Response Time Analysis for Mixed Criticality Systems with Arbitrary Deadlines

Alan Burns¹ and Robert Davis¹,²

¹Real-Time Systems Research Group, University of York
²Inria, Paris, France
Mixed Criticality Systems

- MCS
 - Applications of different criticality levels on the same HW platform
 - E.g. Safety Critical, Mission Critical, Non-critical
 - Driven by SWaP and cost requirements

- Examples
 - Aerospace: e.g. UAVs
 - Flight Control Systems v. Surveillance
 - Automotive:
 - Electronic Power Assisted Steering (EPAS) vs. Cruise Control

- This research considers: Dual-Criticality Systems
 - Applications with HI- and LO-criticality
Mixed Criticality Systems

- **Key requirements**
 - *Separation* – must ensure LO-criticality applications cannot impinge on those of HI-criticality
 - *Sharing* – want to allow LO- and HI-criticality applications to use the same resources for efficiency

- **Real-Time behaviour**
 - Concept of a criticality mode (LO or HI)
 - System starts in LO-criticality mode
 - LO- and HI-criticality tasks must meet their deadlines in LO-criticality mode
 - Only HI-criticality tasks need meet their deadlines in HI-criticality mode

- **Initial Research (Vestal 2007)**
 - Idea of different LO- and HI-criticality WCET estimates for the same code
 - Certification authority requires pessimistic approach to $C(HI)$
 - System designers take a more realistic approach to $C(LO)$
System Model

- Uniprocessor
- Scheduling based on fixed priorities
- Sporadic task sets
 - T_i – Period or minimum inter-arrival time (sporadic behaviour)
 - D_i – Relative deadline
 - L_i – Criticality level (LO or HI)
 - HI-criticality tasks have both $C_i(HI)$ and $C_i(LO)$ worst-case execution time estimates with $C_i(HI) > C_i(LO)$
 - LO-criticality tasks need only have $C_i(LO)$
Adaptive Mixed Criticality (AMC)

AMC scheduling scheme

- If a HI-criticality task executes for its $C(LO)$ without signalling completion then no further jobs of LO-criticality tasks are started\(^1\) and the system enters HI-criticality mode
- This frees up processor bandwidth to ensure that HI-criticality tasks can meet their deadlines in HI-criticality mode

Analysis of AMC

1. Check all tasks are schedulable in LO-criticality mode
2. Check HI-criticality tasks are schedulable in HI-criticality mode
3. Check HI-criticality tasks are schedulable over the mode change

[Note analysis for the mode transition usually also covers HI-criticality mode]

\(^1\)Any partially executed job of a LO-criticality task may complete
AMC Analysis methods

- AMC-rtb
 - Uses a *response time bound* (rtb) to limit the time interval during a busy period in which LO-criticality jobs are considered to execute

- AMC-max
 - More precise analysis which considers a number of different times at which a mode change transition could occur and takes the *max* response time over all of them

- Scope
 - Original analysis is limited to constrained deadline tasks

- Contribution of this work
 - Extend AMC-rtb and AMC-max analysis to tasks with arbitrary deadlines

- Motivation
 - If arbitrary deadlines are possible without breaking time constraints and can be supported, for example by buffering inputs, then schedulability can be improved
Recap: Analysis of FPPS with arbitrary deadlines

Approach

- With arbitrary deadlines, multiple jobs of a task τ_i can be active at the same time.
- Need to compute the response time for each job q of task τ_i in the priority level-i busy period starting from synchronous release.
- Completion time of job q from the start of the busy period is given by:

$$ r_i(q) = (q + 1) C_i + \sum_{j \in h_p(i)}\left\lfloor \frac{r_i(q)}{T_j} \right\rfloor C_j $$

- Examine jobs $q = 0...p$ where p is the first job with completion before the next release: $r_i(p) \leq (p+1)T_i$.
- Response time of each job is given by:

$$ R_i(q) = r_i(q) - qT_i $$

- Worst case response time is therefore:

$$ R_i = \max_{q(0 \leq q \leq p)} \{ R_i(q) \} $$

Recap: AMC-rtb analysis for constrained deadlines

- **LO-criticality mode**
 - All tasks must be schedulable
 \[R_i(LO) = C_i(LO) + \sum_{\tau_j \in hp(i)} \left\lfloor \frac{R_i(LO)}{T_j} \right\rfloor C_j(LO) \]

- **HI-criticality mode**
 - Only HI-criticality tasks need be schedulable
 - Consider behaviour in HI-criticality mode and across the mode change
 \[R_i(HI) = C_i(HI) + \sum_{\tau_j \in hpH(i)} \left\lfloor \frac{R_i(HI)}{T_j} \right\rfloor C_j(HI) + \sum_{\tau_k \in hpL(i)} \left\lfloor \frac{R_i(LO)}{T_k} \right\rfloor C_k(LO) \]

