Quantifying the Exact Sub-optimality of Non-preemptive Scheduling

Robert I. Davis1, Abhilash Thekkilakattil2, Oliver Gettings1, Radu Dobrin2, Sasikumar Punnekka2

1Real-Time Systems Research Group, University of York, UK
2Malärdalen Real-Time Research Center, Malärdalen University, Sweden.
Outline

- **Intro**
 - How do we compare scheduling algorithms
 - Speedup factors and sub-optimality
 - Previous results in this area

- **Exact Speedup factors**
 - EDF-NP v EDF-P
 - FP-NP v EDF-P
 - FP-NP v FP-P

- **Reverse case**
 - FP-P v FP-NP

- **Summary and open problems**
Comparison of scheduling algorithms

- **Empirical methods**
 - Generate lots of task sets
 - Success ratio plots
 - Weighted schedulability graphs – explore performance w.r.t. certain parameters

 Give an average case comparison

- **Theoretical methods**
 - Prove resource augmentation bounds or **speedup factors**

 Give a worst-case comparison

Focus of this talk
Speedup factors and sub-optimality

Speedup factor (of scheduling algorithm A versus scheduling algorithm B) is the factor by which the speed of the processor needs to be increased, to ensure that any task set that is feasible under algorithm B is guaranteed to be feasible under algorithm A.

Sub-optimality: where B is an optimal algorithm, then the speedup factor provides a measure of the sub-optimality of algorithm A.

[Note by *feasible*, for fixed priority scheduling, we mean there is some priority assignment with which the task set is schedulable]
Finding exact speedup factors

- **Lower bound on speedup factor**
 - Find a task set that is schedulable under algorithm B and is not schedulable under algorithm A unless the processor speed is increased by at least a factor of X

 X is a lower bound on the speedup factor

- **Upper bound on speedup factor**
 - Prove that any task set that is schedulable under algorithm B is also schedulable under algorithm A on a processor whose speed has been increased by a factor of Y

 Y is an upper bound on the speedup factor

- **Exact speedup factor**
 - When upper and lower bounds are equal
Problem scope

- **Single processor systems**
 - Execution time of all tasks scales linearly with processor clock speed

- **Sporadic task model**
 - Static set of n tasks τ_i with priorities $1..n$
 - Bounded worst-case execution time C_i
 - Sporadic/periodic arrivals: minimum inter-arrival time T_i
 - Relative deadline D_i
 - Independent execution (no resource sharing)
 - Independent arrivals (unknown a priori)

Interested in comparing pre-emptive and non-preemptive scheduling (both EDF and Fixed Priority)
Background:
Scheduling algorithms & optimality

- **Pre-emptive**
 - EDF-P is an **optimal** uniprocessor scheduling algorithm for arbitrary-deadline sporadic tasks
 - EDF-P dominates FP-P, EDF-NP, and FP-NP

- **Non-pre-emptive**
 - No work-conserving non-preemptive algorithm is optimal
 - Inserted idle time is necessary for optimality
 - EDF-NP is **optimal** in a **weak sense** that it can schedule any task set for which a feasible work-conserving non-preemptive schedule exists
 - EDF-NP dominates FP-NP
Background: Scheduling algorithm optimality

- **Fixed Priority Scheduling**
 - Priority assignment important

- **Optimal priority assignment (FP-P)**
 - Implicit-deadlines – Rate-Monotonic
 - Constrained-deadlines – Deadline Monotonic
 - Arbitrary-deadlines – Audsley’s Optimal Priority Assignment algorithm

- **Optimal priority assignment (FP-NP)**
 - All 3 cases – Audsley’s algorithm
Landscape of scheduling algorithms and speedup factors

Interested in comparing EDF and Fixed Priority (FP) scheduling preemptive and non-preemptive cases
Previous results: Speedup factors for FP-P v. EDF-P and FP-NP v. EDF-NP

As of Jan 2015

<table>
<thead>
<tr>
<th>Taskset Constraints [Priority ordering]</th>
<th>FP-P v. EDF-P Speedup factor</th>
<th>FP-NP v. EDF-NP Speedup factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implicit-deadline [RM] [OPA]</td>
<td>$1/\ln(2) \approx 1.44269$</td>
<td>$1/\Omega \approx 1.76322$</td>
</tr>
<tr>
<td>Constrained-deadline [DM] [OPA]</td>
<td>$1/\Omega \approx 1.76322$</td>
<td>$1/\Omega \approx 1.76322$</td>
</tr>
<tr>
<td>Arbitrary-deadline [OPA] [OPA]</td>
<td>$1/\Omega \approx 1.76322$</td>
<td>$1/\Omega \approx 1.76322$</td>
</tr>
</tbody>
</table>

Open Problems
Recent results: Speedup factors for FP-P v. EDF-P and FP-NP v. EDF-NP

ECRTS 2015: [van der Bruggen et al.]

