Optimal Fixed Priority Scheduling with Deferred Pre-emption

Rob Davis
Real-Time Systems Research Group, Department of Computer Science, University of York, York, UK.
rob.davis@york.ac.uk

Marko Bertogna
Algorithmic Research Group, Department of Mathematics, University of Modena, Italy
marko.bertogna@unimore.it
Types of Fixed Priority Scheduling

- **Fixed Priority Scheduling**
 - Tasks have unique priorities
 - At task release and completion, the highest priority ready task is chosen to execute

- **Fixed Priority Pre-emptive Scheduling (FPPS)**
 - Tasks execute at their initial priorities
 - The executing task can be pre-empted at any time when a higher priority task is released

- **Fixed Priority Non-pre-emptive Scheduling (FPNS)**
 - Once a task starts executing it is effectively given the highest priority and cannot be pre-empted

- **Fixed Priority Scheduling with Deferred Pre-emption (FPDS)**
 - Each task has a final non-pre-emptive region of execution
 Once it enters this region it is effectively given the highest priority and cannot be pre-empted
Comparison of FPPS, FPNS, FPDS

- Fixed Priority Pre-emptive Scheduling (FPPS)
 - Minimal blocking of higher priority tasks
 - Many pre-emption
 - Long response time for low priority task
Comparison of FPPS, FPNS, FPDS

- Fixed Priority Non-pre-emptive Scheduling (FPNS)
 - Maximal blocking of higher priority tasks
 - No pre-emptions
 - Short response time for low priority task
Comparison of FPPS, FPNS, FPDS

- Fixed Priority Scheduling with Deferred Pre-emption (FPDS)

 - Superset of FPPS and FPNS
 - Trade off between blocking effect on higher priority tasks and the response time of the task itself
 - Fewer pre-emptions than FPPS
 - Less blocking than FPNS
Blocking v. Response Time trade-off

- **Blocking**
 - Tolerance of higher priority tasks to blocking: \(\times\)

- **Response time**
 - Deadline of the task: \(\checkmark\)

- **Task execution**
 - FPNS

- Final non-pre-emptive region
System model

- Single processor
 - Fixed Priority Scheduling with Deferred Pre-emption (FPDS)

- Sporadic task model
 - Static set of n tasks. Each task τ_i has a unique priority i
 - C_i – Execution time (bound)
 - D_i – Relative deadline
 - T_i – Minimum inter-arrival time or period
 - F_i – Length of final non-pre-emptive region
 - Compute R_i worst-case response time to check if each task is schedulable

- FPDS subsumes FPPS and FPNS
 - $F_i = 1$ equivalent to FPPS
 - $F_i = C_i$ equivalent to FPNS
Schedulability test for FPDS

Worst-case response time for task τ_i occurs in the longest priority level-i active period starting at a Δ-critical instant

$$A_i^{m+1} = B_i + \sum_{\forall j \in \text{hp}(i)} \left[\frac{A_i^m}{T_j} \right] C_j$$

Blocking: $B_i = \max_{\forall l \in lp(i)} (F_l - 1)$

Number of jobs of task τ_i in the active period: $G_i = \left[\frac{A_i}{T_i} \right]$

Start time of final non-pre-emptive region:

$$w_{i,g}^{m+1} = B_i + (g + 1)C_i - F_i + \sum_{\forall j \in \text{hp}(i)} \left(\left[\frac{w_{i,g}^m}{T_j} \right] + 1 \right) C_j$$

Response time:

$$R_i = \max_{\forall g=0,1,2...G_i-1} (W_{i,g}^{NP} + F_i - gT_i)$$

Unschedulable if

$$w_{i,g}^{m+1} + F_i - gT_i > D_i$$

Schedulable if

$$R_i \leq D_i$$
Example

<table>
<thead>
<tr>
<th>Task</th>
<th>Execution Time</th>
<th>Deadline</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>100</td>
<td>175</td>
<td>250</td>
</tr>
<tr>
<td>B</td>
<td>100</td>
<td>300</td>
<td>400</td>
</tr>
<tr>
<td>C</td>
<td>100</td>
<td>325</td>
<td>350</td>
</tr>
</tbody>
</table>

For FPPS deadline monotonic is the optimal priority assignment.

