cores) can coexist in the system. This approach allows

profiting from a multi-core platform, even if the partitions are not

multi-core by building multi-core or monocore partitions.

In order to handle the underlying multi-core hardware it can

be configured following an Asymmetric Multiprocessing (AMP) or

Symmetric Multi-Processor (SMP). In AMP, there is an instance of

the hypervisor running on each core, which executes the allocated

partitions. In the SMP approach, one single hypervisor instance

manages all hardware resources. While the AMP software architecture

simplifies the hypervisor, the SMP approach permits the use of mono

or multi-core execution environments, and offers higher flexibility to

assign partitions to different cores. Moreover, mono-core partitions

in SMP architectures can be permanently allocated to one core, or

several on different partition activations with no temporal overlap.

In the adaptation of XtratuM to multi-core platforms, the hyper-

visor model has been re-designed to support the concept of virtual

CPU (vCPU). Virtual CPUs are abstractions that model hardware

CPU behaviour and are managed in an analogous way, but can be

allocated to any of the existing cores. There are as many virtual CPUs

on the system as physical cores and they behave on a similar manner:

when a partition starts its execution, only one vCPU is active, being

responsibility of the partition to initialize the remaining vCPUs. To

this end, it has been necessary to extend XtratuM with new hypercalls

that allow the partitions to manage virtual CPUs operation.

In a multi-core partitioned system partitions can use one core

(mono-core partitions) or several cores (multi-core partitions). Several

mapping schemes can be considered:

• Each monocore partition is mapped to one core

• Several monocore partitions are mapped to one core

• A mono-core partition is mapped to different cores at

different time intervals

• A multi-core partition is mapped to several cores at the same

temporal intervals

Figure 5 shows a configuration with a 3 mono-core and 1 multi-

core partitions. Partitions P1, P2 and P3 allocates their virtual core

(vCPU0) to one of the real cores (CPU0 or CPU1). P3 uses both

cores at different intervals. P4 is a multi-core partition (two virtual

cores) and requires the use of both real cores.

C. Hypervisor scheduling

XtratuM can associate a scheduling policy to each core or

group of cores. Two scheduling policies are implemented: cyclic

scheduling and priority based. The policy is statically specified in

the configuration file. In the cyclic scheduling, the configuration file

Fig. 5: Partitioned architecture in multi-core platforms.

specifies the temporal windows or slots in a major frame (MAF)

where partitions will be scheduled. Each slot details the partition, the

execution interval (as offset from the start of the major time frame

and the duration) and the virtual CPU. Partitions definition includes

the number of virtual CPUs to be used.

In case of priority based scheduling, partitions, allocated to the

core that uses this policy, have to specify the priority, period and

budget.

Next listing shows the specification of a cyclic schedule of four

partitions in two cores according to the partition mapping shown in

Fig 5.

XML configuration file: schedule specification

<ProcessorTable>
<Processor id=”0”>
<CyclicPlanTable>
<Plan id=”0” majorFrame=”20ms”>
<Slot id=”0” start =”0ms” duration=”3ms” partitionId =”1” vCpuId=”0”/>
<Slot id=”1” start =”3ms” duration=”3ms” partitionId =”3” vCpuId=”0”/>
<Slot id=”2” start =”7ms” duration=”3ms” partitionId =”1” vCpuId=”0”/>
<Slot id=”3” start =”12ms” duration=”3ms” partitionId =”1” vCpuId=”0”/>
<Slot id=”4” start =”15ms” duration=”5ms” partitionId =”4” vCpuId=”0”/>
</Plan>
</CyclicPlanTable>
</Processor>
<Processor id=”1”>
<CyclicPlanTable>
<Plan id=”0” majorFrame=”20ms”>
<Slot id=”0” start =”0ms” duration=”6ms” partitionId =”2” vCpuId=”0”/>
<Slot id=”1” start =”7ms” duration=”3ms” partitionId =”3” vCpuId=”0”/>
<Slot id=”2” start =”10ms” duration=”3ms” partitionId =”2” vCpuId=”0”/>
<Slot id=”3” start =”13ms” duration=”2ms” partitionId =”3” vCpuId=”0”/>
<Slot id=”4” start =”15ms” duration=”5ms” partitionId =”4” vCpuId=”1”/>
</Plan>
</CyclicPlanTable>
</Processor>
</ProcessorTable>

Figure 6 draws the execution chronogram of this example. P1

and P2 allocate their vCPU0 to CPU0 and CPU1, respectively. P3

allocates its vCPU0 to CPU0 and CPU1 at different time intervals

(no overlap). P4 maps its virtual cores to the real cores at the same

time intervals.

The configuration file is statically defined off-line. A set of tech-

niques and tools are required to generate the schedule, according to

the partition temporal requirements, criticality level, platform needs,

etc., and to verify the coherence and correctness of the final schedule.

30



Fig. 6: Scheduling scheme.