<table>
<thead>
<tr>
<th>Taskset Constraints [Priority ordering]</th>
<th>FP-P v. EDF-P Speedup factor</th>
<th>FP-NP v. EDF-NP Speedup factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implicit-deadline [RM] [OPA]</td>
<td>$1/\ln(2)$ ≈ 1.44269</td>
<td>$1/\Omega$ ≈ 1.76322</td>
</tr>
<tr>
<td>Constrained-deadline [DM] [OPA]</td>
<td>$1/\Omega$ ≈ 1.76322</td>
<td>$1/\Omega$ ≈ 1.76322</td>
</tr>
<tr>
<td>Arbitrary-deadline [OPA] [OPA]</td>
<td>$1/\Omega$ ≈ 1.76322</td>
<td>$1/\Omega$ ≈ 1.76322</td>
</tr>
</tbody>
</table>
Recent results: Speedup factors for FP-P v. EDF-P and FP-NP v. EDF-NP

Real-Time Systems Sept 2015: [Davis et al.]

<table>
<thead>
<tr>
<th>Taskset Constraints [Priority ordering]</th>
<th>FP-P v. EDF-P Speedup factor</th>
<th>FP-NP v. EDF-NP Speedup factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implicit-deadline [RM] [OPA]</td>
<td>(\frac{1}{\ln(2)} \approx 1.44269)</td>
<td>(\frac{1}{\Omega} \approx 1.76322)</td>
</tr>
<tr>
<td>Constrained-deadline [DM] [OPA]</td>
<td>(\frac{1}{\Omega} \approx 1.76322)</td>
<td>(\frac{1}{\Omega} \approx 1.76322)</td>
</tr>
<tr>
<td>Arbitrary-deadline [OPA] [OPA]</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Focus of this work: Sub-optimality of non-preemptive scheduling

Sub-optimality of EDF-NP and FP-NP
Speedup factors for FP-NP v. FP-P and vice-versa since they are incomparable
Long task problem

- **Non-preemptive scheduling suffers from the long task problem**
 - If $C_{\text{max}} > D_{\text{min}}$ task set is not schedulable
 - Without accounting for this, speedup factor is arbitrarily large

- **Express speedup factor in a way that is parametric in** $C_{\text{max}} / D_{\text{min}}$
 - Simplest form that gives a finite speedup factor
Recap: Schedulability analysis

- **EDF-P Exact test (arbitrary deadlines)**

 \[\sum_{\forall \tau_i \in \Gamma} DBF_i(t) \leq t \]

 \[DBF_i(t) = \max \left(0, \left\lfloor \frac{t - D_i}{T_i} \right\rfloor + 1 \right) C_i \]

- **FP-P Exact test (constrained deadlines)**

 \[R_i^P = C_i + \sum_{\forall \tau_j \in h_p(i)} \left\lfloor \frac{R_j^P}{T_j} \right\rfloor C_j \]
Recap: Schedulability analysis

- **FP-NP Sufficient test (arbitrary deadlines)**

\[B_i + \sum_{\forall \tau_j \in hp(i)} \left[\frac{D_i}{T_j} \right] C_j \leq D_i \text{ where } B_i = \begin{cases} \max_{\forall \tau_k \in lp(i)} (C_k - \Delta) & i < n \\ 0 & i = n \end{cases} \]

- **FP-NP Sufficient test (constrained deadlines)**

\[W_i^{NP} = C_{max} + \sum_{\forall \tau_j \in hp(i)} \left[\frac{W_i^{NP} + \Delta}{T_j} \right] C_j \]

\[R_i^{NP} = W_i^{NP} + C_i \]
Exact sub-optimality of EDF-NP
Lower bound on speedup factor for non-preemptive v. preemptive

