

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Mixed-Criticality Job Models: A Comparison

Sanjoy Baruah and **Zhishan Guo** Department of Computer Science University of North Carolina at Chapel Hill

Mixed-Criticality Systems

 MC Systems: functionalities of different levels of importance (criticalities) are implemented upon a shared platform.

Mixed-Criticality Systems

- MC Systems: functionalities of different levels of importance (criticalities) are implemented upon a shared platform.
- Traditional non-MC design: Need significant resource over-provisioning to guarantee their temporal correctness, which leads to highly inefficient resource usage at run-time!

Mixed-Criticality Systems

- MC Systems: functionalities of different levels of importance (criticalities) are implemented upon a shared platform.
- Traditional non-MC design: Need significant resource over-provisioning to guarantee their temporal correctness, which leads to highly inefficient resource usage at run-time!
- MC:

Over-provisioned resources (to more important tasks) can be used to execute less important ones.

Temporal Correctness

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL Real-Time Cyber-Physical SYSTEMS

Temporal

Temporal

Temporal

Vestal Model	Burns Model
Criticality Levels	s χ_i : A , B , C , or D
WCETs:	Only <u>Two</u> WCETs:
C_i(A) , C _i (B), C _i (C), C_i(D)	C _i (self), C _i (normal)
N/A, 321, 10, 5	321, 5
Level of the System:=	Level of the System:=
Smallest ℓ that C _i (ℓ) caps	χ _i of the greatest-criticality
behavior of job i, ∀i	job exceeding its C _i (NL)

Instances represented in the Vestal model

cannot always be represented exactly in the Burns model.

Proposition 3:

Determining whether a given instance specified according to the Burns model is MC-schedulable is NP-hard in s.s.

Thm 1:

There are MC instances with L distinct criticality levels specified using the Burns model that are clairvoyantly-schedulable, but that are not schedulable for any fixed priority policy on a processor that is less than s_L^* times as fast.

 s s^L is the root of x^L = (1 + x)^{L-1}, i.e., the speedup bound under Vestal model.

Conclusion

- We seek to better understand the Ease-of-use Burns model.
- Unfortunately, we have not identified any analytical benefits in terms of reduced complexity of feasibility analysis, less schedulability loss, etc., at the cost of reduced expressiveness.

Conclusion & Future Work

- We seek to better understand the Ease-of-use Burns model.
- Unfortunately, we have not identified any analytical benefits in terms of reduced complexity of feasibility analysis, less schedulability loss, etc., at the cost of reduced expressiveness.
- Limitation: Fixed-Priority; Job Set; Uniprocessor.

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Thank you!

Zhishan Guo <u>zsguo@cs.unc.edu</u> WMC'15, San Antonio