Analysis of Probabilistic Cache Related Pre-emption Delays

Rob Davis, Luca Santinelli, Sebastian Altmeyer, Claire Maiza, and Liliana Cucu-Grosjean
Outline

- Probabilistic real-time systems
- System model
 - Random cache replacement policies (Evict-on-Access, Evict-on-Miss)
- Static Probabilistic Timing Analysis (SPTA)
 - Single path programs
 - Complexity
- Cache Related Pre-emption Delays
 - At a specific point
 - Upper bounding the effect at any point
 - Multiple pre-emption
- Extension to Multi-path programs
- Evaluation
 - Case study and simulation
- Conclusions and future work
Probabilistic Real-Time Systems

- What do we mean by a probabilistic real-time system?
 - One or more parameters are described by random variables
 - Example: instead of a single WCET value, we have a probabilistic Worst-Case Execution Time (pWCET)
 - Characterised by a probability distribution

Common question: What does this mean?
Isn’t WCET defined as the single worst-case execution time value?
Rolling 10 dice (only interested in how many sixes)

- WCET equates to 10 sixes
- pWCET upper bound probability distribution on number of sixes rolled

What should the budget for ‘sixes’ be such that we get an expected failure rate no higher than 1 per 1 million rolls of the set of dice? i.e. runs of the program. (Failure = more sixes than budgeted)
Common misunderstanding: Difference between pET and pWCET

- Analogy: two options
 - 10x ordinary dice
 - 3x big dice that show pairs of values e.g. 2 sixes at once
 - Like a program with two paths

- Different pETs for the two options (typically dependent)
- pWCET is a tight upper bound on all possible pETs (independent)
- pWCETs can be composed to get pWCRTs
Static Probabilistic Timing Analysis (SPTA)

- Aim is to show that the probability of timing failure falls below some threshold e.g. 10^{-9} failures per hour: p_{WCET} v. budget

![Diagram showing CPU, Instruction Cache, Memory, and Probabilistic WCET (pWCET) distribution]
Cache model

- Fully associative instruction cache of N blocks
 - Memory blocks can be loaded into any block in cache
 - Each instruction resides in a memory block
 - Memory blocks may contain multiple instructions

- Instruction modelling
 - When an instruction is requested its memory block may be in cache (a hit) or not (a miss)
 - If it is not in cache, then it has to be fetched from main memory and loaded into the cache.
 - On a miss, a random location is chosen in the cache to accommodate the new memory block (Evict-on-Miss random replacement policy)
 - Each cache block has the same probability of being evicted $1/N$
Evict-on-miss random replacement

Cache with memory blocks a, b, c, d, e loaded next instruction is in memory block f
Instruction modelling

- Instructions are either:
 - Cache hit or cache miss (when executed)

- Program path
 - Is a sequence of instructions
 - Represented by the sequence of memory blocks for those instructions e.g. \(a, b, a, c, d, b, c, d, a, e, b, f, e, g, a, b, h \)

- Re-use distance \(k \)
 - Defined as the maximum possible number of evictions since the last access to the memory block containing the required instruction
 \(a, b, a^1, c, d, b^3, c^2, d^2, a^5, e, b^4, f, e^2, g, a^5, b^4, h \)
 - Can have re-use distance of zero (instructions in the same block & EoM)
 \(a, a^0, b, b^0, b^0, b^0, a^1, \)
Each instruction has a probability of being a cache hit or a cache miss:
- Described by a discrete random variable (PMF)

\[
I = \begin{pmatrix}
H \\ P\{\text{hit}\}
M \\ P\{\text{miss}\} = 1 - P\{\text{hit}\}
\end{pmatrix}
\]

Note H and M are times for a cache Hit and cache Miss

Example:
- Probability of a cache hit = 0.75 with an execution time of 1
- Probability of a cache miss = 0.25 with an execution time of 10

\[
I = \begin{pmatrix}
1 & 10 \\ 0.75 & 0.25
\end{pmatrix}
\]

For each instruction we aim to lower bound the probability of a cache hit independent of whether previous instructions were hits or misses
Probabilistic real-time analysis

- Requires independence:
 - Two random variables X and Y are independent if they describe two events such that the outcome of one event does not have any impact on the outcome of the other
 - In our context an instruction having a particular execution time is an event
 - There is a dependency between these events via the cache

- Key idea is to conservatively model the execution times of instructions as independent random variables (which have no dependency on whether previous instructions were cache hits or cache misses)

- Actual probability of a cache hit $P\{hit\}$ is dependent on the outcome of previous events (hits or misses) but we lower bound it with P_{hit} which is independent then we can use convolution to get p_{WCET} distribution for a sequence of instructions
Probabilistic real-time analysis

- Summation of independent random variables is via convolution

\[C_j = \mathcal{I}_1 \otimes \mathcal{I}_2 \otimes \ldots, \]

\[P\{Z = z\} = \sum_{k=-\infty}^{+\infty} P\{X_1 = k\}P\{X_2 = z - k\} \]

\[
\begin{pmatrix}
1 & 10 \\
0.8 & 0.2
\end{pmatrix} \otimes \begin{pmatrix}
1 & 10 \\
0.7 & 0.3
\end{pmatrix} = \begin{pmatrix}
2 & 11 & 20 \\
0.56 & 0.38 & 0.06
\end{pmatrix}
\]
Static Probabilistic Timing Analysis (SPTA)