In [17], a configuration and scheduling tool is presented. The

hypervisor requires a binary representation of a verified configuration

file to execute the system.

The main challenge in multi-core hypervisor is to deal with the

temporal inteference when several cores are executing code at the

same time. From the scheduling point of view, the temporal isolation

in multi-core can consider two aspects:

• temporal allocation of systems resources: partition execution

is statically defined (temporal windows).

• temporal interference: impact of the shared resources use by

other cores.

While the hypervisor can guarantee the temporal allocation of

resources, it requires the hardware support to deal with the temporal

interference.

IV. TEMPORAL INTERFERENCE AND PERFORMANCE ANALYSIS

In this section, the performance of the hypervisor layer comparing

both architectures proposed in the MultiPARTES project for the

AMBA bus: RR and TDMA is evaluated. The target is a LEON3

dual-core at 50MHz with DDR memory.

A. Temporal Interference Analysis

Temporal interference is produced when partitions in different

cores use shared resources. We focus on this evaluation on the

temporal impact that a target partition suffers when another partition

is executed in other core and perform intensive access to memory.

To analyse this impact, a scenario with different levels of over-

lapping in partitions running in diffeent cores is defined. The scenario

is defined with two partitions. P1 is the target of evaluation and

perform a fixed payload that is measured in an isolated environment.

P1 performs the following steps: read the clock (t1), perform the

payload, read the clock (t2) and computes the differences t2 − t1
(execution time). P2 is a dummy partition that performs a loop that

read and modify the contents of a table. P1 is executed in core 0 and

P2 is executed in core 1.

In order to analyse the effects in the worst conditions, cache

management (instructions and data) is disabled for both partitions

forcing both partitions to access physically to memory.

This scenario is executed under the following scheduling plan:

• MAF: 300 msec

• Payload cost 20 msec (approx).

• P1 slot duration: 150 msec.

• P2 slot duration: 150 msec.

• Experiments:

◦ S0: No interference.

◦ S25: 25% of interference.

◦ S50: 50 % of interference.

◦ S75: 75 % of interference.

◦ S100: 100 % of interference.

Fig. 7 shows the schedule of S25.

Fig. 7: Schedule of the S25

Table I shows the results of the impact of P2 on the execution of

P1 in the LEON3 bi-core platform with RR bus arbitration. Under an

approximated overlapping of the 25%, the increment of the execution

time is in average 2899 μsecs (23544 - 20645). Next table presents

the statistics of 100 executions of each scenario.

TABLE I: Impact of the memory accesses in the P1 execution time

RR bus arbitration

Exec. Time (μsecs) S0 S25 S50 S75 S100
Avg 20645 23544 27181 30577 33418
Max 20700 23557 27326 30614 33691
Min 20698 23305 27253 30535 33596

Stdev 0.63 12.46 16.77 17.19 22.81

Inteference 0% 14% 32% 48% 62%

Results show the impact of the interference when partitions

allocated to different cores are executed with a level of overlapping.

If both partitions are executed at the same time, the interference can

produce an increment of 62% in the execution of P1.

Same experiment has been executed in the LEON3 bi-core

platform with TDMA bus arbitration. Table II shows the results.

TABLE II: Impact of the memory accesses in the P1 execution time

TDMA bus arbitration

Exec. Time (μsecs) S0 S25 S50 S75 S100
Avg 120099 120099 120099 120099 120099
Max 120100 120100 120099 120100 120100
Max 120097 120096 120098 120098 120098

Stdev 0.99 1.03 0.97 0.96 0.96
hline Inteference 0% 0% 0% 0% 0%

These results show that the impact, as expected, depends on

the overlapping interval and the bus arbitration policy. While the

31



temporal interference has a very high impact in the first hardware

platform, the new design based on the TDMA arbitration policy fully

achieves the temporal isolation of partitions. This is a relevant result

for temporal and spatial partitioning platforms that permits to execute

independently applications in multi-core systems.

B. Performance Analysis

In this section, a comparison of the performance of two hardware

solutions is performed. Performance analysis includes two param-

eters: temporal cost of the same activity and hypervisor partition

context switch in both platforms.

Table III summarises the temporal costs of the same payload

executed in previous experiments.

TABLE III: Temporal cost comparison

Avg Time (μsecs)
TDMA bus arbitration 120099
RR bus arbitration 20689
Increment cost factor 5.80

The use of a TDMA based arbitration policy introduces delays

in the partition execution. For the configuration experimented in this

paper, the computation time of a payload is incremented 5.8 times

which can be relevant depending on the timing requirements of real-

time tasks.

On the other hand, the partition context switch of the hypervisor

measures the time required by the hypervisor to switch from one

partition to another in a core. This cost has been experimentally

measured by instrumenting the hypervisor code to annotate the entry

and exit to the partition context switch service. Table IV shows the

results in μsecss for both platforms.