- **Proof sketch (Lemma IV.3)**
 - Find a task set that requires at least this increase in speed

- **Example task set**
 - \(\tau_1: C_1 = k - 1, D_1 = k, T_1 = k \)
 - \(\tau_2: C_2 = k^2 + 1, D_2 = \infty, T_2 = \infty \)

- Trivially schedulable with preemptive algorithms (EDF-P or FP-P)
- FP-NP and EDF-NP need to accommodate jobs of both tasks within shorter deadline

\[
S \geq (k^2 + k) / k = k + 1 \quad \text{since} \quad \frac{C_{\text{max}}}{D_{\text{min}}} = k + \frac{1}{k} \quad \text{then} \quad S \geq 1 + \frac{C_{\text{max}}}{D_{\text{min}}} - \frac{1}{k}
\]

- **Lower bound**
 \[
 S = 1 + \frac{C_{\text{max}}}{D_{\text{min}}}
 \]

Holds for implicit, constrained, or arbitrary deadlines
FP-NP or EDF-NP v. FP-P or EDF-P
Exact sub-optimality of EDF-NP

- **Upper bound**
 \[S = 1 + \frac{C_{\text{max}}}{D_{\text{min}}} \]
 - Holds for arbitrary deadlines

- **Exact sub-optimality of EDF-NP (speedup factor v. EDF-P)**
 - Upper bound and lower bound are equal (for implicit, constrained, and arbitrary deadlines)
 \[S = 1 + \frac{C_{\text{max}}}{D_{\text{min}}} \]
Exact sub-optimality of FP-NP
Upper bound on speedup factor for FP-NP v. EDF-P

- **Proof sketch (Lemma IV.1)**
 - Show speedup factor which is enough for to ensure schedulability under FP-NP using sufficient test and DMPO

- **From definition of** $DBF(t)$
 $$\sum_{\forall \tau_j \in \Gamma} DBF_j(2D_i) \geq \sum_{\forall \tau_j : D_j \leq D_i} \left[\frac{D_i}{T_j} \right] C_j \geq \sum_{\forall \tau_j \in \text{hep}(i)} \left[\frac{D_i}{T_j} \right] C_j$$

- **FP-NP Sufficient test (arbitrary deadlines)**
 $$C_{\max} + \sum_{\forall \tau_j \in \Gamma} DBF_j(2D_i) \leq D_i$$
 S
Upper bound on speedup factor for FP-NP v. EDF-P

- **Schedulable under EDF-P on processor of speed 1**

 \[\sum_{\forall \tau_j \in \Gamma} DBF_j(2D_i) \leq 2D_i \]

 Substituting: \(\frac{C_{\text{max}} + 2D_i}{S} \leq D_i \) assures schedulability under FP-NP

- **Upper bound**

 \[S = 2 + \frac{C_{\text{max}}}{D_{\text{min}}} \]

 Holds for arbitrary deadlines

 Also holds for FP-NP v. FP-P (since EDF-P dominates FP-P)
Lower bound on speedup factor for FP-NP v. FP-P

- **Proof sketch (Lemma IV.3)**
 - Find a task set that requires at least this increase in speed

- **Example task set**
 - \(\tau_i: i = 1..k - 1, C_i = 1, D_i = k+1, T_i = k \) (arbitrary deadlines)
 - \(\tau_k: C_k = 1, D_k = k+1, T_k = k+1 \)
 - \(\tau_{k+1}: C_{k+1} = k^2, D_{k+1} = \infty, T_{k+1} = \infty \)

- **Schedulability under FP-P**
 - Trivially schedulable on a processor of speed 1
 - Each task \(\tau_j: j = 1..k \) has a response time of \(j \)
 - Task \(\tau_{k+1} \) executes for 1 unit in the LCM of the higher priority tasks and has a response time of \(k^3(k+1) \)
Lower bound on speedup factor for FP-NP v. FP-P

