
Mixed Criticality Systems: Beyond Transient Faults

Abhilash Thekkilakattil1, Alan Burns2, Radu Dobrin1, and Sasikumar Punnekkat3

1Mälardalen Real-Time Research Center, Mälardalen University, Sweden
2Real-Time Systems Research Group, Department of Computer Science, University of York, UK

3Department of Computer Science and Information Systems, Birla Institute of Technology and Science, India

Abstract—Adopting mixed-criticality architectures enable
safe sharing of computational resources between tasks of
different criticalities consequently leading to reduced Size,
Weight and Power (SWaP) requirements. A majority of the
research in mixed-criticality systems focuses on scheduling tasks
whose Worst Case Execution Times (WCETs) are certified to
varying levels of assurances. If any given task overruns its
WCET, the system switches to a higher criticality and all the
lower criticality tasks are discarded to make time for the
execution of higher criticality tasks. Task execution time
overruns are transient faults that are typically tolerated by
simply executing an alternate task before the original deadline,
or, by discarding the failed task to prevent it from interfering
with higher criticality tasks. However, permanent faults such as
processor failures can render the system to be useless, many
times leading to unsafe states. In this paper we present a
taxonomy of fault tolerance techniques to tolerate permanent
faults, as well as map it to real-time mixed-criticality
requirements based on the extend of fault coverage that in turn
influences the associated assurance.

I. INTRODUCTION

The complexity of software in real-time applications is
increasing unlike ever before. This has created novel
challenges in the design and verification of such systems,
particularly with respect to timeliness guarantees. One way
of reducing the complexity involved in providing temporal
guarantees is to adopt a mixed criticality architecture, where
only some tasks that are deemed to be critical to the
operation of the system are provided strong guarantees, while
others are typically provided weaker guarantees. The two
main motivations behind adopting a mixed criticality
architecture are i) efficient use of computational resources by
integrating functionalities of varying criticalities (that are
mostly certified to varying assurance levels) on the same
platform [13] and ii) enable easy certification of systems by
different certifying authorities [4]. Note that in this paper,
”resources” refer to ”computational resources” e.g., a
processor.

Mixed criticality systems has received good reception in
the real-time systems community since Vestal described the
problem in [13] (though some works such as [9] predates
Vestal’s work). The central assumption behind the
mixed-criticality model proposed by Vestal [13] is that the
individual task Worst Case Execution Times (WCET)
monotonically increase with criticality of the components,
because, the more critical a task is with respect to the correct
functioning of the system, more conservative is its WCET
estimate thereby increasing confidence on the estimates. We
refer to all the mixed criticality scheduling models (e.g.,
[13][4]) that adheres to this assumption as Vestal’s model.

Most of the research in mixed-criticality real-time
scheduling (which is Vestal’s model) considers, what is
referred to in the dependability community as the, transient
faults. A transient fault can be a task execution time overrun
(as assumed by Vestal’s model) or single event upsets (as
assumed by more recent works on mixed-criticality systems
[10] [12]). Transient faults on real-time tasks are commonly
tolerated by a simple re-execution of the same task or by an
execution of an alternate task (or even by discarding the
failed task so as not to jeopardize timeliness guarantees of
other tasks, similar to Vestal’s model). Although the ultimate
goal of mixed-criticality systems is to provide higher
assurances (e.g., reliability) to higher criticality components,
the focus of the majority of research is limited to transient
faults, in particular to transient faults caused by different
levels of Worst Case Execution Time (WCET) assurances.
Moreover, the majority of the works assume that
lower-criticality tasks can be safely discarded as the system
switches to a higher criticality level (which is when tasks
overrun their WCETs).

On the other hand, permanent faults can render a system
to be completely useless e.g., a processor failure. Moreover,
inherent hardware faults (such as corrupted memory) can
cause failures that are hard to detect by re-executions or
executions of alternate tasks. In this case, system designers
need to adopt spatial redundancy coupled with a voting
mechanism to determine whether or not the generated
outputs are erroneous. The majority of the research in
mixed-criticality systems [7] do not consider the possibility
of permanent faults, the issues/problems arising out of this,
as well as its implications in the context of a
mixed-criticality architecture.

