Global Fixed Priority Scheduling with Deferred Pre-emption

R.I. Davis, A. Burns
University of York, UK.
{rob.davis, alan.burns}@york.ac.uk

J. Marinho, V. Nelis, S.M. Petters
CISTER/INESC-TEC, ISEP, Porto, Portugal.
jmsm, nelis, smp}@isep.ipp.pt

M. Bertogna
University of Modena, Italy.
marko.bertogna@unimore.it

Abstract—This paper introduces schedulability analysis for
global fixed priority scheduling with deferred pre-emption (gFPDS) for homogeneous multiprocessor systems. gFPDS is a
superset of fixed priority pre-emptive scheduling (gFPSS) and
global fixed priority non-pre-emptive scheduling (gFPNS).
We show how schedulability can be improved via appropriate
choice of priority assignment and final non-pre-emptive region
lengths, and we provide algorithms which optimize schedulability
in this way. An experimental evaluation shows that gFPDS
significantly outperforms both gFPSS and gFPNS.

I. INTRODUCTION

A common misconception with regard to fixed priority
scheduling of sporadic tasks is that fully pre-emptive
scheduling is more effective in terms of schedulability than
non-pre-emptive scheduling. The two are however
incomparable; there are tasksets that are schedulable under
fixed priority non-pre-emptive scheduling that are not
schedulable under fixed priority pre-emptive scheduling and
vice-versa. This is the case for uniprocessor scheduling [27]
and also the case for global multiprocessor scheduling [30],
which is the focus of this paper.

While the blocking effect, due to long non-pre-emptive
regions of low priority tasks degrades schedulability for
single processor systems that have a wide range of task
execution times and periods (as illustrated by Figure 7 in
[27]), Guan et al. [30] showed that the same is not
necessarily true for multiprocessor systems. With m
processors rather than one, long non-pre-emptive regions can
be accommodated without necessarily compromising the
schedulability of higher priority tasks. However, this
advantage only extends so far; with m processors then m
long non-pre-emptive regions are enough to significantly
compromise schedulability. In this context, limited non-pre-
emptive execution has the advantage of reducing the number
of pre-emptions, and potentially improving the worst-case
response time of tasks, while also keeping blocking effects
on higher priority tasks within tolerable limits.

In the literature, the term fixed priority scheduling with
defered pre-emption has been used to refer to a variety of
different techniques by which pre-emptions may be deferred
for some interval of time after a higher priority task becomes
ready. These are described in a survey by Buttazzo et al. [21]
and briefly discussed in Section II. In this paper, we assume
a simple form of fixed priority scheduling with deferred pre-
emption where each task has a single non-pre-emptive region
at the end of its execution. If this region is of the minimum
possible length for all tasks, then we have fully pre-emptive
scheduling, whereas if it constitutes all of the task's
execution time then we have non-pre-emptive scheduling.

In this paper, we introduce sufficient schedulability tests
for fixed global priority scheduling with deferred pre-
emption (gFPDS). gFPDS can be viewed as a superset of
both global fixed priority pre-emptive scheduling (gFPSS)
and global fixed priority non-pre-emptive scheduling (gFPNS).

A. Deferred pre-emption

Two different models of fixed priority scheduling with
defered pre-emption have been developed in the literature.

In the fixed model, introduced by Burns in 1994 [19], the
location of each non-pre-emptive region is statically
determined prior to execution. Pre-emption is only permitted
at pre-defined locations in the code of each task, referred to
as pre-emption points. This method is also referred to as
cooperative scheduling, as tasks co-operate, providing re-
scheduling / pre-emption points to improve schedulability.

In the floating model [7], [32], an upper bound is given
on the length of the longest non-pre-emptive region of each
task. However, the location of each non-pre-emptive region
is not known a priori and may vary at run-time, for example
under the control of the operating system.

For uniprocessor systems: Exact schedulability analysis
for the fixed model was derived by Bril et al. in 2009 [18].
Subsequently, Bertogna et al. integrated pre-emption costs
and cache related pre-emption delays (CRPD) into analysis
of the fixed model, considering both fixed [14] and variable
B. Global fixed priority scheduling

In 2003, Baker [5] developed a strategy that underpins an extensive thread of subsequent research into schedulability tests for gFPPS [9], [11], [12], [13], [29], [31], and gFPNS [30]. (For a comprehensive survey of multiprocessor real-time scheduling, the reader is referred to [26]). Baker’s work was subsequently built upon by Bertogna et al. [11] [13]. They developed sufficient schedulability tests for gFPPS based on bounding the maximum workload in a given interval. In 2007, Bertogna and Cirinei [12] adapted this approach to iteratively compute an upper bound on the response time of each task, using the upper bound response times of other tasks to limit the amount of interference considered. In 2009, Guan et al. [31] extended this approach using ideas from [8] to limit the amount of carry-in interference.

In 2009 and 2010, Davis and Burns [22], [23] showed that priority assignment is fundamental to the effectiveness of gFPPS. They proved that Audsley’s optimal priority assignment algorithm [3], [4] is applicable to some of the sufficient tests developed for gFPPS, including the deadline-based test of Bertogna et al. [13], but not to others such as the later response time tests [12], [31].

In 2011, Guan et al. [30] provided schedulability analysis for gFPNS based on the approach of Baker [5], and the techniques introduced by Bertogna et al. in [11].

gFPDS is broadly similar to the dynamic algorithm FPZL [24], [25]. FPZL resembles gFPPS until a job reaches a state of zero laxity i.e. when its remaining execution time is equal to the elapsed time to its deadline. FPZL gives such a job the highest priority, and hence makes it non-pre-emptable. The length of time each job spends executing in this zero-laxity state is determined dynamically by FPZL. With FPZL, RTOS support for this dynamic behaviour is required, whereas with gFPDS the transition to non-pre-emptive execution may be controlled either by the RTOS, or via API calls suitably located within the code of each task.

III. SYSTEM MODEL, TERMINOLOGY AND NOTATION

In this paper, we are interested in global fixed priority scheduling of an application on a homogeneous multiprocessor system with m identical processors. The application or taskset is assumed to consist of a static set of n tasks ($\tau_1,...,\tau_n$), with each task τ_i assigned a unique priority i, from 1 to n (where n is the lowest priority). We assume a discrete time model, where all task parameters are positive integers (e.g. processor clock cycles). We use the notation $hp(i)$ (and $lp(i)$) to mean the set of tasks with priorities higher (lower) than i.