- Sequence of instructions represented by their memory blocks and re-use distances
 a, b, a¹, c, d, b³, c², d², a⁵, e, b⁴, f, e², g, a⁵, b⁴, h
- Evict-on-miss random replacement policy
 - (Recall: Fully associative cache, N cache blocks, on a cache miss we randomly choose a cache block to be evicted)
 - Initial analysis by Zhou [17] 2010

\[P^{hit}(k) = \left(\frac{N-1}{N} \right)^k \]

- Depends only on re-use distance \(k \) (not on actual cache hit / miss behaviour)

Formulation is not strictly correct due to a dependency via the finite size of the cache
Problem of Independence

- **Counter example:**
 - Consider a cache of size $N = 2$
 - $a, b, c, b^1, a^3,$
 - If the 2nd access to b is a hit, then b and c must be in cache at that point and so the 2nd access to a is **certain** to be a miss

Probability that the 2nd access to block a is a hit is **not independent** of whether previous instructions were hits or misses

Joint probability that 2nd accesses to both a and b are hits is zero, not 1/16 (as obtained from Zhou formula and convolution)

- **Solution:**
 - Need to model instruction PMFs as independent (so can we can compose using convolution)

HOW?
Upper bound the maximum amount of known information (h blocks that could be known to be in cache) and consider how this may reduce the effective cache size and number of possible evictions
Static Probabilistic Timing Analysis

- Evict-on-Miss
 - With \(h \) intervening hits assumed (if \(h \geq N \) then \(P_{hit} = 0 \))
 \[
P_{hit}^E(k, h) = \left(\frac{N - h - 1}{N - h} \right)^{k-h}
 \]
 - Lower bound (for all values of \(h \)) so crucially independent of previous hits / misses
 \[
P_{EoM}^hit(k) = \begin{cases}
 \left(\frac{N-1}{N} \right)^k & k < N \\
 0 & k \geq N
 \end{cases}
 \]
 - Similarly for Evict-on-Access (Cucu-Grosjean et al. [6])
 \[
P_{EoA}^hit(k) = \begin{cases}
 \left(\frac{N-(k-1)-1}{N-(k-1)} \right)^k & k < N \\
 0 & k \geq N
 \end{cases}
 \]

Proof in the paper

Easy to see that Evict-on-Miss dominates Evict-on-Access
Static Probabilistic Timing Analysis

- Upper bound pWCET for each instruction based on re-use distance \(k \) using formula modelling independent (lower bound) probability of a cache hit
- pWCET for a single path by convolution \(C_j = I_1 \otimes I_2 \otimes \ldots \),
 - Convolution is commutative and associative
 - Can represent a sequence of accesses
 \[a, b, a^1, c, d, b^3, c^2, d^2, a^5, e, b^4, f, e^2, g, a^5, b^4, h \]
 by their re-use distances:
 \[Q = \{-, -, 1, -, -, 3, 2, 2, 5, -, 4, -, 2, -, 5, 4, -\} \]
 \[Q^{PROG} = \{1, 2, 2, 2, 3, 4, 4, 5, 5, -, -, -, -, -, -, -, -, -\} \]
pWCET distribution (1-CDF)

pWCET without pre-emption

1e-09

143
Complexity of SPTA

- Convolving pWCETs for n instructions
 - Might seem to have exponential complexity $O(2^n)$
 (The case if each distribution had two arbitrary values)
 - Max value is a small constant M so after n convolutions, max value is nM and $2nM$ operations are required for the $(n+1)$th convolution
 - Complexity is pseudo-polynomial $O(Mn^2)$ where M is a small constant

Problem is tractable in practice

Can also use re-sampling to reduce the size of the distributions
Effects of pre-emption at a single specific program point
- Pre-emption assumed to flush the cache making some re-use distances infinite
- Pre-emption after 1st access
 \[a, b, a^1, c, d, b^3, c^2, d^2, a^5, e, b^4, f, e^2, g, a^5, b^4, h \]
 \[Q_1 = \{1\} \]
- Pre-emption after 5th access
 \[a, b, a^1, c, d, b^3, c^2, d^2, a^5, e, b^4, f, e^2, g, a^5, b^4, h \]
 \[Q_5 = \{2, 2, 3, 5\} \]

Accounting for effects of pre-emption
- Remove values from representation of program (path)
 \[Q^{PROG} = \{1, 2, 2, 2, 3, 4, 4, 5, 5, -, -, -, -, -, -, -, -\} \]
 \[Q^{PROG}_{P_5} = \{1, 2, 4, 4, 5, -, -, -, -, -, -, -, -, -, -, -, -\} \]
Effects of a single pre-emption at any program point

- Concept of a dominant virtual pre-emption point with an impact that upper bounds the impact of pre-emption at any actual program point.