Adopting spatial redundancy brings forth many
challenges in conjunction with mixed-criticality architectures,
particularly with respect to satisfying the ”S” and ”W” of the
SWaP (Size, Weight and Power) constraints. One of the goals
of adopting a mixed criticality architecture is to enable safe
sharing of hardware resources between highly critical and
lesser critical software components in order to reduce SWaP.
However, spatial redundancy techniques require spare
hardware that increases SWaP. Consequently, one of the
goals of this paper is to investigate the possibilities of
implementing a mixed-criticality architecture when using
spatial redundancy.

Another essential requirement for guaranteeing
”timeliness” of real-time tasks that are replicated on a
specified number of processors is that the hardware on which
these replicas execute need to be tightly synchronized.



Traditionally, this was achieved by implementing tight
synchronization schemes that typically require hardware
modifications/support. Implementing tight synchronization
schemes for all the spatially redundant components increases
development costs, as well as make the components
dependent on a global time base. The use of loosely
synchronized systems (i.e., systems where time
synchronization is carried out by software) enables easier use
of e.g., multicore systems to implement spatial redundancy.
Adopting a mixed-criticality architecture, especially on
multicore systems, brings forth possibilities to implement the
different functionality on software and perform voting using
a ”time aware voter” (e.g., see Aysan et al. [3]).

This paper presents a taxonomy of spatial redundancy
techniques to tolerate permanent faults and identify how
mixed-criticality architectures can be implemented when
using spatial redundancy.

To summarize, the main contribution of this paper is a
taxonomy of spatial redundancy techniques in the context of
implementing mixed-criticality architectures. Particularly, we
consider two main challenges:

• Maximizing efficiency of replica allocation to reduce
cost. This can be achieved by provisioning resources
based on the criticality of the associated tasks.

• Providing different levels of assurances for spatially
redundant software components (tasks). The different
levels of assurances are based on the extent of
coverage of different faults.

The rest of the paper contains the system model in Section
II, the main contributions of this paper in Section III followed
by conclusions in Section IV.

II. SYSTEM MODEL

In the following, we describe the system model in detail
in order to make the context clearer.

A. Example System

In this paper, we use a running example of an
autonomous vehicle adapted from Burns et al. [6]. The
example services (tasks) are given in table I and consists of 2
high criticality functions, 4 medium criticality functions, 1
low criticality function and 1 non-critical function. These
criticalities can be mapped to tasks associated with
components that are assigned to specific Safety Integrity
Levels (SILs) described in IEC 61508. Collision avoidance
and braking control are high criticality tasks, while engine
and lateral control, path finding and route planning can be
considered to be of medium criticality. Display control
functions are of low criticality while music streaming can be
considered to be a non-critical task.

B. Fault Model

In this paper we consider both transient and permanent
faults. As noted before, WCET overruns (such as the one
assumed in the widely used Vestal’s model) are one type of
transient faults and is tolerated by either aborting the task or
by simply re-executing the task or executing an alternate

Function Criticality

Collision Avoidance High
Braking Control High
Engine Control Medium
Lateral Control Medium
Path Finding Medium
Route Planning Medium
Display Controls Low
Music Streaming Non-Critical

TABLE I: Autonomous Vehicle Example

task. Avizienis et al. [1] defines a permanent fault to be fault
whose presence is assumed to be continuous in time. This
can be for example, a processor failure in a distributed
system that leads to an absence of output or a physical
memory failure that leads to incorrect outputs. Permanent
faults can be tolerated by employing spatial redundancy, i.e.,
replicate the required functionality on multiple hardware.

