
On Spatial Isolation for Mixed Criticality, Embedded Systems

Eric Armbrust, Jiguo Song, Gedare Bloom, Gabriel Parmer

The George Washington University

Washington, DC

{earmbrust,jiguos,gedare,gparmer}@gwu.edu

Abstract—This paper addresses some of the challenges of
creating a system that enables not only the temporal isolation
required for mixed-criticality systems, but also the necessary
spatial isolation that enables the decoupling of assurance levels
required for different pieces of software. We discuss the applica-
tion of fine-grained isolation, hierarchical resource management,
and the paravirtualization of a legacy RTOSs API, all to enable
the system designer to harness memory isolation to control the
assurance required for system components.

I. INTRODUCTION

Real-time / embedded system developers face increasing

pressure to reduce the size, weight, and power (SWaP)

requirements of devices. One solution to reduce SWaP is

to package multiple applications onto a single chip and to

partition access to the chip resources among the applica-

tions. When such applications have differing safety-critical

importance, the integration of these applications on a shared

platform creates a mixed criticality system (MCS). A problem

with MCSs is in sharing resources between applications at

different criticality levels, because blocking synchronization

primitives can lead to low-criticality tasks interfering with

high-criticality tasks. When the MCS is scheduled globally,

i.e. the same scheduler handles all tasks, solutions based on

priority-based synchronization primitives can be applied—for

example, criticality-aware versions of the priority inheritance

and priority ceiling protocols [1], [2]. However, if the MCS

lacks a global scheduler then the job of ensuring that re-

source synchronization does not cause low-criticality tasks to

interfere with high-criticality tasks becomes more difficult. In

particular, MCSs that use hierarchical scheduling [3] do not

have global scheduling knowledge.

When used with only two levels, a parent scheduler

and its children schedulers, a hierarchically-scheduled MCS

schedules applications at different criticality levels with dis-

tinct children schedulers. The parent scheduler is trusted

to schedule the children according to criticality, and each

child schedules the application tasks independently. A popular

mechanism to support two-level hierarchical scheduling is to

use virtualization, with the parent executing in the hypervisor

and each child in a guest virtual machine. Applications can be

used with minimal modifications and the hypervisor ensures

safety of the high-criticality tasks. A problem with hierarchical

scheduling with virtualization technology is that performance

degradation is prohibitive when children are given small

budgets, for example in RT-Xen budgets less than 1 ms lead

∗This material is based upon work supported by the National Science
Foundation under Grant No. CNS 1149675 and ONR Award No. N00014-
14-1-0386. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation or ONR.

to untenable scheduler overhead [4]. Another problem with

using hierarchical scheduling for MCS is that the existing

solutions for task synchronization cannot be adopted easily

for resource sharing, because there is no uniform scheduling

policy to arbitrate priority and criticality between different

schedulers in the hierarchy.

In this paper, we introduce MC-HIRES, Mixed Criticality

HIerarchical RESource management, which supports MCSs

in the COMPOSITE operating system via hierarchical schedul-

ing with the benefits of minimal modification of applica-

tions, small performance loss, and resource sharing between

applications at different criticality levels. MC-HIRES is a

logical extension of our HIRES [3] system with support for

MCSs. The primary modification to HIRES is support for a

range of mappings of event notification threads (ENTs) to

nodes (components) in the hierarchy to provide for strong

temporal isolation even in the presence of shared resource

synchronization. MC-HIRES avoids the performance prob-

lems of virtualization-based hierarchical scheduling by using

a guest-aware approach requiring minor modifications i.e.
paravirtualization. The problem of task synchronization in a

hierarchically-scheduled MCS is handled by locating synchro-

nization primitive (locks) in servers that mediate access to

shared resources among the clients, which may have different

criticalities. Subject to the server having the highest criticality

of its clients, MC-HIRES thus solves the two problems

identified above for an MCS using hierarchical scheduling.

