MC-Fluid: rate assignment strategies

Saravanan Ramanathan and Arvind Easwaran

Nanyang Technological University, Singapore

December 1, 2015

Outline

- Introduction and Background
 - Mixed-Criticality (MC) System
 - Fluid Scheduling
 - Dual-rate MC Fluid Scheduling
- 2 Motivation
 - Challenges in Dual-rate MC Fluid Model
- Proposed Strategy
 - MC-Sort algorithm
 - MC-Slope algorithm
- 4 Evaluation
 - Schedulability
- 5 Future Work
 - Multi-rate model

Mixed-Criticality (MC) System Fluid Scheduling Dual-rate MC Fluid Scheduling

Outline

- Introduction and Background
 - Mixed-Criticality (MC) System
 - Fluid Scheduling
 - Dual-rate MC Fluid Scheduling
- Motivatio
 - Challenges in Dual-rate MC Fluid Model
- 3 Proposed Strategy
 - MC-Sort algorithm
 - MC-Slope algorithm
- 4 Evaluation
 - Schedulability
- 5 Future Work
 - Multi-rate model

Mixed-Criticality (MC) System Fluid Scheduling Dual-rate MC Fluid Scheduling

Mixed-Criticality (MC) Task Model

Implicit Deadline Sporadic Task : $\tau_i = (T_i, L_i, C_i)$

- *T_i* is the minimum separation between successive job releases
 - Since we consider implicit deadline tasks, deadline = T_i
- L_i denotes the criticality level of task (assume 2 levels)
 - LO denoting low-criticality and HI denoting high-criticality
- C_i = {C_i^L, C_i^H} : C_i^L denotes LO worst-case execution time (WCET), and C_i^H(≥ C_i^L) denotes HI WCET

•
$$C_i^H = C_i^L$$
 if $L_i = LC$

Mixed-Criticality (MC) System Fluid Scheduling Dual-rate MC Fluid Scheduling

Mixed-Criticality (MC) Scheduling

Task system behaviours : A MC task system with two criticality levels can exhibit the following behaviours

- LO mode: The system is in this behaviour as long as no task has executed beyond its LO WCET
- HI mode: The system switches to this behaviour when any HI task executes beyond its LO WCET

MC Correctness: A MC system is said to be correct if

- In LO mode: All tasks with LO WCETs are schedulable
- In HI mode: Only HI tasks with HI WCETs are schedulable
 - All LO tasks are dropped

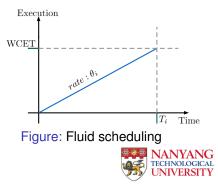
Introduction and Background Motivation Proposed Strategy Evaluation Future Work Mixed-Criticality (MC) System **Fluid Scheduling** Dual-rate MC Fluid Scheduling

Fluid Scheduling

Fluid Scheduling: Each task is assigned a fractional processing capacity at each time instant

Schedulability: A task

 τ_i can meet its deadline if


Rate

 $(\theta_i) \ge WCET$

• Feasibility:

A task rate θ_i is valid under a m core system if

•
$$\theta_i \leq 1$$

• $\sum_{\tau_i \in \tau} \theta_i \leq m$

Mixed-Criticality (MC) System Fluid Scheduling Dual-rate MC Fluid Scheduling

MC-Fluid Scheduling

MC-Fluid Platform: Each task is executed with LO-rate (θ_i^L) in Execution LO mode and HI-rate (θ_i^H) in HI mode LO-mode HI-mode At mode switch, execution HI-rate requirement is changed Execution rate is changed LO-rate Carry-over job: A job released in LO mode T_i Time Mode switch and finished in HI mode Figure: Carry-over job

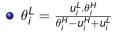
IVERSI

Mixed-Criticality (MC) System Fluid Scheduling Dual-rate MC Fluid Scheduling

MC-Fluid Scheduling

Rate Assignment:

- Worst-case mode switch pattern
 - Minimum $(\theta_i^L u_i^L)$
- Construct an optimization problem
 - Solve it by convex optmization
- Optimal rate assignment algorithm
 - Schedulable rate assignment for all feasible task sets
- Has polynomial complexity


Mixed-Criticality (MC) System Fluid Scheduling Dual-rate MC Fluid Scheduling

MC-Fluid Scheduling

 θ^H_i is determined by solving the convex optimization problem

$$\begin{array}{ll} \textit{minimize} \quad \sum_{\tau_i \in \tau_H} (\theta_i^L - u_i^L) \\ \textit{subject to} \quad \sum_{\tau_i \in \tau_H} \theta_i^H & \leq m \\ \forall \tau_i \in \tau_H, \quad \theta_i^H & \geq u_i^H \\ \forall \tau_i \in \tau_H, \quad \theta_i^H & \leq 1 \end{array}$$