Method to create virtual pre-emption point P^*

- Pad representations of pre-emption effects so they are all the same length e.g. $Q_1 = \{1, -, -, -, -\}$ and $Q_5 = \{2, 2, 3, 5\}$.

- Apply $\min^+(Q_i, Q_j) = \{k_r = \min(k_{i,r}, k_{j,r}) \forall r \leq |Q_i|\}$.

- So $\min^+(Q_1, Q_5) = \{1, 2, 3, 5\}$.

- Do this for all possible pre-emption points:

 $Q^* = \min^+_{r \in \{1, \ldots, 16\}} \{Q_r\} = \{1, 2, 3, 5\}$.

- Remove values from representation of program (path)

 $Q_{P^*}^{PROG} = \text{pre}(Q_{P^*}^{PROG}, Q^*)$

 $Q_{P^*}^{PROG} = \{2, 2, 4, 4, 5, -, -, -, -, -, -, -, -, -, -, -, -\}$
pWCET distribution (1-CDF)

- pWCET without pre-emption
- pWCET with 1 pre-emption

Execution time:
- 143
- 170
pCRPD: Multiple pre-emption

- Effects of **multiple** pre-emptions
 - Remove values multiple times
 \[Q^{PROP}_{xP^*} = pre(Q^{PROP}_{(x-1)P^*}, Q^*) \]
 - If a specific value is no longer present (this is due to pessimism in the analysis) remove next larger value (don’t remove smaller ones)
 - Example: \(a, b, c, d, a^3, b^3, c^3, d^3, d^0, d^0, d^0, d^0, d^0, d^0 \)
 \[Q^* = \{0, 3, 3, 3\} \]
 \[Q^{PROP}_{4P^*} = \{0, 0, -, -, -, -, -, -, -, -, -, -, -\} \]
 - 4 pre-emptions are not enough to force this program to all misses
Multi-path Programs

- Static Probabilistic Timing Analysis (SPTA) and pCRPD extended to multi-path programs
 - SPTA intuition
 - Upper bound re-use distances using program analysis (fixed point iteration)
 - Combine & collapse sub-paths to get a synthetic path representation that upper bounds the pWCET of any path through the program
 - pCRPD intuition
 - Upper bound the pre-emption effect at each program point using program analysis (on the re-use distances obtained by SPTA before collapsing)
 - Combine effects for all program points into a single dominant virtual pre-emption point P*
 - Apply P* to synthetic path as in the single path case

Details in the paper
Evaluation

- Used Malardalen Benchmarks
 - FAC, FIBCALL, FDCT, JFDCINT (single path with loops)
 - BS, INSERTSORT, FIR (multi-path)
 - Compared Evict-on-Miss and Evict-on-Access random replacement policies
- Varied:
 - Number of pre-emptions
 - Cache size ($N = 256, 128, 64, 32$)
 - Memory block sizes ($1, 2, 4, 8$ instructions)
- Assumed $H = 1, M = 10$
- Also compared SPTA and pCRPD analysis with simulation
FAC Benchmark

- Evict on Miss
- Memory block size = 1
- Cache size $N = 128$

Probability

pWCET estimate from simulation 10^7 runs

pWCET without pre-emption

4 pre-emption

3 pre-emption

2 pre-emption

1 pre-emption

Execution time
FAC Benchmark

- Evict on Miss
- Memory block size = 1
- Cache size N = 128
FAC Benchmark

- Evict on Access
- Memory block size = 1
- Cache size N = 128

Simulation much closer due to evictions on every access

Worse performance than Evict-on-Miss
FAC Benchmark
- Evict on Miss
- Memory block size = 4
- Cache size N = 128
FAC Benchmark

- Evict on Access
- Memory block size = 4
- Cache size N = 128
FAC Benchmark

- Evict on Miss
- Varying memory block size
- Cache size $N = 128$

![Graph showing execution time and probability for different block sizes (bs)]
FAC Benchmark

- Evict on Miss
- Varying memory block size
- and cache size

![Graph showing probability over execution time with varying block sizes and cache sizes.]

- PROG bs=1 N=256
- PROG bs=2 N=128
- PROG bs=4 N=64
- PROG bs=8 N=32
Technical Report

YCS-2012-477

- Find it on Rob Davis publications page:
 http://www-users.cs.york.ac.uk/~robdavis/publications.html

Results for other benchmarks

- FAC is very simple code. Others require many more pre-emptions to reduce them to all misses (e.g. > 500 pre-emptions for INSERTSORT)
Conclusions

Main contributions
- Revised Static Probabilistic Timing Analysis for Evict-on-Miss random cache replacement policy
 - Fixed a problem with dependency
- Extended SPTA to multipath programs
- Introduced analysis of pCRPD
 - Including multiple pre-emptions of multi-path programs
- Evaluations
 - Method is feasible and provides results that give a useful upper bound on the pWCET

Future work
- Improvements to the pWCET analysis via loop un-rolling
- Comparisons with deterministic analysis for systems with traditional cache replacement policies
- Reduce the pessimism in SPTA
Questions?