FPNS
Trivially not schedulable
100 + 100 > 175
FPDS

Shows:
- FPDS strictly dominates both FPPS and FPNS (not equivalent)
- Deadline Monotonic is not an optimal priority assignment for FPDS
- Use Audsley’s Optimal Priority Assignment algorithm when FNR lengths are known

<table>
<thead>
<tr>
<th>Task</th>
<th>Execution Time</th>
<th>Deadline</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>100</td>
<td>175</td>
<td>250</td>
</tr>
<tr>
<td>B</td>
<td>100</td>
<td>300</td>
<td>400</td>
</tr>
<tr>
<td>C</td>
<td>100</td>
<td>325</td>
<td>350</td>
</tr>
</tbody>
</table>
Optimal FPDS

- Problem #1: Final Non-pre-emptive Region length Problem \((FNR \ Problem)\)
 - For a taskset complying with the task model with some known priority order \(X\), find a value for the length \(F_i\) of the FNR of each task such that the taskset is schedulable under FPDS

An optimal FNR length assignment algorithm can schedule any system for which there exists a schedulable FNR length assignment
Optimal FPDS

Solution to Problem #1: Final Non-pre-emptive Region length Problem (FNR Problem)

- The minimum FNR length F_i such that task τ_i is schedulable at priority i is a monotonically non-decreasing function of the blocking factor B_i due to tasks at lower priorities.
- The blocking factor at higher priorities is a monotonically non-decreasing function of F_i.

FNR Algorithm

```
for each priority level i, lowest first {
    determine the smallest value for the final non-pre-emptive region length such that the task at priority i is schedulable.
    Set the length of the final non-pre-emptive region to that value.
}
```

Minimises both the final non-pre-emptive region length and the blocking factor at every priority level.
Optimal FPDS

Problem #2: Final Non-pre-emptive Region length and Priority Assignment Problem (FNR-PA Problem)

- For a taskset complying with the task model, find both (i) a priority assignment, and (ii) a value for the length of the final non-pre-emptive region of each task that makes the taskset schedulable under FPDS.

An optimal FNR length and priority assignment algorithm can schedule any system for which there exists a schedulable priority and FNR length assignment.
FNR-PA Algorithm

Solution to Problem #2: Final Non-pre-emptive Region length and Priority Assignment Problem (FNR-PA Problem)

```plaintext
for each priority level i, lowest first {
    for each unassigned task τ {
        determine minimum final non-pre-emptable region length (if any) that makes the task schedulable at priority i assuming that all unassigned tasks have higher priorities
    }
    if no tasks are schedulable at priority i {
        return unschedulable
    }
    else {
        assign the schedulable task with the shortest final non-pre-emptive region at priority i to priority i
    }
}
return schedulable
```

Complexity $n(n+1)/2 \times$ determining task schedulability and minimum FNR length
Assume some priority order \(X \) exists that is schedulable with some set of FNR lengths. Transform \(X \) into the priority order \(P \) constructed, along with a set of FNR lengths, by the Optimal FNR-PA Algorithm without loss of schedulability. Do this in \(n \) steps.

First step

- Select the task in \(X_n \) that is at priority \(n \) in \(P \).
- Shift the task (from priority \(i \) to priority \(n \)).
- Set the FNR length for task \(\tau_n \) in \(X_{n-1} \) to the smallest possible value such that it is schedulable (FNR algorithm).
 - This is the same as the value determined by the optimal FNR-PA algorithm (same set of hp tasks).
 - No greater than the value for the task at priority \(n \) in \(X_n \) otherwise the optimal FNR-PA algorithm would have chosen that task instead.

Show \(X_{n-1} \) is schedulable

- Tasks at higher priority than \(i \) in \(X_n \) – no increase in blocking.
- Tasks at priorities \(i+1 \) to \(n \) in \(X_n \) – shifted up in priority hence remain schedulable.
- Task \(\tau_n \) must be schedulable at the lowest priority in \(X_{n-1} \) – as it was chosen by the FNR-PA algorithm (and there must be such a task e.g. task at priority \(n \) in \(X_n \)).
Proof of Optimality

Intermediate steps

- Select the task in X_k that is at priority k in P
- Shift the task (from priority i) to priority k - note i is never lower than k due to the lowest priority tasks being the same in both orderings
- Set the FNR length for task τ_k in X_{k-1} to the smallest possible value such that it is schedulable (FNR algorithm).
 - This value is the same as the value determined by the optimal FNR-PA algorithm (same set of hp tasks, and same set of lp tasks with the same FNR lengths)
 - This value is no greater than that for the task at priority k in X_k, otherwise the Optimal FNR-PA algorithm would have chosen that task instead

Show X_{k-1} is schedulable

- Tasks at higher priority than i – no increase in blocking
- Tasks at priorities $i+1$ to $k-1$ – are shifted up in priority hence remain schedulable
- Task τ_k at priority k in X_{n-1} – was chosen by the FNR-PA algorithm, so must be schedulable
- Task at lower priorities – have the same set of hp tasks and unchanged FNR lengths so remain schedulable
Optimal FPDS

- FNR-PA algorithm
 - Optimality: Determines a schedulable priority ordering and set of final non-pre-emptive region lengths whenever such a combination exists.