Tasks are assumed to comply with the sporadic task model. In this model, each task gives rise to a potentially unbounded sequence of jobs. Each job may arrive at any time once a minimum inter-arrival time has elapsed since the arrival of the previous job of the same task.

Each task τ_i is characterised by its relative deadline D_i, worst-case execution time C_i ($C_i \leq D_i$), and minimum inter-arrival time or period T_i. It is assumed that all tasks have constrained deadlines ($D_i \leq T_i$). The utilisation U_i of each task is given by C_i/T_i. Under gFPDS, each task is assumed to have a final non-pre-emptive region of length F_i in the range $[1, C_i]$ (Here, the minimum value is 1 rather than 0 as a task can only be pre-empted at discrete times corresponding to processor clock cycles). Finding an appropriate FNR length for each task is assumed to be part of the scheduling problem.

The worst-case response time R_i of a task is the longest possible time from the release of the task until it completes execution. Thus task τ_i is schedulable if and only if $R_i \leq D_i$ and a taskset is schedulable if and only if $\forall i \, R_i \leq D_i$. We use R_i^{ub} to indicate an upper bound on the worst-case response time of task τ_i.

Under gFPDS, at any given time, the m ready tasks with the highest priorities are selected for execution. Final non-pre-emptive regions are assumed to be implemented by manipulating task priorities, thus a task executing its FNR has the highest priority and will not be pre-empted.

The tasks are assumed to be independent and so cannot be blocked from executing by another task, other than due to contention for the processors. Further, it is assumed that once a job starts to execute it will not voluntarily suspend itself.

Job parallelism is not permitted; hence, at any given time, each job may execute on at most one processor. As a result of pre-emption and subsequent resumption, a job may migrate from one processor to another. The cost of pre-emption, migration, and the run-time operation of the scheduler are assumed to be either negligible, or subsumed within the worst-case execution time of each task. (Pre-emption costs are an issue we aim to address in future work).

A taskset is said to be schedulable with respect to some scheduling algorithm, if all valid sequences of jobs that may be generated by the taskset can be scheduled by the algorithm without any missed deadlines.

A priority assignment policy P is said to be optimal with respect to a schedulability test for some type of fixed priority scheduling algorithm (e.g. gFPPS, gFPNS, or gFPDS) if there are no tasksets that are deemed schedulable, according to the test, under the scheduling algorithm using any other priority ordering policy, that are not also deemed schedulable with the priority assignment determined by policy P.

IV. SCHEDULABILITY ANALYSIS FOR gFPDS

In this section, we introduce sufficient schedulability tests for global fixed priority scheduling with deferred pre-emption (gFPDS).

On a uniprocessor, under fixed priority scheduling with deferred pre-emption, a higher priority task can only be blocked by a single job of a lower priority task that starts
executing non-pre-emptively prior to the release of the higher priority task. The multiprocessor case is however significantly different. This is illustrated by Figure 1 below, for the case of 4 processors. Here, the task of interest τ_k (priority 2) is released at time $t=1$, along with a job of the higher priority task τ_1. τ_k is unable to execute initially due to blocking from three jobs of lower priority tasks (τ_3, τ_4, and τ_5) that have entered their FNRs (shown in dark grey in Figure 1). At time $t=4$, τ_k begins executing. At $t=7$, three further jobs of lower priority tasks (τ_6, τ_7, and τ_8 again) enter their FNRs. At $t=8$, task τ_k is pre-empted by a second job of τ_1 and misses its deadline at $t=12$.

![Figure 1: Blocking effect due to FNRs of lower priority jobs.](image)

This example serves to illustrate the following:
- Multiple lower priority tasks may contribute interference in the busy window of the task of interest. Further, the number of lower priority tasks that may contribute is not limited to m as it is in the non-pre-emptive case [30].
- Multiple jobs of the same lower priority task may contribute interference, due to the fact that the task of interest does not occupy all of the processors when it executes; unlike in the uniprocessor case.
- If there were multiple non-pre-emptive regions within each lower priority task, then each of these regions could potentially contribute interference. (This is easy to see by assuming that all of the execution of task τ_5 on processor 1 belongs to one job rather than two).

While no worst-case scenario is currently known, we can obtain an upper bound on the interference from the non-pre-emptive execution of lower priority tasks, by modelling this non-pre-emptive execution as a set of virtual tasks executing at the highest priority. Thus for each lower priority task $\tau_i \in lp(k)$, we assume a virtual task τ_{iv} with the following parameters: $C_{iv} = F_i -1$, $T_{iv} = T_i$, $D_{iv} = D_i$, $R_{iv}^{UB} = R_i^{UB}$ and the highest priority. (We note that $C_{iv} = F_i -1$ as the task must have actually entered its FNR in order to be non-pre-emptable).

We note the following points about gFPDS:
1. Once a task τ_k enters its FNR it will execute to completion. Hence with gFPDS if we can show that the task is guaranteed to execute for $C_k = C_k - (F_k -1)$ within an effective deadline of $D_k^* = D_k - (F_k -1)$, then it is guaranteed to execute for C_k by its deadline D_k.
2. In the worst-case scenario, at most $m - 1$ higher priority tasks can have carry-in jobs (Theorem 1 of [23]).
3. Virtual tasks representing the FNRs of lower priority tasks can effectively be released at any point during the interval in which the corresponding lower priority task may execute, hence the argument of Theorem 1 in [23] relating to a maximum of $m - 1$ carry-in jobs does not apply to virtual tasks.

A. Deadline Analysis for gFPDS

We now extend and adapt the deadline-based schedulability test of Bertogna et al. (Theorem 8 in [13]) to gFPDS. Under gFPSS, if task τ_k is schedulable in an interval of length L, with an execution time of C, then an upper bound on the interference over the interval due to a higher priority task τ_i with a carry-in job is given by the following equation [13].

$$I_i^D(L, C) = \min(W_i^D(L), L - C + 1)$$ (1)

where $W_i^D(L)$ is an upper bound on the workload of task τ_i in an interval of length L, given by:

$$W_i^D(L) = N_i^D(L)C_i + \min(C_i, L + D_i - C_i - N_i^D(L)T_i)$$ (2)

and $N_i^D(L)$ is the maximum number of jobs of task τ_i that contribute all of their execution time in the interval:

$$N_i^D(L) = \left\lceil \frac{L + D_i - C_i}{T_i} \right\rceil$$ (3)

Making use of D_k^* and C_k^* to account for the fact that task τ_k is schedulable under gFPDS if it is able to start its FNR by D_k^* results in the following schedulability test:

Deadline Analysis (DA) test for gFPDS: A sporadic taskset is schedulable, if for every task τ_k, inequality (4) holds:

$$D_k^* \geq C_k^* + \left\lceil \frac{1}{m} \sum_{\forall v \in lp(k)} I_i^D(D_k^*, C_k^*) + \sum_{\forall v \in lp(k)} I_i^D(D_k^*, C_k^*) \right\rceil$$ (4)

where $lp(k)$ is the set of virtual tasks used to model the non-pre-emptive execution of tasks in $lp(k)$. (Note the floor function comes from the use of integer values for all task parameters).