We demonstrate MC-HIRES by paravirtualizing a legacy

RTOS, FREERTOS, to split RTOS services and application

threads into separate components. Isolating application threads

enables system designers to assign different criticalities to

threads, thus allowing an MCS design without modifying ap-

plication software. (Slight modification is made to the FREER-

TOS kernel.) We evaluate the overhead of using semaphore

and message queue services within the FREERTOS kernel

and between application threads and the kernel. Performance

loss occurs due to the introduction of spatial isolation along

RTOS service calls, but the performance is reasonable with

an overhead around 0.25 μ-seconds each time a call is made

between criticalities.

Contributions. This paper’s contributions include:

• An introduction to the component-based system structuring

model, its uses, and the implications for both temporal and

spatial isolation of mixed criticality embedded systems.

• A simple extension to our existing hierarchical re-

source management system (HIRES) to enable hierarchical

scheduling for MCS to ensure the mutual temporal/spatial

isolation of different criticalities.

15



• A system design that provides isolation of mixed-criticality

applications from each other for a legacy embedded

system that does not provide memory protection, using

component-based memory isolation facilities of COMPOS-

ITE.

II. MC-AWARE MEMORY ISOLATION IN COMPOSITE

The COMPOSITE component-based OS provides support for

memory protection between separate user-level components

based on hardware page-tables. Each component includes

local memory for data, code, heap, and stacks that is isolated

from other components. Each component exports zero or more

interfaces consisting of a number of function call entry-points,

and has a set of dependencies on the interfaces exported by

other components. Components are passive: only if a thread

is explicitly created within the component, or if a thread

executing in another component invokes an exported function,

will execution occur in a component.

Inter-component communication. Invocations of a function

exported by a component result in IPC via thread migration.

The same schedulable thread executing in the client, resumes

execution in the server. After completing its execution in

the server, it resumes execution in the client. Control flow

integrity is maintained as the server controls its entry-points,

thus ensuring that only intended functionality is conducted.

Upon entry into the server, sanity checks akin to those done

by a traditional kernel in system-call handlers are conducted

on parameters. The scheduling context migrates between

components (thus scheduling components control thread, not

component, execution), it switches between component-local

execution state, including execution stacks. These stacks are

managed [5] to trade-off the amount of memory they require,

and the timing properties of the system if multiple schedulable

threads require more stacks than are available in a component

(mediated by predictable sharing protocols). In this paper, we

assume a simple static allocation of stacks to components

commensurate to the number of threads in the system. The

sum benefit of this inter-component communication mecha-

nism is that the end-to-end timing analysis of a thread are
identical to those in traditional systems. This explicitly avoids

the dependent-task scheduling problems often encountered by

IPC mechanisms that involve coordination between multiple

threads. These existing analyses are often pessimistic, espe-

cially in a system with large numbers of components.

Resource sharing. Note that resource sharing must still be

taken into account, but the prescribed mechanism for this

is to mediate all sharing of a specific resource within a

critical section within a component. For example, COMPOSITE

has a mailbox component that enables multiple threads to

communicate via asynchronous message passing. The buffers

that hold the data being passed between threads are mediated

within the component via a critical section protected by a

lock supporting predictable resource sharing. By default we

use a lock component that provides priority inheritance. For

an MCS, the lock component is problematic because all

threads of different criticalities are exposed to each other’s

interference within the server, and within the critical section.

However, all other execution in other components can be

segregated between criticalities.
Resource sharing mediated by memory-protected compo-

nents simplifies the analysis of the system. The worst-case

hold time of any shared resource (the worst-case critical

section length) is provided by the implementation of the

mediating component. That component’s code is trusted given

a combination of the control flow integrity of the IPC mech-

anism, and its memory isolation. Assuming the component

has code appropriate for the criticality of all of its clients,

the impact of the resource sharing on each of their timing is

invariant on the clients, and only a property of the mediating
component itself. This simplifies sharing between criticality

levels by design, and enables traditional protocols such as

Priority Ceiling Protocol to provide predictability, though MC-

specific resource sharing protocols can be used (by simply

using a different lock component).
Though implementing the sharing of resources in com-

ponents implies the overhead of communication with that

component, round-trip IPC (called “component invocation”

here) in COMPOSITE is as efficient as the fastest IPC im-

plementations, and is on the order of 600 cycles on our Intel

i7-2760QM CPU running at 2.4Ghz (i.e. 0.25 μ-seconds).