Example II.1. Consider the autonomous vehicle example
given in table I that performs collision avoidance by
detecting obstacles in its path and choosing appropriate
actions such as either stop, slow-down or navigate around it.
Object detection is a key functionality in this system. Suppose
the processor on which the ”collision avoidance” software
runs fails, it must be possible for the system to recognize the
failure and bring the vehicle to a safe state or recover from
it. A relatively easy way out is to replicate the collision
avoidance functionality on multiple hardware, e.g., using
Triple Modular Redundancy (TMR), and perform a voting.
Adopting TMR enables tolerance to 1 fault, i.e., even if one
of the replicas fail, in principle, the vehicle can detect it and
still continue functioning.

There are different types of permanent faults that need to
be tolerated. The higher the coverage of the fault tolerance
mechanism associated with a task, the higher the assurance
one can give to the particular task. This provides for
interesting trade-offs between task criticalities, development
costs and SWaP.

Design faults: Occurs due to the deficiencies in the design
and development of the system. A design fault may be due
to the use of e.g., a particular type of hardware or adoption
of a specific implementation of a particular algorithm when
building the system.

There are two types of design faults:

1) Hardware Design faults: Faults that either
originate in the hardware or affects the hardware
due to faulty design are referred to as hardware
design faults. Examples of hardware design faults
include manufacturing defects in the computer.

2) Software Design faults: Faults that affect the
software of a computer system as a result of
incorrect design are referred to as software design
faults. Examples of software faults include faults
due to incorrect interpretation of the specification,
or a faulty implementation of an algorithm.

Random faults: A random fault is a fault whose time of
occurrence cannot be predetermined, nor the causes can be



identified offline. It may, for instance, be the result of wear
and tear due to the continuous use of the system. On the
other hand, the rate of occurrence of random faults for a
given system can be estimated, for example, it is possible to
analyze impact of wear and tear on the system.

Byzantine faults: Byzantine faults occur when some replicas
behave arbitrarily differently. Moreover, different observers
will record different behaviors of the replicas. In general,
byzantine faults are the worst kind of faults and requires
significant replication to be tolerated. Typically, to tolerate m
byzantine faults, there is a need of 3m+ 1 replicas.

C. Fault Tolerance Mechanism

There are two primary types of fault tolerance mechanisms
that can be implemented:

1) Fail Stop: In this form of fault tolerance, whenever
a component fails, it stops functioning completely
in order to prevent interfering from other
(potentially dependent) components. Majority of the
research in mixed-criticality real-time systems
implement this form of fault tolerance in which, in
case of an execution time overrun, the system
switches to a higher criticality state and discards all
the lower criticality components, essentially
stopping all lower criticality tasks from executing.

2) Fail-Operational: In this form of fault tolerance,
even if a component fails, the system continues to
give an acceptable level of service by typically
employing back-ups in the form of temporal or
spatial redundancy.

D. Task Model

We consider a set of n real-time tasks/functions denoted
by Γ = {τ1, τ2, . . . , τn} where each τi has a minimum
inter-arrival time Ti and a deadline Di. The transient faults
on any task τi are tolerated either by simply re-executing τi
or executing a back-up task to τi– we refer to both as
alternates. In this context, the main execution of τi is
referred to as the primary and has an execution time denoted
by Ci. Permanent faults on any task τi are tolerated using
spatial redundancy: each τi has a specified number of
replicas that are executed in parallel, after which a voting is
performed.

Every τi ∈ Γ needs to tolerate δti ≥ 0 transient faults and/or
δpi ≥ 0 permanent faults. This means that each τi requires δti
alternates in addition to the primary execution and needs to
be replicated on (2δpi + 1) processors [11]. Alternately, the
execution time of the back-ups of any task τi can be seen as
the ”extra-time” that τi may need in case of a WCET overrun
at any given criticality level.

Example II.2. Consider a task τ1 that needs to tolerate δti = 1
transient fault and δpi = 0 permanent faults. This means that
τ1 needs to be re-executed once or an alternate task must be
executed if there is a transient fault on τ1.