We now improve the DA test using the approach of Guan et al. [31]. They showed that for gFPSS, an upper bound on the interference over an interval L due to a higher priority task τ_i without a carry in job is given by:

$$I_i^{NC}(L, C) = \min(W_i^{NC}(L), L - C + 1)$$ (5)

where:

$$W_i^{NC}(L) = N_i^{NC}(L)C_i + \min(C_i, L - N_i^{NC}(L)T_i)$$ (6)

and

$$N_i^{NC}(L) = \left\lceil \frac{L}{T_i} \right\rceil$$ (7)

The difference between the interference terms (1) and (5) is:

$$I_i^{DIFF-D}(L, C) = I_i^D(L, C) - I_i^{NC}(L, C)$$ (8)

Davis and Burns [23] showed that the worst-case scenario for gFPSS occurs when there are at most $m-1$ carry-in jobs. Thus an improved test for gFPSS is as follows:

[1] Here, a carry-in job is defined as a job that is released strictly prior to the start of the interval, and causes interference within that interval.
Deadline Analysis – Limited Carry-in (DA-LC test) for gFPDS: A sporadic taskset is schedulable, if for every task \(\tau_k \), inequality (9) holds:

\[
D_k^* \geq C_k^* + \frac{1}{m} \left[\sum_{i \in \text{hp}(k)} I_i^{NC} (D_k^*, C_k^*) + \sum_{i \in \text{MD}(k,m-1)} I_i^{\text{DIFF}-D} (D_k^*, C_k^*) + \sum_{j \in \text{iwp}(k)} I_j^D (D_k^*, C_k^*) \right]
\]

(9)

where \(\text{MD}(k,m-1) \) is the subset of at most \(m-1 \) tasks with the largest values of \(I_i^{\text{DIFF}-D} (D_k^*, C_k^*) \) from \(\text{hp}(k) \).

B. Response Time Analysis for gFPDS

We now extend and adapt the response time test of Bertogna and Cirinei [12] to gFPDS. They showed that under gFPSS, if task \(\tau_k \) is schedulable in an interval of length \(L \), completing an execution time \(C \), then an upper bound on the interference in that interval due to a higher priority task \(\tau_i \) with a carry-in job is given by:

\[
I_i^R (L,C) = \min(W_i^R(L), L-C+1)
\]

(10)

where, \(W_i^R(L) \) is an upper bound on the workload of task \(\tau_i \) in an interval of length \(L \), taking into account the upper bound response time \(R_i^{UB} \) of task \(\tau_i \):

\[
W_i^R(L) = N_i^R(L)C_i + \min(C_i, L+R_i^{UB} - C_i) - N_i^R(L)T_i
\]

(11)

and \(N_i^R(L) \) is given by:

\[
N_i^R(L) = \frac{L + R_i^{UB} - C_i}{T_i}
\]

(12)

Making use of \(D_k^* \) and \(C_k^* \) to account for the fact that task \(\tau_k \) is schedulable under gFPDS if it is able to start its FNR by \(D_k^* \) results in the following schedulability test. Note, we return later to the order in which upper bound response times are computed, which is resolved by Algorithm 1.

Response Time Analysis (RTA) test for gFPDS: A sporadic taskset is schedulable, if for every task \(\tau_k \), the upper bound response time \(R_k^{UB} \) for the start (first unit of execution) of the task’s FNR, computed via the fixed point iteration given by (13) within Algorithm 1, is less than or equal to the task’s effective deadline \(D_k^* \):

\[
R_k^{UB} \leftarrow C_k^* + \frac{1}{m} \left[\sum_{i \in \text{hp}(k)} I_i^R (R_k^{UB}, C_k^*) + \sum_{i \in \text{iwp}(k)} I_i^R (R_k^{UB}, C_k^*) \right]
\]

(13)

In (13), the second summation term models the blocking effect from lower priority tasks via the set of virtual tasks. If task \(\tau_k \) is schedulable, then \(R_k^{UB} = R_k^S + (F_k - 1) \).

We now improve the RTA test using the approach of Guan et al. [31]. They showed that under gFPSS, if a higher priority task \(\tau_i \) does not have a carry-in-job, then the interference term is given by (5) rather than (10). The difference between the two interference terms is:

\[
I_i^{\text{DIFF}-R} (L,C) = I_i^R (L,C) - I_i^{NC} (L,C)
\]

(14)

Further, at most \(m-1 \) higher priority tasks with carry-in jobs may contribute interference in the worst-case. Thus an improved test for gFPDS is as follows:

Response Time Analysis – Limited Carry-in (RTA-LC) test for gFPDS: A sporadic taskset is schedulable, if for every task \(\tau_k \), the upper bound response time \(R_k^{UB} \) for the first (unit of execution) of the task’s FNR, computed via the fixed point iteration given by (15) within Algorithm 1, is less than or equal to the task’s effective deadline \(D_k^* \):

\[
R_k^{UB} \leftarrow C_k^* + \frac{1}{m} \left[\sum_{i \in \text{hp}(k)} I_i^R (R_k^{UB}, C_k^*) + \sum_{i \in \text{iwp}(k)} I_i^R (R_k^{UB}, C_k^*) \right]
\]

(15)

where \(\text{MD}(k,m-1) \) is the subset of at most \(m-1 \) tasks with the largest values of \(I_i^{\text{DIFF}-R} (R_k^{UB}, C_k^*) \) from \(\text{hp}(k) \).