A. Mixed-Criticality-Aware Memory Isolation in COMPOSITE

(a) (b) (c)

Fig. 1: Example system component structures (S component =
scheduler, mm = memory manager). Arrows are component depen-
dencies, and dashed components are harnessed by the low-criticality
application. Thus, they require assurance under more complex work-
loads and must handle more features. The blue region requires a
higher level of certification, than the red. Ideally, the blue region
would contain only non-dashed, simple components. (a) Traditional
structure where high (H) and low (L) criticality applications share
all system services. Significant portions of the system requires both
full featured support for L and high assurance of those components.
(b) Separation kernel-style isolation. Only services specialized to H
require high levels of assurance, but sharing between H and L is
difficult. (c) Selective sharing of functionalities between applications
controlling the assurance level required vs. complexity of each
component, and hierarchical resource management.

The COMPOSITE thread migration-based inter-component

communication mechanism enables the use of traditional

scheduling analyses that operate on threads (rather than com-

ponents, or component-specific threads) and that consider

critical sections using predictable resource sharing protocols.

The major implication is that thread migration enables the

fine-grained decomposition of the system into components,

thus strengthening memory isolation. In COMPOSITE, even the

lowest-level system services are implemented as components,

including: the schedulers, lock managers, time managers,

physical memory management, file systems, networking, and

drivers. Each component is independently redeployable (as-

suming its interface dependencies are satisfied), and the entire

system can be viewed as a graph of components.

16



The combination of fine-grained components, the compo-

nent definition of low-level services, and the use of traditional

end-to-end thread timing analysis together provide the ability

to explicitly design the structure of the system to mimic that

of the criticalities of the different components in the system.

The criticality of each component might be static—dependent

on off-line tests and analysis of the component’s code—or

might be dependent on what other component’s depend on

it, i.e. the workloads for which it is tested. One thing is

clear: the high-criticality applications must depend only on

high-criticality components. More specifically, the transitive

closure over the dependency relation seeded with the high-

criticality applications must contain only components that

are high-criticality. Importantly, this enables the system to

minimize the amount of software that requires high-criticality

certification. Whereas in traditional systems that include many

system services in the same memory protection domain, all

of which must be certified to the highest criticality level,

COMPOSITE enables the decoupling of memory and temporal

interference between different services.

What is the “correct” amount of sharing between the

component graphs for different applications? Figure 1 depicts

a simple embedded system with each policy implemented

as a separate component. The three different configurations

of the system represent (1) a traditional system structure

in which applications of different criticalities share many

components, requiring that they be certified to the confidence-

level of the highest application, (2) a separation kernel-like

system in which different criticalities share as few compo-

nents as possible, and (3) a system with nuanced sharing

of components between criticality levels dependent on the

sharing relationships and resource availabilities of the system.

The benefit of avoiding separation kernel-like share-nothing

system organizations is exactly the fact that it is convenient

for criticalities to share information and resources between

each other (e.g. a hard real-time subsystem sharing data to be

displayed by an interface). In resource-constrained embedded

systems, the extra memory required for separate images and

data structures for components replicated between criticalities

can be undesirable.

Summary. COMPOSITE enables the straightforward end-to-

end analysis of the timing of threads that execute across many

components, thus enabling the fine-grained decomposition of

the system software into memory-isolated protection domains.

Sharing is mediated by service components, and the interfer-

ence between threads (of different criticalities) is dependent

on the mediating component’s properties, and is not variant

on the contending threads—the critical section interference

stays the same, regardless. The criticality and structure of

the system’s components can be configured to minimize how

much software requires high certification, mirror the sharing

requirements of applications, and appropriately trade resource

usage. This configurability is where the non-traditional, flexi-

ble means of constructing a system of components, combined

with the fine-grained memory isolation, provides significant

benefit for an MCS.

III. MC-AWARE HIERARCHICAL RESOURCE

MANAGEMENT

Defining resource management components for a single

resource, such as CPU scheduling, across different criticalities

is difficult in a system structured as in Figure 1(b). Using CPU

management as an example, each scheduler in the system

contends for the processor, and the scheduler that should

control the CPU at any point in time is not clear. The tension

between decentralizing resource management—to customize

it for different criticalities, and to increase isolation between

them—and deciding at any point which manager to give

access to the CPU, motivates our previous work on HIRES [3].