Mixed-Criticality (MC) System Fluid Scheduling Dual-rate MC Fluid Scheduling

MCF Scheduling

MCF: Simplified variant of MC-Fluid algorithm

- Rate Assignment:
 - For all HI tasks θ_i^H is given by $\frac{u_i^H}{\rho}$
 - $\rho = \max \{ \text{normalized utilization}, \max \{ u_i^H \} \}$
- θ_i^L is computed same way as MC-Fluid
- Linear run-time complexity
 - Compensates on schedulability

Challenges in Dual-rate MC Fluid Model

Outline

- Introduction and Background
 - Mixed-Criticality (MC) System
 - Fluid Scheduling
 - Dual-rate MC Fluid Scheduling
- 2 M

Motivation

- Challenges in Dual-rate MC Fluid Model
- 3 Proposed Strategy
 - MC-Sort algorithm
 - MC-Slope algorithm
- 4 Evaluation
 - Schedulability
- 5 Future Work
 - Multi-rate model

Challenges in Dual-rate MC Fluid Model

Challenges in Dual-rate MC Fluid Model

Non-optimality: Dual-rate fluid scheduling of MC task systems on multi-core is not optimal

- Feasible task sets are deemed to be not schedulable
 - Example: Multi-rate model
- We cannot extend MC-Fluid or MCF to multi-rate model
 - Complexity of MC-Fluid is high
 - MCF compromises on the schedulability
- Solution: Algorithm with better schedulability and reduced complexity

MC-Sort algorithm MC-Slope algorithm

Outline

- Introduction and Background
 - Mixed-Criticality (MC) System
 - Fluid Scheduling
 - Dual-rate MC Fluid Scheduling
- 2 Motivation
 - Challenges in Dual-rate MC Fluid Model
- Proposed Strategy
 - MC-Sort algorithm
 - MC-Slope algorithm
- 4 Evaluation
 - Schedulability
- 5 Future Work
 - Multi-rate model

MC-Sort algorithm MC-Slope algorithm

MC-Sort algorithm

MC-Sort:

- Maximum rate to a task with a larger HI utilization
- MC-Sort HI rate assignment
 - Assign initial rate of $\frac{u_i^H}{\rho_i}$

•
$$\rho_i = max\left\{\left(\frac{U_H^H}{m}\right), u_i^H\right\}$$

- Sorts all HI tasks in decreasing HI utilization
- Assigns maximum rate to tasks in the sorted order until slack remains
- Linearithmic complexity (*i.e.*, *nlogn*)

MC-Sort algorithm MC-Slope algorithm

MC-Sort algorithm

Example: m = 2

Task				MC-Sort	
	T_i	u_i^L	u_i^H	θ_i^L	θ_i^H
τ_1	5	0.3	0.9	-	-
τ_2	7	0.4	0.5	-	-
τ_3	35	0.1	0.3	-	-
$ au_4$	35	0.45	-	-	-
\sum		1.25	1.7	-	-

MC-Sort algorithm MC-Slope algorithm

MC-Sort algorithm

Example: m = 2

Task				MC-Sort		
	T_i	u_i^L	u_i^H	θ_i^L	θ_i^H	
$ au_1$	5	0.3	0.9	-	-	
τ_2	7	0.4	0.5	-	-	
τ_3	35	0.1	0.3	-	-	
$ au_4$	35	0.45	-	-	-	
\sum		1.25	1.7	-	-	

• Sort all tasks with u_i^H

MC-Sort algorithm MC-Slope algorithm

MC-Sort algorithm

Example: m = 2

Task				MC-Sort		
	T_i	u_i^L	u_i^H	θ_i^L	θ_i^H	
τ_1	5	0.3	0.9	-	-	
τ_2	7	0.4	0.5	-	-	
τ_3	35	0.1	0.3	-	-	
τ_4	35	0.45	-	-	-	
\sum		1.25	1.7	-	-	

• Compute $\rho_i = max \left\{ \left(\frac{U_H^H}{m} \right), u_i^H \right\}$ • $\rho_1 = 0.9 \quad \rho_2 = 0.75 \quad \rho_3 = 0.75$

MC-Sort algorithm MC-Slope algorithm

MC-Sort algorithm

Example: m = 2

Task				MC-Sort		
	T _i	u_i^L	u_i^H	θ_i^L	θ_i^H	
$ au_1$	5	0.3	0.9	-	0.89	
τ_2	7	0.4	0.5	-	0.67	
$ au_3$	35	0.1	0.3	-	0.4	
τ_4	35	0.45	-	-	-	
\sum		1.25	1.7	-	1.96	

- Initial assignment $\left(\frac{u_i^H}{\rho}\right)$ is done
- Allocate remaining slack to task with maximum $u_i^{H^{ex}}$

MC-Sort algorithm MC-Slope algorithm

MC-Sort algorithm

Solution:

Task				MC-Sort		
	T_i	u_i^L	u_i^H	θ_i^L	θ_i^H	
τ_1	5	0.3	0.9	0.84	0.93	
τ_2	7	0.4	0.5	0.47	0. 67	
τ_3	35	0.1	0.3	0.2	0.4	
$ au_4$	35	0.45	-	0.45	-	
\sum		1.25	1.7	1.96	2.0	