Interference from higher priority LO-criticality tasks cannot be released beyond the completion time in LO-criticality mode

AMC-rtb key simplifying idea

- **Analysis for mode change transition**
 - Considers HI-criticality tasks executing for C(HI) over all of the busy period
 - Considers LO-criticality task releases for as long as possible – which is until the job of task τ_i would have completed if the system had stayed in LO-criticality mode

<table>
<thead>
<tr>
<th>HI-criticality tasks</th>
<th>Assume releases with C(HI) execution</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO-criticality tasks</td>
<td>releases with C(LO) execution</td>
</tr>
<tr>
<td></td>
<td>No releases</td>
</tr>
</tbody>
</table>

This can be pessimistic (Return to this later: AMC-max)

Busy period cannot extend beyond LO-criticality completion time without switching to HI-criticality mode.
New: AMC-rtb-Arb analysis for arbitrary deadlines

- LO-criticality mode
 - All tasks must be schedulable
 - Compute completion time of each job q of task τ_i in the busy period
 \[r^L_i(q) = (q + 1)C_i(LO) + \sum_{j \in \text{hp}(i)} \left\lfloor \frac{r^L_i(q)}{T_j} \right\rfloor C_j(LO) \]
 - Worst-case response time of each job
 \[\forall q(0 \leq q \leq p) : \quad R_i(LO)(q) = r^L_i(q) - qT_i \]
 - Examine jobs $q = 0...p$ where p is the first job with completion before the next release, and so is the last job in the busy period
 \[r^L_i(p) \leq (p + 1)T_i \]
 - Worst-case response time of the task
 \[R_i(LO) = \max_{q(0 \leq q \leq p)} \{ R_i(LO)(q) \} \]

This is just arbitrary deadline analysis for FPPS
New: AMC-rtb-Arb analysis for arbitrary deadliness

- HI-criticality mode
 - Only HI-criticality tasks need be schedulable
 - Consider behaviour in HI-criticality mode and across the mode change

\[r_i^H(q) = (q + 1)C_i(HI) + \sum_{j \in \text{hpH}(i)} \left\lfloor \frac{r_i^H(q)}{T_j} \right\rfloor C_j(HI) + \sum_{k \in \text{hpL}(i)} \left\lfloor \frac{r_i^L(\min(q, p))}{T_k} \right\rfloor C_k(LO) \]

- Job \(v \) is the first job where completion occurs before the next release and is the last job in the busy period. (Note \(v > p \) is possible, where \(p \) is the last job in the LO-criticality busy period)

- Worst-case response time of each job

\[R_i(HI) = \max_{0 \leq q \leq v} \{ R_i(HI)(q) \} \]

- Worst-case response time of the task

Interference from higher priority LO-criticality tasks cannot be released after the LO-criticality completion time of job \(q \)

Interference from LO-criticality tasks cannot be released after completion of job \(p \)
AMC-max
key simplifying idea

- **Analysis for mode change transition**
 - Consider some interval of length s from start of busy period of length t.
 - At time s, the system switches to HI-criticality mode.
 - Compute the maximum response time considering all relevant values of s.
 - Since interference from LO-criticality tasks only increases at values of s that are multiples of their periods, those are the relevant values to consider (Interference from HI-criticality tasks decreases with s).

- AMC-max dominates AMC-rtb due to its less pessimistic treatment of interference from HI-criticality tasks at the beginning of the busy period.
Recap: AMC-max analysis for constrained deadlines

- LO-criticality mode
 - Same as AMC-rtb

- HI-criticality mode
 - Only HI-criticality tasks need be schedulable
 - Consider behaviour in HI-criticality mode and across the mode change
 - Compute response time with a mode change at time s
 \[R_i^s(HI) = C_i(HI) + I_L(s) + I_H(s) \]
 - Take maximum over relevant values of s
 \[R_i^*(HI) = \max_{s} (R_i^s(HI)) \]
Recap: AMC-max analysis for constrained deadlines

- Interference from LO-criticality tasks
 - Prevented from being released after the mode change at time s
 $$I_L(s) = \sum_{j \in \text{hpL}(i)} \left(\left\lfloor \frac{s}{T_j} \right\rfloor + 1 \right) C_j(LO)$$