HIRES provides a set of protocols to enable resource manager

coordination for hierarchical resource management for CPU,

memory, and I/O. In this paper, we focus on extending

such protocols to support CPU management and scheduling

components for MCSs.
Hierarchical scheduling enables multiple concurrent

scheduling components in the system. Though in the simplest

case, schedulers form a tree of arbitrary depths, HIRES

supports a directed, acyclic graph (DAG) of scheduler

structures as well. Each (child) scheduler receives execution

time from parent schedulers, and the root scheduler delegates
all time to its children. HIRES enables each scheduler,

regardless of how deep it is in the hierarchy, to dispatch

between threads (and even schedule interrupts) with constant

and comparable overhead. As each scheduler is implemented

as a separate component, they benefit from memory isolation.

Thus, possibly complex scheduling policies with dynamic

workloads for low-criticality applications can be removed

from the certification burden of the high-criticality domain

by relying on a simple parent scheduler to mediate between

criticalities (e.g., the bottom scheduler in Figure 1(c)).

HIRES Scheduler Coordination Protocols. Parent sched-

ulers delegate to children using a simple mechanism. Parent

schedulers are aware of, and uncommonly may dispatch di-

rectly, child threads. Normally a parent activates or deactivates

a child thread by dispatching to a single Event Notification
Thread (ENT). That thread executes in a loop delivering

event notifications from parent to child. The parent sends a

number of notifications: (1) child thread has blocked within

an ancestor component, (2) child thread has been activated

within an ancestor, (3) a given quantity of time has passed

since the last notification—used as a timer for the child

scheduler, and (4) the amount of time since the child was

last executed (so that it can maintain proper accounting). The

child scheduler, after processing all notifications, resumes its

normal scheduling behavior and chooses a thread to dispatch.
Child schedulers use the same ENT to send notifications

and requests to the parent: (1) thread creation and deletion

requests, (2) timeout requests to block until the next noti-

fication or given timeout, (3) idle requests (block with an

infinite timeout). (For details on the implementation of the

protocol for how parent and children synchronize see the

original HIRES [3].) The overhead of the ENT and parent-

child coordination is on the order of two thread dispatch

latencies (to the ENT in the parent, and away from it in the

child), plus a single component invocation. The overhead is

17



around 1700 cycles in total.

HIRES and child thread scheduling. All parent schedulers

are responsible for protecting their own data structures, thus

they use critical sections. Though parent schedulers rarely

dispatch to child threads, in the case of contended resources,

parents do not rely on children to mediate the contention.

Doing so would put the timing properties of the parent

scheduler at the mercy of the child. Thus, in this case of

contention, the parent scheduler will switch directly to the

child thread that holds the critical section to grant the higher-

priority contending thread access. This switch is essential

to prevent low-criticality child schedulers from changing the

timing properties of the parent scheduler, thus indirectly im-

pacting the timing of high-criticality applications. The policy

that the parent scheduler must control its own timing inde-

pendent of the behavior of any child scheduler is consistent

with the resource sharing between criticalities discussion in

Section II—the parent makes timing guarantees for critical

section length.

Blocking/waking threads in parent schedulers. Given the

flexibility of component composition in COMPOSITE, a situa-

tion may arise in which a thread managed by a child scheduler

will invoke a component that will attempt to block it (e.g. due

to resource contention). Each component invokes a specific

scheduler, and if the service is low-level it might invoke the

parent scheduler to block the thread. This situation—and the

one originating from the same component waking the thread at

a later time—requires coordination between parent and child

scheduler. In HIRES, this is where the parent notifications to

the child that the thread has been blocked/woken are relevant.

Note that this coordination between parent and child scheduler

is lacking in user-level threading libraries as monolithic ker-

nels are not aware of user-level threads. Any one thread will

block all of them. Systems such as scheduler activations [6]

attempt to solve this problem in a manner similar to HIRES.

As both parent and child know of the existence of each thread,

the HIRES protocols focus on enabling them to coordinate to

schedule the threads appropriately.