Algorithm 1: Response time iteration

We note that in adapting the methods of Bertogna and Cirinei [12] and Guan et al. [31] to gFPDS there is a difficulty in accounting for the interference from virtual tasks. When computing the upper bound response time for task \(\tau_k \), the upper bound response times of each higher priority task are required. This can easily be achieved for the set of tasks \(\text{hp}(k) \) simply by computing response times in order, highest priority first, which is all that is needed for gFPSS. However, when considering gFPDS we also include interference from virtual tasks corresponding to tasks in \(\text{ip}(k) \). Here, the upper bound response time \(R_k^{UB} \) for each virtual task equates to that of its corresponding (lower priority) task \(R_k^{UB} = R_i^{UB} \), which itself depends on the upper bound response time of task \(\tau_i \), leading to an apparent circularity. This issue can be solved by noting that the upper bound response time \(R_k^{UB} \) of each virtual task is monotonically non-decreasing with respect to increases in the upper bound response times of all tasks in \(\text{hp}(i) \), and the upper bound response time \(R_k^{UB} \) of each task \(\tau_k \) is monotonically non-decreasing with respect to increases in the upper bound response times of all virtual tasks.
associated with tasks in $lp(k)$. Thus we can employ a fixed point iteration to solve for all upper bound response times starting with values that are guaranteed to be no larger than any possible solution, for example $R^U_{\text{UB}} = C_i$. The pseudo code in Algorithm 1 implements this approach.

C. Complexity and comparability

The DA and DA-LC tests for gFPDS are polynomial in complexity: $O(n^2)$ for a taskset of cardinality n. (Note, the $(m-1)$ largest I_{DFF} terms may be obtained by linear-time selection [17]). The RTA and RTA-LC tests are pseudo-polynomial in complexity, $O(n^2D_{\text{max}}D_{\text{sum}})$ where D_{max} is the longest task deadline, and D_{sum} is the sum of task deadlines. This derives from the fact that on each iteration of (13) or (15) the response time must increase by at least one for iteration to continue and after D_{max} such iterations the task would be deemed unschedulable. Further, the number of while loop iterations in Algorithm 1 is limited to D_{sum}, since on each iteration some response time must increase by at least one for the loop to continue iterating.

The following comparability relationships hold between the various schedulability tests. The RTA-LC test dominates the RTA test and the DA-LC test, both of which dominate the DA test. The DA-LC and RTA tests are incomparable.

D. Optimal priority assignment

In [22] and [23], Davis and Burns showed that Audsley’s OPA algorithm [3], [4] can be used to obtain an optimal priority assignment with respect to any schedulability test that fulfils the following three conditions:

Condition 1: The schedulability of a task τ_k may, according to test S, depend on the set of tasks with priorities higher than k, but not on their relative priority ordering.

Condition 2: The schedulability of a task τ_k may, according to test S, depend on the set of tasks with priorities lower than k, but not on their relative priority ordering.

Condition 3: When the priorities of any two tasks of adjacent priority are swapped, the task being assigned the higher priority cannot become unschedulable according to test S, if it was previously schedulable at the lower priority. (As a corollary, the task being assigned the lower priority cannot become schedulable according to test S, if it was previously unschedulable at the higher priority).

Inspection of the DA and DA-LC tests for gFPDS shows that these conditions hold (assuming fixed values of F_i) and so these tests are OPA-compatible. Whereas the dependency on the upper bound response time R^U_{UB} of higher priority tasks in (11) means that the RTA and RTA-LC tests are not OPA-compatible.

E. Example of gFPDS

We now provide an example comparing gFPDS with gFPSS and gFPNS. The example is based on the taskset in Table I. This taskset is trivially unschedulable on two processors with any form of fixed priority scheduling unless task τ_C has the lowest priority. Since task τ_A and task τ_B are equivalent, placing either of them at the lowest priority would make that task have a response time of 6 and so be unschedulable. Thus, there is only one viable priority ordering: τ_A, τ_B, τ_C.

<table>
<thead>
<tr>
<th>Task</th>
<th>Execution time</th>
<th>Period</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_A</td>
<td>3</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>τ_B</td>
<td>3</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>τ_C</td>
<td>8</td>
<td>25</td>
<td>12</td>
</tr>
</tbody>
</table>

With pre-emptive scheduling (gFPSS), if tasks τ_A and τ_B are released simultaneously, then task τ_A misses its deadline, as shown in Figure 2.

Similarly, with non-pre-emptive scheduling (gFPNS), if task τ_C is released just before tasks τ_A and τ_B, as shown in Figure 3, then task τ_B misses its deadline.

However, if we use deferred pre-emption and let $F_A=1$, $F_B=1$, and $F_C=3$, then using the RTA test, we obtain $R^U_{\text{UB}} = 3, R^U_{\text{UB}} = 5$, and $R^U_{\text{UB}} = 11$; proving that the taskset is schedulable. Here, the FNR of task τ_C is enough to ensure that there can be no second pre-emption by task τ_A, yet task τ_C only blocks tasks τ_A and τ_B for a maximum of 2 time units enabling their deadlines to be met. This example illustrates the strict dominance, rather than equivalence, of gFPDS over gFPSS and gFPNS.

Note, this example has been deliberately constructed with Deadline Monotonic Priority Ordering (DMPO) as the only feasible priority ordering; however, it is well known that DMPO is not optimal for global fixed priority scheduling, and is not even a good heuristic [22], [23].

V. OPTIMAL gFPDS

In this section, we build upon the ideas and techniques developed in [27] which provide optimal algorithms for fixed priority scheduling with deferred pre-emption for uniprocessor systems. We pose the same two problems relating to the assignment of FNR lengths and priorities for the multiprocessor case, i.e. under gFPDS. We show that the first of these problems can be solved in a similar way to the uniprocessor case, and via a counterexample, that the second problem cannot.

Problem 1: Final Non-pre-emptive Region length Problem (FNR Problem). For a given taskset complying with the task
model described in Section III, and a given priority ordering X, find a length for the FNR of each task such that the taskset is deemed schedulable under gFPDS by schedulability test S.

Definition 1: An algorithm A is said to be optimal for the FNR Problem with respect to a schedulability test S, if there are no taskset / priority assignment combinations that are deemed schedulable under gFPDS by test S with some set of FNR lengths, that are not also deemed schedulable by the test using the set of FNR lengths determined by algorithm A.

Problem 2: Final Non-pre-emptive Region Length and Priority Assignment Problem (FNR-PA Problem). For a given taskset complying with the task model described in Section III, find both (i) a priority assignment, and (ii) a set of FNR lengths that makes the taskset schedulable under gFPDS according to schedulability test S.