- **Schedulability under FP-NP (Lemma IV.5)**
 - Audsley’s algorithm for optimal priority assignment
 - Task \(\tau_{k+1} \) schedulable at the lowest priority (on a processor of speed 1 or higher) so placed at the lowest priority
 - Two distinct cases to consider depending on whether task \(\tau_k \) or one of the other tasks is assigned the next higher priority
 - Each case has two possibilities to ensure schedulability - see paper
 - Weakest constraint **necessary** for schedulability under FP-NP
 - First jobs of all tasks and second jobs of tasks \(\tau_1 \) to \(\tau_{k-2} \) must complete by the deadline at \(k+1 \) so \(S \geq (k^2 + 2k - 2)/(k + 1) \)
 - As \(C_{\max}/D_{\min} = k^2/(k + 1) \)

\[S \geq \frac{2k - 2}{k + 1} + \frac{C_{\max}}{D_{\min}} \text{ and hence lower bound is } S = 2 + \frac{C_{\max}}{D_{\min}} \]

Also holds for FP-NP v. EDF-P as EDF-P dominates FP-P

Note arbitrary deadlines only
Exact sub-optimality FP-NP v. EDF-P

- **Exact sub-optimality of FP-NP (v. EDF-P)**
 - Upper bound and lower bound are equal (for arbitrary deadlines)
 \[S = 2 + \frac{C_{\text{max}}}{D_{\text{min}}} \]

- **Upper and lower bounds on sub-optimality of FP-NP (v. EDF-P)**
 - Implicit and constrained deadlines

 Lower bound \(S = 1 + \frac{C_{\text{max}}}{D_{\text{min}}} \)
 Upper bound \(S = 2 + \frac{C_{\text{max}}}{D_{\text{min}}} \)

 Currently an open problem to close the gap and find an exact value
Exact speedup factor for FP-NP v. FP-P
Upper bound speedup factor
FP-NP v. FP-P (constrained deadlines)

Proof sketch (Lemma IV.4)

- Consider any task set that is schedulable on a processor of speed 1 under FP-P with (optimal) DMPO show that it is also schedulable on a processor of speed S under FP-NP with DMPO (not optimal, but suffices to show feasibility)

\[
E_i^P(t) = C_i + \sum_{\forall \tau_j \in hp(i)} \left\lfloor \frac{t}{T_j} \right\rfloor C_j, \quad E_i^P(W_i^P) = W_i^P
\]

\[
E_i^{NP}(t) = \sum_{\forall \tau_j \in hp(i)} \left[\frac{t + \Delta}{T_j} \right] C_j, \quad E_i^{NP}(W_i^{NP}) + C_{max} + C_i = W_i^{NP} + C_i
\]

- Observe

\[
E_i^{NP}(t - x) + C_i \leq E_i^P(t)
\]

\[\forall x \geq \Delta \quad \forall t \geq x\]
Upper bound speedup factor
FP-NP v. FP-P (constrained deadlines)

- **Ensure FP-NP schedulability on a processor of speed S**

 Case 1: $W_i^P \geq D_{\text{min}}$

 - Make completion under FP-NP at speed S no later than for FP-P at speed 1, so start time no later than $W_i^P - C_i / S$

 - Sufficient test for FP-NP will give a response time $\leq W_i^P$ if

 $$\frac{C_{\text{max}} + E_i^{NP} (W_i^P - C_i / S) + C_i}{S} \leq W_i^P$$

 - Since $E_i^{NP} (W_i^P - C_i / S) + C_i \leq E_i^P (W_i^P) = W_i^P$ substitution gives following condition on schedulability

 $$S \geq 1 + \frac{C_{\text{max}}}{W_i^P}$$

 Upper bound

 $$S = 1 + \frac{C_{\text{max}}}{D_{\text{min}}}$$

 Blocking + interference before starting + execution
Upper bound speedup factor
FP-NP v. FP-P (constrained deadlines)

- **Ensure FP-NP schedulability on a processor of speed** S

 Case 2: $W_i^P < D_{\text{min}}$

 - Assume completion under FP-NP at speed S is no later than D_{min}
 - Sufficient test for FP-NP will give a response time $\leq D_{\text{min}}$ if
 \[
 \frac{C_{\text{max}} + E_{i}^{NP} (D_{\text{min}} - C_i / S) + C_i}{S} \leq D_{\text{min}}
 \]
 - Since $E_{i}^{NP} (W_i^P - C_i / S) + C_i \leq E_{i}^{P} (W_i^P) = W_i^P < D_{\text{min}}$ substitution gives following condition on schedulability
 \[
 S \geq 1 + \frac{C_{\text{max}}}{D_{\text{min}}}
 \]