This model generalizes the widely used model for mixed-
criticality systems, since e.g., by enforcing δti ≤ 1 (and δti = 0
i.e., no replication) we get a dual criticality system: when δti =

1, τi becomes a high criticality task that has two execution
times (analogously one alternate) and when δti = 0, τi becomes
a low criticality task that can be safely discarded upon overrun.
In the context of the widely used model, hereafter referred to
as Vestal’s model, the recovery task can be seen as the ”extra”
duration for which high criticality tasks can execute in case
of WCET overruns before the system switches to a higher
criticality level.

III. MIXED-CRITICALITY DESIGN CHALLENGES IN

DEPENDABLE REAL-TIME SYSTEMS

In this section, we present a how different levels of
assurances can be provided to tasks of different criticalities
when building predictable mixed-criticality systems that
employs spatial redundancy. We first explain the time
synchronization problem when using spatial redundancy, that
may lead to disasters in hard real-time systems. We then
identify how mixed-criticality architectures can be
implemented when using spatial redundancy to minimize
SWaP requirements as well as the effort required to
implement them.

Spatial redundancy, time synchronization and
mixed-criticalities: Depending on the criticality of the task,
the replicas of the task may be implemented as simple
circuits developed by independent teams to ensure diversity.
Alternately, the different replicas may be developed as
software, by independent teams, and may be scheduled
together with other tasks on processors from different
vendors; albeit with reduced assurance when compared to the
previous case. One of the key design challenge involved in
providing spatial redundancy, in this case, is to ensure
synchronization of different replicas to provide timely output
to the voter. The need for tight synchronization is illustrated
by the following simple example.

Example III.1. Consider the sensors associated with lateral
control of the example autonomous vehicle described in
Table I. In order to provide high assurance to the Lateral
Control function, spatial redundancy must be employed.
Suppose the associated sensor is triplicated, with a voter,
then there is a risk of two of the replicas giving the same
output while the third gives a late output that is different
because of the change in value over time. In this case, there
is a risk that the voter discards the correct (albeit late) value
by tagging it as ”incorrect” since it does not agree with the
outputs from the two other sensors.

These errors can be tolerated by adopting a tight time
synchronization between the different replicas. However,
providing tight synchronization is costly and requires
significant effort. Moreover, having a tight synchronization
between different replicas makes the system heavily
dependent on the global time base. Alternately, for lesser
critical tasks, loose synchronization algorithms implemented
using software may be used that requires lesser development
effort and cost. When using loose synchronization scheme,
care must be taken to ensure that the voter does not suffer
from timing errors. Loosely synchronous systems facilitate
cost reduction by enabling the use of commercially available
real-time operating systems on the individual processors
without requiring modifications to enable tight



synchronization. Each processor used to replicate the
different tasks can execute the replicas using the local
scheduling algorithm that can be, for example, EDF or FPS
(as long as the individual replicas produce timely outputs). A
time aware voter such as the one proposed by Aysan et al.
[3] can detect and tolerate timing errors, consequently
providing dependability guarantees.

A. Mixed-Criticality Architecture for Spatially Redundant
Functions

Providing reliability and safety guarantees using spatial
redundancy implies increased hardware that in turn results in
increased SWaP requirements. Adopting a mixed-criticality
architecture reduces SWaP requirements by provisioning the
computing resources such that it reflects the task criticalities
and the associated required assurance levels. Implementing
mixed-criticality architectures for systems using spatial
redundancy is still largely an unexplored area. In this section,
we investigate methods to provide different levels of
assurances to different tasks that uses spatial redundancy to
improve reliability and safety while reducing SWaP. An
overview of the mapping of the criticalities to tasks based on
the fault coverage assurances is summarized in table II.