Definition 2: An algorithm B is said to be optimal for the FNR-PA Problem with respect to a schedulability test S, if there are no tasksets compliant with the task model that are deemed schedulable under gFPDS by test S with some set of FNR lengths, that are not also deemed schedulable using the priority assignment and set of FNR lengths determined by algorithm B.

A. Sustainability with respect to FNR lengths

In order to be able to solve Problems 1 and 2 efficiently, we need to use schedulability tests that are sustainable [6], [20] with respect to changes in the length of a task’s FNR. With a sustainable test, we can use binary search to help solve the problems. In contrast with an unsustainable test, we would potentially need to check every possible value for the FNR length of each task which is not practical.

Theorem 1: The DA and DA-LC schedulability tests for task τ_k under gFPDS are sustainable with respect to increases in the length F_k of the task’s FNR.

Proof: To prove the theorem, it suffices to show that if (4) or (9) hold for some pair of values $\left(C_k, D_k\right)$, then they continue to hold for the pair of values $\left(C_k - z, D_k - z\right)$ where z is a positive integer ($z \leq C_k^*$). Substituting $C_k - z$ for C_k and $D_k - z$ for D_k in (4) and (9), we need to show that the summation terms do not increase. By inspecting the component equations (1) – (3), and (5) – (8), we observe that the interference within a window of length L is monotonically non-decreasing with respect to the length of the window (i.e. it is no larger for an interval of length $D_k - z$ than it is for an interval of length D_k). Further, we must also consider the dependence of component equations (1) and (5) on C. C appears in the expression $L - C + 1$, which is unchanged by subtracting z from both L and C. The summation terms in (4) and (9) are therefore monotonically non-increasing with respect to increasing values of z.

Corollary 1: The schedulability of a task is, according to the DA and DA-LC tests, a monotonically non-decreasing function of the length of its FNR.

Theorem 2: (Negative result) The RTA and RTA-LC schedulability tests for task τ_k under gFPDS are not sustainable [6], [20] with respect to increases in the length F_k of the task’s FNR.

Proof: Increasing the FNR length F_k of task τ_k increases the execution time of its associated virtual task τ_{kv} (as $C_{kv} = F_k - 1$). With the RTA and RTA-LC tests this can result in a large increase in the upper bound response time R_u^{CB} of some higher priority task τ_i due to the inclusion of interference from an extra job of a yet higher priority task, as well as the extra interference from τ_{kv} (i.e. blocking). The increase in R_u^{CB} can cause an extra job of task τ_i to interfere in the busy window of task τ_k, making it unschedulable.

This scenario occurs with the taskset described in Table II below, assuming two processors. In this case, if task τ_D is fully pre-emptive, then the computed upper bound response times are 10, 5, 10 and 23 for tasks τ_A, τ_B, τ_C, and τ_D, respectively; however, increasing the FNR length of task τ_D, so that $F_D = 2$, results in upper bound response times of 10, 15, and 27, which would make task τ_D unschedulable if it had a deadline of 25. This increase in the upper bound response time of task τ_D is due to the large increase in the upper bound response time of task τ_C from 10 to 15, and the subsequent inclusion of an extra job of task τ_C in the busy window of task τ_D. It is easy to construct examples where decreasing the FNR length of a task τ_k can result in the task becoming unschedulable due to additional pre-emptions from higher priority tasks.

<table>
<thead>
<tr>
<th>Task</th>
<th>Execution time</th>
<th>Period</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_A</td>
<td>10</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>τ_B</td>
<td>5</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>τ_C</td>
<td>5</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>τ_D</td>
<td>7</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

B. Solving the FNR and FNR-PA Problems

Due to the fact that the RTA and RTA-LC tests are unsustainable with respect to changes in FNR lengths, we now focus solely on the DA and DA-LC tests.

To aid in solving the FNR and FNR-PA problems, we introduce the concept of a blocking vector. For a given taskset and priority ordering X, we use $B(k)$ to represent the blocking vector at priority k, where the blocking vector relates to the set of FNR lengths of the ordered set of lower priority tasks $lp(k)$. Hence:

$$B(k) = (F_{n-1}, (F_{n-2} - 1)...(F_{k+1} - 1))$$

We define a ‘greater than or equal to’ (\geq) and similarly a ‘less than or equal to’ (\leq) relationship between blocking vectors with the meaning $B^1 \geq B^2$ if every element in B^2 is no larger than the corresponding element in B^1.

We now state two corollaries about the DA and DA-LC tests for gFPDS.

Corollary 2: Task schedulability under gFPDS according to the DA and DA-LC tests is sustainable with respect to decreases in the blocking vector. Stated otherwise, according to the DA and DA-LC tests, a task that is schedulable at priority k with a blocking vector $B(k)$ remains schedulable when the blocking vector is reduced (e.g. by reducing the FNR length of one or more lower priority tasks) and the sets $lp(k)$ and $hp(k)$ of lower and higher priority tasks remain unchanged.
Corollary 3: Using the DA and DA-LC schedulability tests for gFPDS, the minimum schedulable FNR length F_k for a task τ_k is monotonically non-increasing with respect to decreases in the blocking vector. Stated otherwise, a smaller blocking vector at priority k cannot result in a larger minimum length for the FNR of the task at that priority level.

We now investigate using the FNR and FNR-PA algorithms presented in [27] to solve Problems 1 and 2 for multiprocessor systems. The two algorithms are the same as those used in the uniprocessor case with the exception that the schedulability systems used are the DA or DA-LC tests for gFPDS and due to Theorem 1, a binary search may be used to determine the smallest FNR length commensurate with task schedulability.

The proof of Theorem 3 uses the techniques from the uniprocessor case with minor adjustments for the way in which lower priority tasks now impinge on the schedulability of higher priority tasks.

```
for each priority level $k$, lowest first {
    determine the smallest value for the final non-pre-emptive region length $F(k)$ such that the task at priority $k$ is schedulable according to test $S$.
    Set the length of the final non-pre-emptive region of the task to this value.
}
```

Algorithm 2: FNR Algorithm

Theorem 3: The FNR algorithm (Algorithm 2) is optimal for the FNR problem (see Problem 1 and Definition 1).

Proof: Assume (for contradiction) that there exists a taskset \mathcal{T} and priority ordering X that is schedulable according to schedulability test S, with some set of FNR lengths F'_k, for $k = 1$ to n, and that the FNR algorithm fails to determine a set of FNR lengths F_k for $k = 1$ to n, that results in the taskset being schedulable according to the test.