- Interference from HI-criticality tasks
 - Upper bound on the number of jobs in the busy period that can execute after s
 $$\left\lfloor \frac{t - s - (T_k - D_k)}{T_k} \right\rfloor + 1$$
 - The above cannot be more than the number of jobs released in t, so
 $$M(k, s, t) = \min \left\{ \left\lfloor \frac{t - s - (T_k - D_k)}{T_k} \right\rfloor + 1, \left\lfloor \frac{t}{T_k} \right\rfloor \right\}$$
 - Hence
 $$I_H(s) = \sum_{k \in \text{hpH}(i)} \left\{ M(k, s, t) C_k(HI) + \left(\left\lfloor \frac{t}{T_k} \right\rfloor - M(k, s, t) \right) C_k(LO) \right\}$$

[Note: $M(k,s,t)$ cannot be less than zero]
Recap: AMC-max analysis for constrained deadlines

- Putting it all together

\[R_i^s(HI) = C_i(HI) + \sum_{j \in h_{pL}(i)} \left(\left\lfloor \frac{s}{T_j} \right\rfloor + 1 \right) C_j(LO) + \sum_{k \in h_{pH}(i)} \left\{ M(k, s, R_i^s(HI)) C_k(HI) + \left(\left\lfloor \frac{R_i^s(HI)}{T_k} \right\rfloor - M(k, s, R_i^s(HI)) \right) C_k(LO) \right\} \]

- Take the maximum overall all values of \(s \) equating to integer multiples of LO-criticality task periods

\[R_i^*(HI) = \max_{s} (R_i^s(HI)) \]

New: AMC-max analysis for arbitrary deadlines

- HI-criticality mode
 - Compute completion time of each job q of task τ_i
 \[r_i^s(q) = XC_i(HI) + YC_i(LO) + I_L(s) + I_H(s) \]
 - where
 \[X + Y = q + 1 \]
 - Upper bound on the number of jobs of an interfering task that can execute after s is the same equation as with constrained deadlines
 \[\left\lfloor \frac{t - s - (T_k - D_k)}{T_k} \right\rfloor + 1 \]
- Upper bound of the number of jobs of task τ_i that can execute after s is given by (note $q + 1$ jobs in all)
 \[X = \min \left(\left\lfloor \frac{t - s + (D_i - T_i)}{T_i} \right\rfloor + 1, q + 1 \right) \]

Effectively jittered by D_k which can now be $> T_k$.

New: AMC-max analysis for arbitrary deadlines

- Putting it all together

\[r^s_i(q) = XC_i(HI) + YC_i(LO) + I_L(s) + I_H(s) \]

\[X = \min \left(\left\lceil \frac{t-s+(D_i-T_i)}{T_i} \right\rceil +1, q+1 \right) \]

\[I_L(s) = \sum_{j \in \text{hpL}(i)} \left(\left\lfloor \frac{s}{T_j} \right\rfloor +1 \right) C_j(LO) \]

\[I_H(s) = \sum_{k \in \text{hpH}(i)} \left\{ M(k,s,t) C_k(HI) + \left(\left\lfloor \frac{t}{T_k} \right\rfloor - M(k,s,t) \right) C_k(LO) \right\} \]

- Iterate with \(t = r^s_i(q) \) until convergence or deadline for job \(q \) exceeded
- Gives the worst-case completion time of job \(q \) given a transition from LO-criticality to HI-criticality mode at time \(s \)
Putting it all together (continued)

- Compute response times for all values of s corresponding to multiples of LO-criticality task periods up to completion of job q
- Determine worst-case completion time of job q

 $$r_i^*(q) = \max_{s} (r_i^s(q))$$

- Determine worst-case response time for each job q up to job p which is the first job where completion occurs before the next release

 $$\forall q (0 \leq q \leq p) : \quad R_i(HI)(q) = r_i^*(q) - qT_i$$

- Finally we have the worst-case response time for the task

 $$R_i(HI) = \max_{q (0 \leq q \leq p)} \{ R_i(HI)(q) \}$$
Recap: Optimal Priority Assignment (OPA) Audsley’s algorithm

for each priority level i, lowest first {
 for each unassigned task τ {
 if τ is schedulable at priority i
 assuming that all unassigned tasks are at higher priorities {
 assign task τ to priority level i
 break (exit for loop)
 }
 }
 if no tasks are schedulable at priority i {
 return unschedulable
 }
} return schedulable

$n(n+1)/2$ schedulability tests rather than $n!$
by exhaustively exploring all possible orderings

OPA algorithm applicability

OPA algorithm provides optimal priority assignment with respect to any schedulability test S for fixed priority scheduling provided that three conditions are met...

Condition 1: Schedulability of a task may, according to the test, be dependent on the set of higher priority tasks, but not on their relative priority ordering.

Condition 2: Schedulability of a task may, according to the test, be dependent on the set of lower priority tasks, but not on their relative priority ordering.