TABLE IV: PCS comparison

Avg Time (μsecs)
TDMA bus arbitration 1042
RR bus arbitration 224
Increment cost factor 4.65

The observed increment of the PCS is 4.65 times. While 224

μsecss for the partition context switch in space applications with

period ranges in the order to dozens of milliseconds can be acceptable,

the cost of 1 millisecond for the PCS introduces high overheads and

reduces the period ranges to hundreds of milliseconds.

V. CONCLUSION

In mixed-criticality systems, critical applications are subject of

certification. Without proper isolation of time-critical applications the

process for certifying can become complex and time consuming.

In this paper we describe a memory architecture that provides

temporal isolation between virtual partitions. Implementing the dual-

layer memory-bus arbiter helps the hypervisor to guarantee time

bounds for critical applications and to improve the performance of

non-critical applications when they access the shared memory bus.

We also demonstrate the feasibility of the proposed memory hierarchy

by implementing it in an FPGA and running XtratuM on top of that

hardware. The evaluation proves that even when critical partitions

execute with full temporal overlap, the temporal properties of each

of these partitions are preserved.

In future work we will run parallel applications on the multi-

core hardware in order to evaluate the utilization of the hardware at

the entire multi-core system level and experiment with the dual-layer

arbiter.

ACKNOWLEDGMENT

This research was partially funded under the European Union’s

7th Framework Programme under grant agreement no. 287702: Mul-

ticores Partitioning for Trusted Embedded Systems (MultiPARTES).

REFERENCES

[1] S. Baruah, H. Li, and L. Stougie, “Towards the design of certifiable
mixed-criticality systems,” in Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2010 16th IEEE, 2010, pp. 13–22.

[2] S. Baruah, A. Burns, and R. Davis, “Response-time analysis for mixed
criticality systems,” in Real-Time Systems Symposium (RTSS), 2011
IEEE 32nd, 2011, pp. 34–43.

[3] B. Motruk, J. Diemer, R. Buchty, R. Ernst, and M. Berekovic, “Idamc:
A many-core platform with run-time monitoring for mixed-criticality,”
in High-Assurance Systems Engineering (HASE), 2012 IEEE 14th
International Symposium on. IEEE, 2012, pp. 24–31.

[4] M. Zimmer, D. Broman, C. Shaver, and E. A. Lee, “Flexpret: A
processor platform for mixed-criticality systems,” in Proceedings of
the 20th IEEE Real-Time and Embedded Technology and Application
Symposium (RTAS). IEEE, 2014.

[5] D. A. Patterson and J. L. Hennessy, “Computer organization and
design,” Morgan Kaufmann, 2007.

[6] M. Masmano, I. Ripoll, A. Crespo, and J.-J. Metge, “Xtratum: a
hypervisor for safety critical embedded systems,” in 11th Real-Time
Linux Workshop, 2009.

[7] A. Gaisler and S. Göteborg, “Leon3 multiprocessing cpu core,” Aeroflex
Gaisler, February, 2010.

[8] A. A. Specification, “Multi layer ahb specification,(rev2. 0),” 2001.

[9] Y. Godhal, K. Chatterjee, and T. A. Henzinger, “Synthesis of amba
ahb from formal specification: a case study,” International Journal on
Software Tools for Technology Transfer, vol. 15, no. 5-6, pp. 585–601,
2013.

[10] S. Pasricha and N. Dutt, On-chip communication architectures: system
on chip interconnect. Morgan Kaufmann, 2010.

[11] Leon3. [Online]. Available: http://www.gaisler.com/

[12] M. Masmano, I. Ripoll, S. Peiró, and A. Crespo, “Xtratum for leon3:
an open source hypervisor for high integrity systems,” in European
Conference on Embedded Real Time Software and Systems. ERTS2
2010., Toulouse (France), 19-21 May 2010.

[13] M. Masmano, I. Ripoll, A. Crespo, and J. Metge, “Xtratum: a hypervisor
for safety critical embedded systems,” in Eleventh Real-Time Linux
Workshop, Dresden (Germany), 28-30 September 2009.

[14] E. Carrascosa, J. Coronel, M. Masmano, P. Balbastre, and A. Crespo,
“Xtratum hypervisor redesign for LEON4 multicore processor,”
SIGBED Review, vol. 11, no. 2, pp. 27–31, 2014. [Online]. Available:
http://doi.acm.org/10.1145/2668138.2668142

[15] “Multipartes: Multi-cores partitioning for trusted embedded systems,”
2011. FP7 ICT 287702 European Project. (http://www.multipartes.eu).

[16] S. Trujillo, A. Crespo, and A. Alonso, “Multipartes: Multicore virtual-
ization for mixed-criticality systems,” in 2013 Euromicro Conference on
Digital System Design, DSD 2013, Los Alamitos, CA, USA, September
4-6, 2013, 2013, pp. 260–265.

[17] V. Brocal, M. Masmano, I. Ripoll, A. Crespo, and P. Balbastre, “Xon-
crete: a scheduling tool for partitioned real-time systems,” in Embedded
Real-Time Software and Systems, 2010.

32