A. MC-HIRES: Mixed-Criticality-Aware, Hierarchical Re-
source Management

Hierarchical scheduling and mixed-criticality workloads

can often be ill-matched [7]. For example, a child sched-

uler controlling applications of a comparable critical level

might need to execute threads at different priorities (there

is no fixed relation between criticality levels and priorities).

Thus, a single ENT that the parent dispatches to activate the

child is insufficient. That single ENT is treated as a single

thread by the parent, thus providing abstraction in hierarchical

scheduling. This abstraction prevents multiple priorities and

criticalities to be attributed to the child.

We generalize the HIRES model into MC-HIRES. MC-

HIRES can describe the traditional setup of hierarchical

scheduling with all execution in the child abstracted behind the

parameters of the ENT, no hierarchical abstraction with one

ENT for each child thread, and any configuration of ENTs

to children threads in between these extremes. Each child

thread is associated with an ENT when it is created, and all

notifications for that thread are sent via that ENT. The parent

scheduler schedules ENTs as normal threads, thus activating

the child according to the parameters of each ENT.

IV. CASE STUDY: LEGACY RTOS

MC-AWARE MEMORY ISOLATION

As an example of some of the techniques discussed in this

paper, we have modified a popular, simple RTOS to execute in

a paravirtualized environment in MC-HIRES, and have used

component-based techniques to provide temporal and spatial

isolation for MCSs.

A. FREERTOS Background

FREERTOS is a simple RTOS used in (deeply) embedded

systems for its configurability and small footprint. It is simple

and includes basic APIs for thread creation, message queues

(synchronous or asynchronous), semaphores, memory alloca-

tion, and some facilities for sleeping threads to enable periodic

behaviors. Scheduling is fixed priority, preemptive. All threads

share the same protection domain, and FREERTOS is meant

to execute on the bare metal (though ports exist that execute

on POSIX).

FREERTOS is not a RTOS that is MC-friendly. Applica-

tions are not spatially isolated from each other, nor is the ker-

nel code and data. Though the system does support temporal

isolation between threads with predictable sharing of resources

using fixed-priority, preemptive scheduling, it does not provide

the necessary memory protection (spatial isolation) to enable

the separate certification of code of different criticalities.

B. MC-FREERTOS: When Virtual is Better than Real

To enable legacy embedded tasks to execute within the

context of an MCS, we provide means for both spatial and

temporal isolation for FREERTOS. To accomplish this, we

provide a series of modifications to FREERTOS to increase

its capabilities within an MC environment, yielding MC-

FREERTOS.

First, we paravirtualize FREERTOS to execute within a

component in COMPOSITE. This extension is straightforward

and involves adding a FREERTOS port that uses COMPOSITE

scheduler library functions for switching between threads and

for disabling interrupts. The FREERTOS component is a

scheduler, thus has permission to dispatch between threads

that can migrate between components via invocation. Thread

dispatching involves making a COMPOSITE system call. MC
benefits: FREERTOS and all of its tasks are now spatially-

isolated from other components in the system, thus effectively

enabling software of different criticalities.

Second, timer interrupts within FREERTOS are imple-

mented using an MC-HIRES ENT. This enables FREERTOS

to be integrated into the scheduling hierarchy. Now existing

high-criticality tasks can be executed in MC-FREERTOS,

while component-based applications with a lower level of

assurance can be executed in other subsystems under differ-

ent schedulers. A root scheduler that implements a simple

policy (therefore capable of being high-criticality) schedules

the various criticalities. In our prototype, the root scheduler

is a simple fixed priority preemptive scheduler with MC-

FREERTOS executing at the highest priority. MC benefits:

18



Multiple criticalities can exist in different scheduler subsys-

tems. FREERTOS legacy applications are spatially-isolated

(similar to a separation kernel) from other applications, al-

though not from each other.

Third, we paravirtualize the API of FREERTOS to enable

multiple criticalities even for legacy FREERTOS applica-

tions. Some subset of FREERTOS applications execute in a

memory-isolated component, yet still harness the functionality

of the FREERTOS kernel. MC benefits: Within the MC-

FREERTOS environment, multiple criticalities can exist. More

importantly, applications can be written that utilize both the

FREERTOS API, and can access non-FREERTOS compo-

nents. The following text describes this technique.