Let $B'(k)$ be the blocking vector at priority k with the schedulable set of FNR lengths, and $B(k)$ be the blocking vector at priority k with the set of FNR lengths computed by the FNR Algorithm. At each priority level, we will show that $F'_k \leq F_k$ and hence that $B(k) \leq B'(k)$ thus proving via Corollary 2 sustainability of task schedulability with respect to blocking vectors that the taskset is schedulable according to test S, with priority ordering X and the FNR lengths determined by the FNR Algorithm, thus contradicting the original assumption. The proof is by induction over each priority level k from n to 1.

Initial step: At the lowest priority level n, trivially we have $B(n) = B'(n) = \emptyset$. At priority n, the FNR Algorithm (Algorithm 2) computes, according to test S, the minimum schedulable FNR length F_n for task τ_n hence $F'_n \leq F_n$.

Inductive step: We assume that at priority k, $B(k) \leq B'(k)$ and $F'_k \leq F'_k$, hence $B(k-1) \leq B'(k-1)$ and thus via Corollary 3, $F_{k-1}' \leq F_{k-1}$.

Iterating over all of the priority levels shows that for all k from n to 1, $B(k) \leq B'(k)$ and so by Corollary 2, the taskset is schedulable, according to test S, with the set of FNR lengths F_k obtained by Algorithm 2.

Corollary 4: (Follows from the proof of Theorem 3.) For a given taskset and fixed priority ordering X, that is schedulable according to the DA or DA-LC schedulability test under gFPDS with some set of FNR lengths, Algorithm 2 minimises the FNR length of every task, and hence minimises the blocking vector at every priority level.

```
for each priority level $k$, lowest first {
    for each unassigned task $\tau$ {
        determine the smallest value for the final non-pre-emptive region length $F(k)$ such that task $\tau$ is schedulable at priority $k$, according to test $S$ assuming all other unassigned tasks have higher priorities.
        Record as task $Z$ the unassigned task with the minimum value for the length of its final non-pre-emptive region $F(k)$.
    }
    if no tasks are schedulable at priority $k$ {
        return unschedulable
    } else {
        assign priority $k$ to task $Z$ and use the value of $F(k)$ as the length of its final non-pre-emptive region.
    }
}
return schedulable
```

Algorithm 3: FNR-PA Algorithm

In contrast to the FNR problem, the FNR-PA problem requires a schedulable priority ordering to be established as part of the solution to the problem. Algorithm 3 which provides a solution to the FNR-PA problem in the uniprocessor case is based on Audsley’s Optimal Priority Assignment (OPA) algorithm and uses a greedy bottom up approach. Hence it is in any case only compatible with the DA and DA-LC tests, and not the RTA and RTA-LC tests.

Theorem 4: (Negative result) The Final Non-pre-emptive Region Priority Assignment (FNR-PA) algorithm (Algorithm 3) is not optimal for the FNR-PA problem (see Problem 2 and Definition 2) in the multiprocessor case i.e. gFPDS using the DA or DA-LC schedulability tests.

Proof: Proof is via a counterexample where the FNR-PA algorithm fails to find a schedulable combination of priority assignment and FNR lengths, when such a combination exists. The example is for the DA test, similar tasksets can be constructed for the DA-LC test. We assume a system with two processors and the taskset given in TABLE III. With four tasks, there are 24 distinct priority orderings $(n! = 24)$; however, in this case only two are schedulable given appropriate choices of FNR lengths. Attempting to build a schedulable priority ordering from the lowest priority upwards, we find that neither task τ_A nor task τ_B is schedulable at the lowest priority (priority 4) even if they are made completely non-pre-emptable.

Case 1: If we assign task τ_A priority 4, then it requires a minimum FNR length of $F_A = 42$ to be schedulable. Then at priority level 3, we find that tasks τ_A and τ_B are again not schedulable, but task τ_A is scheduled with a minimum FNR length of $F_C = 38$. However, now due to the large combined blocking effect modelled as the virtual tasks τ_D,
and τ_C (i.e. 41 + 37 = 78) neither task τ_A nor τ_B is schedulable at priority 2 and hence there is no schedulable priority assignment with task τ_D at the lowest priority.

Case 2: If we assign task τ_C the lowest priority, then it requires a minimum FNR length of $F_C = 58$ to be schedulable. Again we find that tasks τ_A and τ_B are not schedulable at priority 3. Now assigning task τ_D to priority 3, we find that it is schedulable with $F_D = 1$ (i.e. fully pre-emptive). Now, the blocking effect on whichever task, τ_A or τ_B, we choose for priority 2 is only 57, and hence either task is schedulable at that priority with the other at priority 1. In both cases we have $F_A = 1$ and $F_B = 1$.

The behaviour of the FNR-PA algorithm corresponds to Case 1 and so using the DA test, it would fail to find a schedulable combination of priority ordering and FNR lengths for this taskset; however, such a schedulable combination exists as shown in Case 2.

<table>
<thead>
<tr>
<th>Task</th>
<th>Execution time</th>
<th>Period</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_A</td>
<td>36</td>
<td>207</td>
<td>110</td>
</tr>
<tr>
<td>τ_B</td>
<td>86</td>
<td>178</td>
<td>141</td>
</tr>
<tr>
<td>τ_C</td>
<td>93</td>
<td>525</td>
<td>195</td>
</tr>
<tr>
<td>τ_D</td>
<td>62</td>
<td>767</td>
<td>195</td>
</tr>
</tbody>
</table>

We note that the optimality of the FNR-PA algorithm breaks down in the multiprocessor case, because the blocking effect depends on a summation over the FNR lengths of lower priority tasks rather than a maximum, as in the single processor case. Minimising the FNR length at a given priority level does not necessarily minimise this summation, as shown in the above counterexample.

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of gFPDS with respect to gFPPS and gFPNS. We compared the scheduling algorithms under the following priority assignment policies: (i) Deadline Monotonic (DMPO), (ii) DkC [22], [23], and (iii) Audsley’s Optimal Priority Assignment (OPA) algorithm for gFPPS and gFPNS. In the case of gFPDS, we used the FNR algorithm to obtain optimum final non-pre-emptive region lengths in conjunction with the heuristic priority assignment policies, and the FNR-PA Algorithm to provide both priority and FNR length assignment. We also made comparisons with the dynamic scheduling algorithm FPZL [24], [25] which has some similarities in its behaviour to gFPDS. The lines on the graphs are labelled according to the scheduling algorithm and priority assignment policy used, e.g. gFPDS (DkC). In all cases, we used the appropriate DA-LC test.