Condition 3: When the priorities of any two tasks of adjacent priority are swapped, the task being assigned the higher priority cannot become unschedulable according to the test, if it was previously deemed schedulable at the lower priority.

Tests meeting these conditions are referred to as **OPA-compatible**.

AMC-rtb-Arb and AMC-max-Arb schedulability tests

By inspection of the schedulability tests we can see that all three necessary and sufficient **Conditions** hold so both tests are **OPA-compatible**

Hence we can use Audsley’s algorithm for priority assignment ... and do so in all our experiments
Evaluation

- Compared the following schemes:
 - **UB-H&L-Arb**: A necessary test which checks if all of the tasks are schedulable in LO-criticality mode and if the HI-criticality tasks are schedulable in HI-criticality mode (with no LO-criticality tasks executing). It ignores the mode switch.
 - **AMC-max-Arb**: New AMC-max analysis for arbitrary deadlines
 - **AMC-rtb-Arb**: New AMC-rtb analysis for arbitrary deadlines
 - **SMC-Arb**: Arbitrary deadline analysis for the SMC scheme (LO-criticality tasks continue to be released in HI-criticality mode)
 - **FPPS-Arb**: Arbitrary deadline analysis for FPPS (LO-criticality tasks also have to be schedulable in HI-criticality mode)

- Also
 - Sufficient tests artificially restricting deadlines to no more than period AMC-max (suff.), AMC-rtb (suff.), SMC (suff.), FPPS (suff.)
Evaluation

- Task set generation:
 - Number of tasks (Default $n = 20$)
 - Periods: Log-uniform distribution (Default 10ms – 100ms)
 - Deadlines: Log-uniform distribution ([0.25,4.0]Period)
 - Utilisation values U_i generated using Uunifast
 - LO-criticality execution times set via $C_i(LO) = U_i T_i$
 - HI-criticality execution times $C(HI) = CF \cdot C(LO)$ where CF is the criticality factor (Default $CF = 2.0$)
 - Probability CP of a task being HI-criticality (Default $CP = 0.5$)
Success ratio

AMC-rtb-Arb nearly as good as AMC-max-Arb.

Big gap to sufficient tests with deadline restriction.
Weighted schedulability

- Enables overall comparisons when varying a specific parameter (not just utilisation)
- Combines results from all of a set of equally spaced utilisation levels
- Weighted schedulability:
 \[
 Z_y(p) = \frac{\sum U(\tau)}{\sum U(\tau)}
 \]

 Collapses all data on a success ratio plot for a given method, into a single point on a weighted schedulability graph

Weighted schedulability is effectively a weighted version of the area under a success ratio curve biased towards scheduling higher utilisation task sets
Weighted schedulability: varying deadlines

Varying deadlines log-uniform in the range \([0.25, x]\) Period where \(x\) goes from 0.25 to >4.0

Same performance as sufficient tests for \(D \leq T\)

Improved performance as deadlines increase
Weighted schedulability: range of task periods

Varying task period range from $10^{0.5} \approx 3$ to $10^4 = 10,000$

Small range of periods
Arbitrary deadlines > period improves schedulability

Large range of periods
Schedulability already good without arbitrary deadlines
Summary and Conclusions

Summary
- AMC scheme is the most effective fixed priority pre-emptive scheduling approach for Mixed Criticality Systems

Main contributions
- Extended analysis for AMC to arbitrary deadlines: AMC-rtb-Arb and AMC-max-Arb analysis
- Surprisingly, as in the constrained deadline case, the simple AMC-rtb analysis is close to AMC-max in performance
- Evaluation shows a useful improvement in schedulability when deadlines are permitted to be arbitrary, with gains most evident when the range of task periods is relatively small e.g. factor 100 or less (as in many real systems)
Questions?
Why does AMC-rtb-Arb analysis perform so well?

- AMC-rtb-Arb analysis for the mode change

\[
\begin{align*}
r_i^H(q) &= (q + 1)C_i(\text{HI}) + \sum_{j \in \text{hpH}(i)} \left\lfloor \frac{r_i^H(q)}{T_j} \right\rfloor C_j(\text{HI}) + \\
&\quad \sum_{k \in \text{hpL}(i)} \left\lfloor \frac{r_i^L(\min(q, p))}{T_k} \right\rfloor C_k(\text{LO})
\end{align*}
\]

- Job \(p \) is the last job in the LO-criticality busy period
- Rare that we get more than one job of task \(\tau_i \) in the LO-criticality busy period
- Hence difference between AMC-max-Arb and AMC-rtb-Arb is similar to that between AMC-max and AMC-rtb

Interference from LO-criticality tasks cannot be released after completion of job \(p \)