System call API via namespace virtualization. FREERTOS

does not have a well-defined system-call layer like OSes

that use dual-mode protection. The lack of memory isolation

removes the motivation to define such a layer. However,

FREERTOS does have a well-defined API, which applications

are intended to use, that features functions of the main func-

tionalities (thread manipulation, queue usage, semaphores,

timed blocking). The second stage of converting this legacy

system into one that is MC-capable is that we paravirtualize

this API so that a FREERTOS application can be executed

in a separate component (thus separate protection domain).

Application code in the FREERTOS application component

is identical to that linked into the FREERTOS kernel, except

that it is linked with a small FREERTOS-lib that exports

the FREERTOS API. That library interfaces with the IPC

facilities of COMPOSITE, and invokes functions exported by a

FREERTOS-klib (kernel library) linked into the FREERTOS

kernel component. The FREERTOS-klib invokes the actual

methods within FREERTOS to handle the requests.

The main functions of the two libraries are to (1) marshal

arguments between components using the COMPOSITE IPC

facilities, and (2) do namespace virtualization. Namespace

virtualization does translation between two different names-

paces, one in the FREERTOS application, and the other in

the FREERTOS kernel. When an application is compiled into

the FREERTOS kernel, it shares the namespace with the rest

of the system, and most kernel objects (including threads,

semaphores) are accessed directly by pointer. However, in

MC-FREERTOS, pointers passed from the FREERTOS ap-

plication cannot be trusted to contain a correct pointer. Thus,

a set of translation tables exist in the FREERTOS-lib to map

from the pointer—expected by the FREERTOS application as

part of the FREERTOS API—to an integer descriptor that is

passed via component invocation to the FREERTOS kernel.

The FREERTOS-klib receives these descriptors, and translates

them to the pointers to the corresponding objects within the

FREERTOS kernel after validating that the objects are of the

correct type for the function being invoked (i.e. that the object

is used in a well-typed manner). Some details on the main

APIs in FREERTOS, and how they are virtualized, follow:

• Thread management. The thread creation function must

take a callback function to be executed in the new thread.

This function pointer is saved in the FREERTOS-lib, and

the FREERTOS-klib passes a function that upcalls at a

known location into the FREERTOS application, where

the thread retrieves the callback, and executes it.

• Queues. In addition to the namespace virtualization above,

queues must pass data between the FREERTOS application

and the FREERTOS kernel. We set up two uni-directional

ring buffers of shared memory between the two libraries

to pass the data from the FREERTOS application to the

kernel, and vice-versa. Queues can behave synchronously,

or asynchronously, as determined by the FREERTOS ker-

nel. As the FREERTOS kernel component schedules its

threads, including those in the FREERTOS application,

with its own consistent notion of priority, we make no

changes to the timing properties of the system aside from

the overhead for the libraries and component invocation.

• Semaphores. These functions are simple and only conduct

the virtualization already discussed.

• Timed blocking. The function that enables a thread to block

for a span of time only requires marshalling the timeout

argument to the FREERTOS kernel.

Summary. We present the design of MC-FREERTOS, which

is a paravirtualized extension of FREERTOS. FREERTOS is

incapable of mixed-criticality execution due to the inability

to provide spatial isolation. This is a familiar story for many

low-level RTOSes. We paravirtualize FREERTOS to provide

a flexible MCS execution environment by porting FREER-

TOS to a component in COMPOSITE, implementing it in a

hierarchical scheduler, and isolating in a separate component

the low-criticality threads from those that are high-criticality,

thus providing unchanged timing (minus constant overhead

factors) and memory isolation.

C. MC-FREERTOS Overhead and Performance

Operation Average Stddev

FREERTOS Kernel Threads
Semaphore w/ activation 0.368 0.014
Semaphore, no-contention 0.11 0.000
Enqueue 0.102 0.003
Dequeue 0.103 0.001
Queue round-trip 0.774 0.025

FREERTOS Application Threads
Semaphore w/ activation 0.708 0.011
Semaphore, no-contention 0.669 0.002
Enqueue 0.418 0.008
Dequeue 0.567 0.009
Queue round-trip 1.699 0.066

TABLE I: Performance of the main MC-FREERTOS functions,
both for FREERTOS kernel threads, and for FREERTOS application
(low-criticality) threads. All measurements are in μ-seconds.