High Criticality Tasks: The high criticality tasks are the
most important tasks in the system and require a very high
level of assurance. Consequently, the probability of failures
need to be significantly low. These tasks are associated with
components classified as e.g., SIL 4 of the IEC 61508 and
are highly critical for the safe operation of the system. The
high criticality task failures can result in disastrous
consequences for the system and hence need to be provided
with the highest level of assurance. For example, the
collision avoidance and braking control in Table I are highly
critical functionalities to ensure safe operation of an
autonomous car.

Assurance Mechanism: The highest criticality tasks may be
implemented on dedicated hardware to ensure isolation (as is
typically done in many systems [14]), and a high integrity voter
implemented as a simple electronic circuit performs voting.
The use of simple electronic circuits implies that the voter can
be verified to a very high degree of assurance [2], and the use
of dedicated hardware guarantees that the tasks are protected
from many types of faults.

• In order to provide assurances against random faults,
the high criticality tasks are typically replicated e.g.,
using Triple Modular Redundancy (TMR).

• To provide protection against design faults (both
hardware and software), there is a need to ensure
diversity. This can be done by N-version
programming, i.e., developing the different replicas
using different development teams. Moreover, the
different teams must use hardware and development
tools from different vendors.

• To protect against byzantine faults, byzantine fault
tolerance mechanisms must be adopted. Protection
against byzantine faults imply further increase in
hardware requirements. Typically, to tolerate δpi
byzantine faults, there is a need of 3δpi + 1 replicas.

Note that byzantine failures are observed more
frequently than expected [8]. If the tasks are
protected against byzantine faults, they are implicitly
protected against all other faults (and hence does not
require e.g., TMR).

• The replication and diversity ensures that the system
is tolerant to many transient faults since there is
redundancy. Typically, by having 2δpi + 1 redundant
system implies protection against 2δpi transient
faults. The Airbus A320, for example, uses both
replication and diversity to ensure fault tolerance [5].

A key challenge here is to ensure tight synchronization
between the replicas and the voter to ensure timeliness of the
generated output. As a consequence of the above design, the
development of high criticality tasks can be very costly.

Medium Criticality Tasks: The medium criticality tasks
correspond to components of the system that are to be
certified as e.g., SIL 3 of IEC 61508. A failure in these tasks
can cause serious consequences to the correct functioning of
the system. However, consequences of medium criticality
task failures are less disastrous than the high criticality
failures, and the associated reliability guarantees need not be
as high as the critical tasks (or the probability of a failure
causing a disaster is lower compared to the high criticality
tasks). Consequently, the medium criticality tasks need not
be provided with the highest assurance level similar to the
critical tasks. They can be provisioned less pessimistically,
even using commercially available high integrity processors,
than high criticality tasks to save on Size, Weight or Power.
Engine control, given in Table I, is an example of a medium
criticality task. Even though it may not be as critical as
collision avoidance, there is a need to ensure its failure free
execution.

Assurance Mechanism: The medium criticality tasks may
be implemented in software on high integrity processors
using e.g., table driven scheduling. Even though the medium
criticality tasks need not be implemented as electronic
circuits to guarantee high assurance, they need to be made
significantly fault tolerant.

• The medium criticality tasks can be replicated e.g.,
using TMR to protect it against random faults. The
replicas of the medium criticality tasks may be
scheduled using highly predictable scheduling
algorithm e.g., table driven scheduling on different
processors. These tasks need to execute in lock-step,
and on completion pass on the output to a voter that
then performs voting to mask any task failures.

• The medium criticality tasks can be made tolerant to
design faults (both hardware and software) by
ensuring diversity, e.g., choosing processors on
which the replicas execute from different vendors
and by ensuring the use of N-version programming.

• The replication and diversity guarantees protection
against many transient faults.