A. Parameter generation

The task parameters used in our experiments were randomly generated as follows:

- First, an unbiased set of n utilisation values $U_i \leq 1$, were generated with a total utilisation of U, (see [28] and [23] for how to generate an unbiased set of such values).
- Task periods were generated according to a log-uniform distribution (i.e. such that $\ln(T)$ has a uniform distribution). Here the ratio between the maximum and the minimum permissible task period was given by 10^r. By default, this range was 100, i.e. $r = 2$.

- Task execution times were set based on the task utilisation and period selected: $C_i = U_i T_i$.
- Task deadlines were implicit: $D_i = T_i$.
- Taskset cardinality was z times the number of processors. By default, $z = 5$.

We examined systems with $m = 2$, 4, and 8 processors. In each experiment, the taskset utilisation was varied from 0.025m to 0.975m in steps of 0.025m. For each utilisation value, 1000 tasksets were generated and their schedulability determined according to the various scheduling algorithms. Note due to the large number of lines on the graphs, the figures are best viewed online in colour.

B. Success ratio

In our first set of experiments, we compared the performance of the scheduling algorithms via the success ratio; the proportion of randomly generated tasksets that are deemed schedulable in each case.

![Figure 4: Success ratio for $m = 8, n = 40$, implicit deadlines](image-url)
C. Weighted schedulability

In our second set of experiments we compared how the overall performance of each of the scheduling algorithms varies with respect to changes in a specific parameter via weighted schedulability [10].

The first parameter examined was taskset cardinality. Figure 5 shows how the weighted schedulability varies with increasing taskset size (from 2 to 20 tasks per processor, i.e. from 16 to 160 tasks on an 8 processor system) for each of the algorithms. We observe that increasing taskset cardinality results in tasks that have smaller utilisation on average and are therefore easier to schedule in the multiprocessor case, as noted in [22], [23]. As the ratio of tasks to processors increases, the advantage conferred by deferred pre-emption (and the dynamic FPZL algorithm) gradually decreases. This is because the individual utilisation of each task is becoming quite small reducing the benefits that can be obtained over fully pre-emptive scheduling.

The second parameter we examined was the range of task periods. Figure 6 shows how the weighted schedulability varies with the log-range \(r \) of task periods given by the ratio \(10^r \) between the maximum and the minimum permissible task period. Here, the value of \(r \) was varied from \(r = 0.5 \) (\(10^{0.5} = 3.16 \)) to \(r = 4 \) (\(10^4 = 10,000 \)). Figure 6 shows that gFPDS shows the largest improvement over gFPPS when the range of task periods is relatively small. This is because with all task periods and deadlines of a similar duration, all of the tasks can typically tolerate significant blocking and so there is scope to choose FNR lengths that improve schedulability.

As expected, both gFPPS and gFPDS show improved performance as the range of task periods increases, while gFPNS shows rapidly declining performance. This is because tasks with relatively long periods tend to have large execution times which may be longer than the deadlines of other tasks. Once there are more of these tasks than processors, non-pre-emptive scheduling becomes infeasible. (It is interesting to note that for very small ranges of task periods, gFPNS, and hence also gFPDS can be more effective than FPZL).

VII. SUMMARY AND CONCLUSIONS

Global fixed priority scheduling with deferred pre-emption (gFPDS), dominates both global fixed priority fully pre-emptive (gFPPS) and global fixed priority non-pre-emptive scheduling (gFPNS). In this paper we provided analysis for a simple model of gFPDS on homogeneous multiprocessors, where each task has a single non-pre-emptive region at the end of its execution. We showed that an appropriate choice of the length of this region can enhance schedulability.

The main contributions of this paper are as follows:
- Introduction of sufficient schedulability tests for gFPDS.
- Proof that the FNR algorithm [27] is compatible with the DA and DA-LC tests for gFPDS, and can be used to obtain the optimal final non-pre-emptive region lengths for a given priority ordering.
- Proof via a counterexample, that the joint problem of priority and FNR length assignment cannot be solved optimally via a greedy, bottom-up approach using the FNR-PA Algorithm from [27].
- An experimental evaluation of the performance benefits of gFPDS over gFPPS and gFPNS. We note that the additional comparisons with FPZL could be interpreted as suggesting that the dynamic algorithm FPZL is preferable; however, we have shown that much of the improvement FPZL obtains over gFPPS can be achieved by the simple adaptation of Final Non-pre-emptive regions (gFPDS). This approach fits better with the current fixed priority scheduling approaches used for example in the automotive electronics industry, and raises fewer issues for resource locking as under gFPDS, the priority of a task can only increase when it is actually running.

Building on this work, there are two key areas which we aim to explore. Firstly, in single processor systems, tasks often execute as a series of non-pre-emptive regions with pre-emption points between them [16]. However, with the normal fixed priority scheduling policy, such an arrangement is ineffective in the multiprocessor case. This is illustrated in
Figure 1, which shows that there is the potential for every non-pre-emptive region of every lower priority task to interfere with the execution of a higher priority task, making the approach unworkable. To address this problem, we intended to investigate simple modifications to the fixed priority scheduling policy that reduce such blocking effects.

Secondly, our simple model assumes that task execution times are independent of pre-emption and pre-emption and migration costs are negligible; however, in many real-time systems each pre-emption and migration incurs a significant cost, particularly in systems using cache. For large tasksets, allowing arbitrary pre-emption can result in lower priority tasks being pre-empted a large number of times, significantly increasing cache-related pre-emption delays (CRPD) to the detriment of schedulability [1], [2]. The integration of CRPD and schedulability analysis is a key area which we intend to explore further.

ACKNOWLEDGEMENTS

This work was partially funded by the UK EPSRC Tempo project (EP/G055548/1), the UK EPSRC MCC project (EP/K011626/1), and by Portuguese National Funds through FCT (Portuguese Foundation for Science and Technology), and by ERDF (European Regional Development Fund) through COMPETE (Operational Programme ‘Thematic Factors of Competitiveness’), within the RePoMuC project, (FCOMP-01-0124-FEDER-015050).