We measure the overheads of the FREERTOS kernel-

resident threads (i.e. high criticality threads executing within

the FREERTOS kernel component), and the overheads of

FREERTOS application-resident threads that must make in-

vocations to the FREERTOS kernel component for service.

We execute a number of operations on a Intel(R) Core(TM)

i7-2760QM CPU clocked at 2.4GHz. Table I displays these

results. They include semaphore operations that activate a

waiting thread, thus include the cost of a context switch; the

overhead of a pair of uncontended semaphore operations (take

+ release); the separate cost of asynchronous enqueue and

dequeue operations; and the cost of a “ping pong” through

19



queues which is synchronous round-trip communication be-

tween threads. There is no native x86 port of FREERTOS, so

we could not compare against that.

Discussion: Adding memory isolation and the incumbent

communication overheads between the FREERTOS applica-

tion and FREERTOS kernel components does have an impact

on performance. However, the performance of all relevant

FREERTOS functions remains within reasonable bounds.

Most overhead is directly attributable to component invocation

costs of around 0.25 μ-seconds.

V. RELATED WORK

The most closely related work to this paper is HIRES by

Parmer and West [3]. HIRES uses a similar resource hierarchy

approach as this paper, which permits delegating memory and

I/O in addition to CPU (scheduling), but HIRES does not

provide the same strong temporal isolation guarantees in the

presence of resource sharing as our work. Thus, HIRES is

not directly usable to support an MCS, since the isolation of

different criticality levels must be guaranteed.

The prevailing approach to resource sharing for hierarchical

schedulers allocates budgets to each child, and then avoids

budget exhaustion during critical section execution. SIRAP

by Behnam et al., [8] checks for sufficient budget before

entering a critical section. HSRP by Davis and Burns [9]

permits bounded budget overruns so that critical sections

may terminate despite budget exhaustion. Although HSRP

can bound the overrun, preempting a critical section in case

an overrun occurs is still problematic [10]. A quantitative

evaluation of resource sharing approaches is given by Åsberg

et al. [11]. Inam et al. modified FreeRTOS [12] to support

two-level hierarchical scheduling for an MCS using HSRP to

share resources. The authors evaluated the overhead of mode

changes but do not examine resource sharing.

As mentioned in section I, hierarchical scheduling with

virtualization can support MCSs. Unfortunately, virtualization

suffers performance degradation due in part to a fundamental

mismatch between mechanisms: virtualization technology was

not designed with embedded systems/real-time scheduling in

mind [13]. (Bruns et al. [14] argue contrarily that virtualization

is effective for MCS on deeply-embedded devices that lack

cache and memory management unit hardware. We do not

consider such devices.) Prior work in MCSs with hierarchical

scheduling attempts to remove the performance degradation

while still isolating children [7], [15], [16]. In general, an

MCS exacerbates the difficulties of resource sharing with

hierarchical scheduling because of the need for strict isolation

between different criticalities. The prevailing solution in the

literature is to disallow resource sharing. Our work exhibits

the strong isolation of virtualization-like approaches for MCSs

with low performance loss despite allowing resource sharing.

VI. CONCLUSIONS

The flexibility and configurability of COMPOSITE makes it

an ideal platform for MCSs not only because of its temporal

guarantees, but also because of the capability to tailor system

memory isolation to application criticalities. This paper has

examined the use of the component-based model and the

associated memory isolation within MC systems to enable

configurable spatial isolation between different criticalities.

We also approach the problem of extending HIRES into MC-

HIRES as a generalization to enable a more descriptive and

configurable interface between parent and child schedulers.

Finally, we have introduced MC-FREERTOS, which utilizes

the memory isolation in COMPOSITE and the hierarchical

scheduling from MC-HIRES to enable both temporal and

spatial isolation between different criticalities in a legacy

RTOS that lacks memory isolation.