 Upper bound $S = 1 + \frac{C_{\text{max}}}{D_{\text{min}}}$

 Holds for implicit and constrained deadlines, but not arbitrary deadlines due to schedulability test used in proof.
Exact speedup factor FP-NP v. FP-P

- **Arbitrary Deadlines:** Lower bound and upper bound are equal => exact speedup factor
 \[S = 2 + \frac{C_{\text{max}}}{D_{\text{min}}} \]

- **Implicit and Constrained Deadlines:** Lower bound and upper bound are equal => exact speedup factor
 \[S = 1 + \frac{C_{\text{max}}}{D_{\text{min}}} \]

Interesting that relaxing the task model to arbitrary deadlines adds 1 to the speedup factor needed
Sub-optimality and speedup factors

- Closed speedup factors for FP-NP v. FP-P and EDF-NP v. EDF-P
- Main result for FP-NP v. EDF-P proved (arbitrary deadlines)
 - Remains to close the gap between upper and lower bounds for implicit and constrained deadline cases
- Speedup factor for FP-P v. FP-NP since they are incomparable?
Speedup factor for FP-P v. FP-NP
Lower bounds on speedup factor for FP-P v. FP-NP

Task set

- τ_A: $C_A = \sqrt{2} - 1$, $D_A = 1$, $T_A = 1$
- τ_B: $C_B = (2 - \sqrt{2})/2$, $D_B = \sqrt{2}$, $T_B = \infty$
- τ_C: $C_C = (2 - \sqrt{2})/2$, $D_C = \sqrt{2}$, $T_C = \infty$

Constrained deadlines, DM optimal for FP-P

Scale by a factor of $\sqrt{2}$ just schedulable with FP-NP

Lower bound on speedup factor is $\sqrt{2}$
Empirical investigation

Genetic algorithm used to search for task sets requiring a high speedup factor

Highest value found (1.4139)
Very close to $\sqrt{2}$ for three or more tasks with constrained or arbitrary deadlines

Fairly compelling result since with 3 tasks there are few parameters, so search using GA is very effective
Open problem

- **What is the exact speedup factor for FP-P v. FP-NP?**

 - **Upper bounds** are:
 - 2 for arbitrary deadlines
 - $\frac{1}{\Omega} \approx 1.76322$ for constrained deadlines
 - $\frac{1}{\ln(2)} \approx 1.44269$ for implicit deadlines

 As EDF-P can schedule any task set that is schedulable by FP-NP and those are the speedup factors for FP-P v. EDF-P

 - **Lower bound** is $\sqrt{2}$ for three or more tasks and constrained/arbitrary deadlines

 Empirically it appears this lower bound may be tight

 Proof needed...
Summary: Speedup factors for non-preemptive scheduling

<table>
<thead>
<tr>
<th>Taskset Constraints [Priority ordering]</th>
<th>FP-NP v. EDF-P Sub-optimality</th>
<th>FP-NP v. FP-P Speedup factor</th>
<th>EDF-NP v. EDF-P Sub-optimality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implicit-deadline [RM] [OPA]</td>
<td>Open Problem</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$1 + \frac{C_{\text{max}}}{D_{\text{min}}}$</td>
<td>$2 + \frac{C_{\text{max}}}{D_{\text{min}}}$</td>
<td>$1 + \frac{C_{\text{max}}}{D_{\text{min}}}$</td>
</tr>
<tr>
<td>Constrained-deadline [DM] [OPA]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arbitrary-deadline [OPA] [OPA]</td>
<td>$2 + \frac{C_{\text{max}}}{D_{\text{min}}}$</td>
<td>$2 + \frac{C_{\text{max}}}{D_{\text{min}}}$</td>
<td>$1 + \frac{C_{\text{max}}}{D_{\text{min}}}$</td>
</tr>
</tbody>
</table>

Contribution
Summary: FP-P v. FP-NP

<table>
<thead>
<tr>
<th>Taskset Constraints [Priority ordering]</th>
<th>FP-P v. FP-NP Speedup factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Implicit-deadline [RM] [OPA]]</td>
<td></td>
</tr>
<tr>
<td>Constrained-deadline [DM] [OPA]</td>
<td></td>
</tr>
<tr>
<td>Arbitrary-deadline [OPA] [OPA]</td>
<td></td>
</tr>
</tbody>
</table>

Open Problem

Contribution
Questions?