• θ_i^L is computed same way as MC-Fluid

MC-Sort algorithm MC-Slope algorithm

MC-Slope algorithm

- MC-Sort limitation: Does not consider the difference in utilization between criticality levels
 - Task that does maximum execution after mode switch may not get maximum rate allocation

MC-Sort algorithm MC-Slope algorithm

MC-Slope algorithm

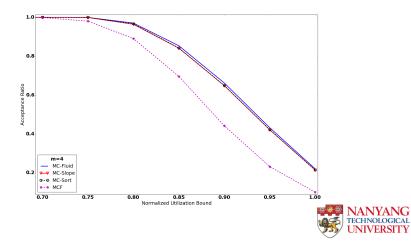
MC-Slope: HI rate assignment

- Objective: Minimize $\sum (\theta_i^L u_i^L)$
- Initial rate: $\theta_i^H = u_i^H$
- Sorts all HI tasks with $R(\theta_i^H)$

•
$$R(\theta_i^H) = \frac{d^2(\theta_i^L - u_i^L)}{d\theta_i^{H^2}}$$

- Assign maximum rate to task with larger $R(\theta_i^H)$
- Linearithmic complexity (*i.e.*, *nlogn*)

Schedulability

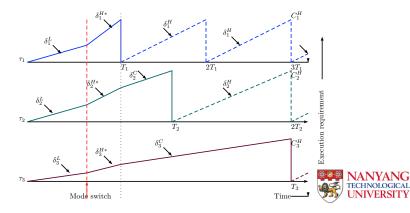

Outline

- Introduction and Background
 - Mixed-Criticality (MC) System
 - Fluid Scheduling
 - Dual-rate MC Fluid Scheduling
- 2 Motivation
 - Challenges in Dual-rate MC Fluid Model
- 3 Proposed Strategy
 - MC-Sort algorithm
 - MC-Slope algorithm
 - Evaluation
 - Schedulability
 - 5 Future Work
 - Multi-rate model

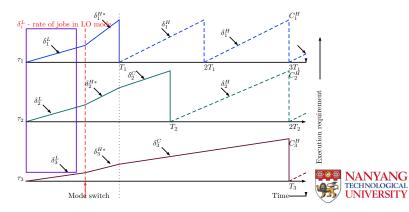
Schedulability

Schedulability

Multi-rate model

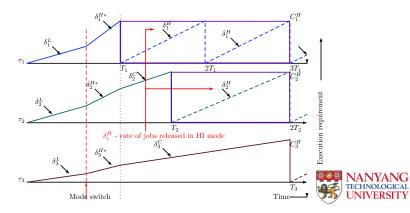

Outline

- Introduction and Background
 - Mixed-Criticality (MC) System
 - Fluid Scheduling
 - Dual-rate MC Fluid Scheduling
- Motivation
 - Challenges in Dual-rate MC Fluid Model
- 3 Proposed Strategy
 - MC-Sort algorithm
 - MC-Slope algorithm
- 4 Evaluation
 - Schedulability
- 5 Future Work
 - Multi-rate model

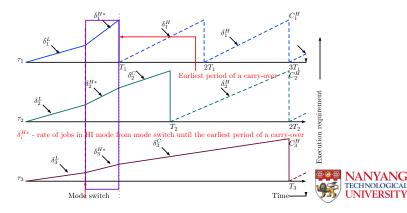

Future Work

Multi-rate model: Each task executes with more than 2 rates

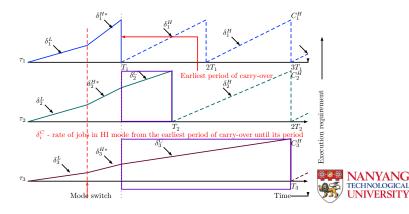
Future Work


Multi-rate model: Each task executes with more than 2 rates

WMC2015


Future Work

Multi-rate model: Each task executes with more than 2 rates


Future Work

Multi-rate model: Each task executes with more than 2 rates

Future Work

Multi-rate model: Each task executes with more than 2 rates

WMC2015

Multi-rate model

Multi-rate model

Example: m = 2

Task				MC-Fluid		Multi-rate model			
	T _i	u_i^L	u_i^H	θ_i^L	θ_i^H	δ_i^L	δ_i^{H*}	δ_i^C	δ_i^H
$ au_1$	5	0.3	0.8	0.64	0.94	0.64	0.94	-	0.8
τ_2	7	0.4	0.7	0.70	0.70	0.70	0.70	0.70	0.7
$ au_3$	35	0.1	0.3	0.22	0.36	0.21	0.36	0.50	0.3
$ au_4$	35	0.45	-	0.45	-	0.45	-	-	-
\sum				2.01	2.0	2.0	2.0	1.2	1.8

Multi-rate model

Thank you..! Questions..?