REFERENCES

[1] K. Lakshmanan, D. d. Niz, and R. R. Rajkumar, “Mixed-criticality
task synchronization in zero-slack scheduling,” in Proceedings of the
2011 17th IEEE Real-Time and Embedded Technology and Applications
Symposium, ser. RTAS ’11, 2011, pp. 47–56.

[2] A. Burns, “The application of the original priority ceiling protocol
to mixed criticality systems,” in 1st workshop on Real-Time Mixed
Criticality Systems (ReTiMiCS), 2013, pp. 7–11.

[3] G. Parmer and R. West, “HiRes: A system for predictable hierarchical
resource management,” in Proceedings of the 17th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2011.

[4] S. Xi, J. Wilson, C. Lu, and C. Gill, “Rt-xen: Towards real-time
hypervisor scheduling in xen,” in Proceedings of the Ninth ACM
International Conference on Embedded Software, ser. EMSOFT ’11,
2011, pp. 39–48.

[5] Q. Wang, J. Song, and G. Parmer, “Stack management for hard real-time
computation in a component-based OS,” in RTSS, 2011.

[6] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M. Levy,
“Scheduler activations: effective kernel support for the user-level man-
agement of parallelism,” in SOSP ’91: Proceedings of the thirteenth
ACM symposium on Operating systems principles. New York, NY,
USA: ACM Press, 1991, pp. 95–109.

[7] A. Lackorzyński, A. Warg, M. Völp, and H. Härtig, “Flattening hier-
archical scheduling,” in Proceedings of the Tenth ACM International
Conference on Embedded Software, ser. EMSOFT ’12, 2012, pp. 93–
102.

[8] M. Behnam, I. Shin, T. Nolte, and M. Nolin, “Sirap: a synchronization
protocol for hierarchical resource sharing in real-time open systems,”
in EMSOFT ’07: Proceedings of the 7th ACM & IEEE international
conference on Embedded software. New York, NY, USA: ACM, 2007,
pp. 279–288.

[9] R. I. Davis and A. Burns, “Resource sharing in hierarchical fixed priority
pre-emptive systems,” in RTSS ’06: Proceedings of the 27th IEEE
International Real-Time Systems Symposium, Washington, DC, USA,
2006, pp. 257–270.

[10] M. Behnam, T. Nolte, M. Sjodin, and I. Shin, “Overrun methods and
resource holding times for hierarchical scheduling of semi-independent
real-time systems,” Industrial Informatics, IEEE Transactions on, vol. 6,
no. 1, pp. 93–104, Feb 2010.

[11] M. Åsberg, M. Behnam, and T. Nolte, “An experimental evaluation
of synchronization protocol mechanisms in the domain of hierarchical
fixed-priority scheduling,” in Proceedings of the 21st International
Conference on Real-Time Networks and Systems, ser. RTNS ’13, 2013,
pp. 77–85.

[12] R. Inam, M. Sjodin, and R. Bril, “Mode-change mechanisms support
for hierarchical freertos implementation,” in Emerging Technologies
Factory Automation (ETFA), 2013 IEEE 18th Conference on, Sept 2013,
pp. 1–10.

[13] G. Heiser, “The role of virtualization in embedded systems,” in Pro-
ceedings of the 1st Workshop on Isolation and Integration in Embedded
Systems, ser. IIES ’08, 2008, pp. 11–16.

[14] F. Bruns, D. Kuschnerus, and A. Bilgic, “Virtualization for safety-
critical, deeply-embedded devices,” in Proceedings of the 28th Annual
ACM Symposium on Applied Computing, ser. SAC ’13, 2013, pp. 1485–
1492.

[15] M. Völp, A. Lackorzynski, and H. Härtig, “On the expressiveness of
fixed-priority scheduling contexts for mixed-criticality scheduling,” in
1st International Workshop on Mixed Criticality Systems (WMC), 2013,
pp. 13–18.

[16] Y. Li, R. West, and E. Missimer, “A virtualized separation kernel
for mixed criticality systems,” in Proceedings of the 10th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environ-
ments, ser. VEE ’14, 2014, pp. 201–212.