Such a setup requires tight synchronization schemes between
the high integrity processors, in order to guarantee timeliness
of the replica outputs and in turn guarantee timely output



Task Criticality Transient Faults Random Faults Software Faults Hardware Faults Byzantine Faults

High Fully covered Fully covered Fully covered Fully covered Fully covered
Medium Fully covered Fully covered Fully covered Fully covered
Low Fully covered Fully covered Fully covered Partially covered
Non-critical Fully covered Partially covered

TABLE II: Mapping criticalities to tasks based on fault coverage.

from the voter. The advantage here is more than one medium
criticality tasks can be scheduled on the same processor, as
opposed to implementing them on the hardware,
consequently reducing SWaP requirements. Since the tasks
are implemented as software, and are scheduled on
commercially available processors, the development cost
associated with medium criticality tasks will be less.

Low Criticality Tasks: Low criticality tasks are associated
with those components that need to be provided with e.g.,
SIL 2 guarantees under IEC 61508 standard. Failures on low
criticality tasks can cause less severe disruption of services
in the system that are not disastrous (or the probability of a
failure causing a disaster is low). However, these tasks are
still required to ensure the normal operation of the system
and needs to be provided with appropriate guarantees.
Display controls in autonomous vehicles may not be as
critical as collision avoidance or engine control and hence
need not be provided with the same level of assurance.

Assurance Mechanism: The low criticality tasks may be
implemented on commercially available multicore processors
and scheduled using any standard real-time scheduling
algorithm. However, some level of fault tolerance must be
implemented to ensure the associated failure probabilities are
low.

• The low criticality tasks may be replicated on
different processors of the multicore platform. The
different cores may be synchronized using relatively
cheap synchronization algorithms, and a ”time
aware” voter (e.g., [3]) can guarantee timeliness of
the generated output.

• Protection against software design faults can be
implemented by employing N-version programming.
Since, the replicas are scheduled on the different
cores of the same multicore platform, no protection
exists against hardware design faults and many
hardware operational faults.

• The replication ensures that the system is
automatically protected against many transient faults.
Moreover, if software diversity is ensured, it further
increases protection against many transient faults.

The use of commercially available processors, together with
the possibility of adopting loose synchronization enables the
use of relevant uniprocessor or multiprocessor scheduling
algorithms such as Earliest Deadline First or Fixed Priority
Scheduling to schedule the replicas, consequently enabling
the use of commercial real-time operating systems. The main
concern here is regarding the faults that may occur due to
the loose synchronization. In this case, a time aware voter
such as the one propsed by Aysan et al. [3] can guarantee
absence of timing faults in such loosely synchronized

systems. Adopting such an architecture enables efficient use
of the available processing power since many algorithms,
e.g., EDF, that are known to be optimal can be employed.

Non-Critical Tasks: Non-critical tasks are the least
”important” tasks in the system as they are associated with
components that can be given lowest level of assurance e.g.,
SIL 1 guarantees of IEC 61508. Non-critical tasks can be
safely discarded without affecting the normal operation of
the system. The only major concern in this case is that the
non-critical tasks must not ”interfere” with the execution of
higher criticality tasks i.e., they must be protected against
transient faults by implementing a fail silent mechanism.
Vehicular entertainment related task, such as music streaming
in Table I, are good example of non-critical tasks that are not
significant for the specified mission.

Assurance Mechanism: Non-critical tasks are scheduled
normally along with tasks of higher criticalities.
Non-criticality tasks may re-execute whenever there is slack,
and is discarded immediately upon transient faults like an
execution time overrun. The presence of extra computing
resources ensures that non-critical tasks have a higher
possibility of re-execution. A limited form of protection
against transient faults and random faults can be added by
ensuring that the non-critical tasks can re-execute whenever
spare computing capacity is available.

Needless to say, depending on the coverage of faults, more
criticalities can be defined.