REFERENCES

APPENDIX

We note that while our schedulability tests for gFPDS dominate the equivalent tests for gFPNS, they do not dominate the equivalent tests for gFPNS which include blocking from a most \(m \) lower priority tasks [30]. We can however apply specific schedulability tests for gFPDS for the special case of a task \(\tau_k \) which is fully non-pre-emptive, as set out below.

A. Special case of a fully non-pre-emptive task in a gFPDS system

In the case of gFPDS scheduling where a task \(\tau_k \) is fully non-pre-emptive, i.e. when \(F_k = C_k \), \(D_k = D_k - (C_k - 1) \), and \(C_k^* = 1 \), then more precise analysis is possible. This analysis is based on the approach of Guan et al. [30] for gFPNS (where all tasks are fully non-pre-emptive).

For a fully non-pre-emptive task \(\tau_k \) we note that:

(i) A lower priority task \(\tau_j \) can only delay the execution of task \(\tau_k \) if it begins to execute its final non-pre-emptive region prior to the release of task \(\tau_k \). Hence the maximum interference from a lower priority task \(\tau_j \) is zero if it does not have a carry-in job\(^2\) and \(F_j - 1 \) if it has a carry-in job. So, for the virtual task \(\tau_{jn} \) representing \(\tau_j \) we have \(I_{j}^{p}(L, C) = I_{j}^{p}(L, C) = F_j - 1 \), and \(I_{j}^{NC}(L, C) = 0 \).

(ii) With \(m \) processors, at most \(m \) lower priority tasks can be in non-pre-emptive regions when task \(\tau_k \) is released (see Lemma 5.2 of [30]). So at most \(m \) virtual tasks can have carry-in jobs.

(iii) In the worst-case scenario, at most \(m - 1 \) higher priority tasks can have carry-in jobs (Theorem 1 of [23]).

DA test: for a fully non-pre-emptive task \(\tau_k \) under gFPDS:

\[
D_k^* \geq C_k^* + \frac{1}{m} \left(\sum_{i \in \{hp(k)\}} I_{i}^{p}(D_k^*, C_k^*) + \sum_{i \in \{MBR(k)\}} (F_j - 1) \right) \tag{A.1}
\]

where \(MBR(k) \) is the subset of at most \(m \) tasks with the largest values of \(F_j - 1 \), from the set of tasks \(lpv(k) \).

The DA test for gFPDS takes account of points (i), and (ii) above, but not point (iii).

The DA-LC test below combines points (ii) and (iii).

DA-LC test: for a fully non-pre-emptive task \(\tau_k \) under gFPDS:

\[
D_k^* \geq C_k^* + \frac{1}{m} \left(\sum_{i \in \{hp(k)\}} I_{i}^{NC}(D_k^*, C_k^*) + \sum_{i \in \{MBR(k)\}} I_{i}^{DIFF-D}(D_k^*, C_k^*) \right) \tag{A.2}
\]

where \(MBR(k) \) is the subset of the \(m \) tasks with the largest values of \(I_{i}^{DIFF-D}(D_k^*, C_k^*) \) from the set of tasks \(hpv(k) \cup lpv(k) \) provided at least one of those tasks is from \(lpv(k) \), otherwise \(MDB(k) \) equates to the subset of at most \(m - 1 \) tasks with the largest values of \(I_{i}^{DIFF-R}(D_k^*, C_k^*) \) given by (8), from the set of tasks \(hpv(k) \), and the single virtual task from \(lpv(k) \) that has the largest value of \(I_{i}^{DIFF-D}(D_k^*, C_k^*) \).

RTA test: The upper bound response time \(R_k^S \) for the start (first unit of execution) of a fully non-pre-emptive task \(\tau_k \) under gFPDS, may be computed via the fixed point iteration given by (A.3) within Algorithm 1. The task is schedulable if \(R_k^S \leq D_k \), where \(D_k \) is the task’s effective deadline \(D_k = D_k - (C_k - 1) \).

\[
R_k^S \leftarrow C_k^* + \left[\frac{1}{m} \sum_{i \in \{hpv(k)\}} I_{i}^{NC}(R_k^S, C_k^*) + \sum_{i \in \{MBR(k)\}} (F_j - 1) \right] \tag{A.3}
\]

If the task is schedulable, then an upper bound on its worst-case response time is given by \(R_k^{UB} = R_k^S + (C_k - 1) \).

RTA-LC test: The upper bound response time \(R_k^S \) for the start (first unit of execution) of a fully non-pre-emptive task \(\tau_k \) under gFPDS, may be computed via the fixed point iteration given by (A.4) within Algorithm 1. The task is schedulable if \(R_k^S \leq D_k \), where \(D_k \) is the task’s effective deadline \(D_k = D_k - (C_k - 1) \).

\[
R_k^S \leftarrow C_k^* + \left[\frac{1}{m} \sum_{i \in \{hpv(k)\}} I_{i}^{NC}(R_k^S, C_k^*) + \sum_{i \in \{MBR(k)\}} I_{i}^{DIFF-R}(R_k^S, C_k^*) \right] \tag{A.4}
\]

where \(MBR(k) \) is the subset of the \(m \) tasks with the largest values of \(I_{i}^{DIFF-R}(R_k^S, C_k^*) \) from the set of tasks \(hpv(k) \cup lpv(k) \) provided at least one of those tasks is from \(lpv(k) \), otherwise \(MDB(k) \) equates to the subset of at most \(m - 1 \) tasks with the largest values of \(I_{i}^{DIFF-R}(R_k^S, C_k^*) \) given by (14), from the set of tasks \(hpv(k) \), and the single virtual task from \(lpv(k) \) that has the largest value of \(I_{i}^{DIFF-R}(R_k^S, C_k^*) \). If the task is schedulable, then an upper bound on its worst-case response time is given by \(R_k^{UB} = R_k^S + (C_k - 1) \).

We note that the RTA and RTA-LC tests given by (A.3) and (A.4) do not depend on the upper bound response times of lower priority tasks, and so the iteration of Algorithm 1 is unnecessary if all tasks are fully non-pre-emptive. In that case, upper bound response times may be evaluated highest priority first.

We observe that the schedulability tests given in this section for the special case of a fully non-pre-emptive task dominate the equivalent tests for the general case of deferred pre-emption with \(F_k = C_k \) given in section IV. This means that the DA and DA-LC tests retain their monotonic behaviour with respect to increasing values of \(F_k \) if in the special case of \(F_k = C_k \) we use the specific tests given by (A.1) and (A.2) instead of the more general ones given by (4) and (9). This was done in our experimental evaluation.