 Proof – see the paper

Provides Optimal Fixed Priority Scheduling with Deferred Pre-emption

- Has the side-effect of minimising blocking due to FNRs at every priority level

- Also works when tasks share resources according to Stack Resource Policy (provided there is proper nesting) or have other non-pre-emptive regions – may constrain the permitted length of FNRs
FNR length calculation

- Algorithms presented rely on being able to find the minimum final non-pre-emptive region length such that a task is schedulable (if it is schedulable for any FNR)
- Simple option is Binary Search
 - Requires multiple single task schedulability tests
- Analytical method given in the paper
 - Pseudo-polynomial in complexity - same as a single task schedulability test

- FNR-PA algorithm using the analytical method
 - Needs the equivalent of \(n(n+1)/2 \) task schedulability tests to determine an optimal priority and final non-pre-emptive region length assignment
 - Compares to a search space of \(n! \prod_{i} C_i \)
Experimental Evaluation

- Performance comparison of

 - FPDS (OPT) – Optimal FPDS
 - FPDS (DM) – assumes Deadline Monotonic Priority Order (not optimal)
 - FPPS – with DMPO (which is optimal for FPPS)
 - FPNS – with optimal priority assignment using Audsley’s algorithm
 - FPTS – Fixed Priority Pre-emption Threshold scheduling with optimal threshold assignment and DMPO

 and

 - EDF (pre-emptive) as a benchmark as this is the optimal single processor scheduling algorithm
Experimental Evaluation

- Parameter generation for tasks
 - Utilisation values generated via UUnifast
 - Task periods – log-uniform distribution with a ratio of 10 between max and min periods (default $r = 1$)
 - Execution times based on the utilisation and period values selected
 - Independent tasks – so no constraints on FNR lengths
 - Deadlines were either implicit or constrained and chosen according to a uniform distribution in the range $[C_i + \alpha(T_i - C_i), T_i]$ (default $\alpha = 0.5$)

- Taskset generation
 - Default taskset cardinality was $n = 10$
 - Total utilisation values from 0.03 to 0.99
 - 5000 tasksets generated for each utilisation value
Success ratio

Constrained deadlines
Taskset cardinality $n = 10$
Period range 10^r ($r = 1$)
Deadlines in range
\[[C_i + \alpha(T_i - C_i), T_i] \]
with $\alpha = 0.5$
Other comparisons

- **Weighted schedulability**
 - Enables overall comparisons when varying a specific parameter (not just utilisation)
 - Combines results from all of a set of equally spaced utilisation levels
 - **Weighted schedulability:**
 \[
 Z_y(p) = \frac{\sum_{\forall \tau} S_y(\tau) U(\tau)}{\sum_{\forall \tau} U(\tau)}
 \]
 - Collapses all data on a success ratio plot for a given algorithm, into a single point on a weighted schedulability graph
Weighted schedulability: Varying taskset cardinality

Constrained deadlines
Variable taskset cardinality
Period range 10^r ($r = 1$)
Deadlines in range
$$[C_i + \alpha(T_i - C_i), T_i]$$
with $\alpha = 0.5$
Weighted schedulability: Varying range of task periods

Constrained deadlines
Taskset cardinality $n = 10$
Variable range of periods
Deadlines in the range with $\alpha = 0.5$

$[C_i + \alpha(T_i - C_i), T_i]$ with $\alpha = 0.5$
Summary and conclusions

Main contribution:

- **Optimal Fixed Priority Scheduling with Deferred Pre-emption**
- Can find the priorities and final non-pre-emptive region lengths to obtain a schedulable system whenever such parameters exist

Optimal FNR-PA Algorithm

```plaintext
for each priority level i, lowest first {
    for each unassigned task τ {
        determine minimum final non-pre-emptable region length (if any) that makes the task schedulable at priority i assuming that all unassigned tasks have higher priorities
    }
    if no tasks are schedulable at priority i {
        return unschedulable
    } else {
        assign the schedulable task with the shortest final non-pre-emptive region at priority i to priority i
    }
}
return schedulable
```

Minimises blocking at EVERY priority level

Compatible with SRP for resource locking

Complexity $O(n^2)$ search space $n! \prod_{i} C_i$
Applications and Future work

Applications

- Automotive systems: tasks composed of 50-300 sequential functions each of which can be a non-pre-emptive region
- FNR-PA algorithm can be used to determine optimal priority assignments and final non-pre-emptive region lengths, subject to constraints (granularity due to sequential functions)

Future work

- Integration with:
 - Pre-emption costs, and Cache Related Pre-emption Delays
 - Requirements for robustness – must not end up with systems that are only just schedulable
Questions?

Optimal Fixed Priority Scheduling with Deferred Pre-emption
Rob Davis and Marko Bertogna

RTSS 2012
San Juan, Puerto Rico
End