IV. CONCLUSIONS

Even though the ultimate goal of mixed-criticality
systems is to enable efficient resource usage while providing
different levels of assurances to different components, the
majority of research in mixed-criticality systems focus only
on issues related to tolerating execution time overruns, which
are only one type of transient faults. Despite the fact that
more recent works considered transient faults other than
execution time overruns, the challenges with respect to
implementing mixed-criticality architectures for tolerating
permanent faults has largely remained out of focus. The
hardware redundancy required to tolerate permanent faults
implies increased SwaP requirements, while mixed-criticality
architectures enable hardware provisioning to real-time tasks
based on the associated required assurance levels. In this
paper, we present a taxonomy of spatial redundancy
techniques, as well as propose a mapping of the assurance
levels to task criticalities based on the extend of fault
coverage with respect to permanent faults. A positive side
effect of using spatial redundancy is that transient faults,
such as execution time overruns, are automatically covered,
and hence, this paper aims to initiate a discussion on the use
of spatial redundancy techniques in the context of
mixed-criticality systems.



Future work include investigation of optimal resource
allocation strategies for assurances against different types of
faults, as well as scheduling mechanisms for the tasks and
their different replicas on multiprocessor platforms to
guarantee timely outputs to the voter.

REFERENCES

[1] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl
Landwehr. Basic concepts and taxonomy of dependable and secure
computing. IEEE Transactions on Dependable Secure Computing,
January 2004.

[2] Huseyin Aysan. Fault-tolerance strategies and probabilistic guarantees
for real-time systems. In PhD thesis, Malardalen University, June 2012.

[3] Hüseyin Aysan, Iain Bate, Patrick Graydon, and Sasikumar Punnekkat.
Improving reliability of real-time systems through value and time
voting. In The 19th IEEE Pacific Rim International Symposium on
Dependable Computing, December 2013.

[4] S. Baruah, V. Bonifaci, G. D’Angelo, Haohan Li, A. Marchetti-
Spaccamela, N. Megow, and L. Stougie. Scheduling real-time mixed-
criticality jobs. IEEE Transactions on Computers, August 2012.

[5] D. Briere and P. Traverse. Airbus a320/a330/a340 electrical flight
controls - a family of fault-tolerant systems. In The Twenty-Third
International Symposium on Fault-Tolerant Computing, pages 616–623,
1993.

[6] A. Burns, D. Prasad, A. Bondavalli, F. Di Giandomenico,
K. Ramamritham, J. Stankovic, and L. Strigini. The meaning
and role of value in scheduling flexible real-time systems. J. Syst.
Archit., 2000.

[7] Alan Burns and Rob Davis. Mixed criticality systems - a review. In
Available:http://www-users.cs.york.ac.uk/ burns/review.pdf (accessed on
31 July 2015).

[8] Kevin Driscoll, Brendan Hall, Hkan Sivencrona, and Phil Zumsteg.
Byzantine fault tolerance, from theory to reality. In Computer Safety,
Reliability, and Security, Lecture Notes in Computer Science, pages
235–248. Springer Berlin Heidelberg, 2003.

[9] S. Islam, R. Lindstrom, and N. Suri. Dependability driven integration
of mixed criticality sw components. In The Ninth IEEE International
Symposium on Object and Component-Oriented Real-Time Distributed
Computing, 2006.

[10] RisatMahmud Pathan. Fault-tolerant and real-time scheduling for
mixed-criticality systems. Real-Time Systems, 2014.

[11] Sasikumar Punnekkat. Schedulability Analysis for Fault Tolerant Real-
time Systems. PhD thesis, University of York, UK, June 1997.

[12] Abhilash Thekkilakattil, Radu Dobrin, and Sasikumar Punnekkat.
Fault tolerant scheduling of mixed criticality real-time tasks under
error bursts. In The International Conference on Information and
Communication Technologies. Elsevier Procedia Computer Science,
December 2014.

[13] S. Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In The 28th IEEE
International Real-Time Systems Symposium, 2007, December 2007.

[14] K. Vipin, S. Shreejith, S.A. Fahmy, and A. Easwaran. Mapping time-
critical safety-critical cyber physical systems to hybrid fpgas. In The
IEEE International Conference on Cyber-Physical Systems, Networks,
and Applications, 2014.


