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Abstract
This paper discusses the open problem of priority assignment for systems using Fixed Priority Preemptive Scheduling (FPPS),

where the context switch costs are dependent on whether or not the preempting and the preempted tasks belong to the same
process and hence share the same address space. Schedulability tests for such systems are not compatible with Audsley’s Optimal
Priority Assignment (OPA) algorithm. We pose the question: Can optimal (or close to optimal) priority assignments be found
efficiently, ideally in a polynomial number of schedulability tests, avoiding the need to check all n! possible priority orderings?

I. INTRODUCTION

The relevant safety standards (IEC61508, DO-178C, ISO26262) for electronics, avionics, and automotive systems require
that either all applications are developed to the standard required for the highest criticality application, or that independence
between different applications is achieved in both the spatial and temporal domains. One approach to ensuring spatial isolation
is to make use of the concepts of processes and threads, where each process has a separate memory address space. Using
a single process for all high criticality applications provides a single memory address space, easing the costs of interaction
between high criticality tasks, which are implemented as threads within that process. Low criticality applications and their
tasks can similarly be mapped to another distinct process and its threads. This ensures that tasks in low criticality applications
cannot corrupt the data or memory space used by high criticality applications. Alternatively, individual applications may each
be mapped to a distinct process, providing spatial isolation between applications of the same criticality.

The use of processes and threads gives rise to varying context switch costs [1]. Switching threads within a process (i.e. the
context switch between tasks of the same application) has a low cost, since this involves switching only the resources unique
to the threads, for example the processor state (program counter, stack pointer, processor registers etc.), which can typically be
done in a very short time and may be assisted by hardware support. By contrast, switching between processes (i.e. the context
switch between tasks of different criticality applications) may have a much higher cost. It involves switching the resources
related to the processes. In particular, switching the memory address space, and can also involve operations on the caches [2],
and the Translation Lookaside Buffer (TLB), making process switches a much more costly operation.

In a recent paper [3] at RTAS 2018, Davis et al. derived three flavors of schedulability analysis for FPPS accounting for
differing context switch costs, referred to as simple, refined, and multi-set analysis. Here we focus on the refined analysis.

II. SYSTEM MODEL

The system model assumed is an extension of the classical sporadic task model. We are interested in tasks executing under
FPPS on a single processor. Each of the n tasks (τ1, τj , . . . , τn), is assigned a unique priority. Each task is characterized by its
relative deadline Di, worst-case execution time Ci, and minimum inter-arrival time or period Ti. Tasks are assumed to have
constrained deadlines (Di ≤ Ti). A task is schedulable if its worst-case response time Ri is less than or equal to its deadline
(Ri ≤ Di). Each task is assumed to belong to an application mapped to a specific process and hence a specific address space.
Ai indicates the address space that task τi is mapped to. If tasks τi and τj belong to the same process and address space,
then Ai = Aj , otherwise Ai 6= Aj . We assume that a context switch from one task τi to another τj has a large cost CC if it
involves switching process and address space (i.e. when Ai 6= Aj), and a small cost CS otherwise.

III. ANALYSIS

The simple analysis presented in [3] makes the assumption that all context switches incur the large context switch cost. It is
thus equivalent to the standard response time analysis for FPPS [4], [5] with the large context switch cost subsumed into each
task’s WCET. In reality, however, the context switch time depends on both the preempting task and the preempted task. Taking
this information into account, the standard analysis is refined in [3] as follows. Note we assume that the first job in the busy
period always experiences a large context switch time, since the previously running job may be associated with a different
process and address space. (We assume that soft real-time tasks may run in a background process at the lowest priority).

Ri = Ci + CC +
∑

∀j∈hp(i)

⌈
Ri

Tj

⌉
(Cj + γi,j) where γi,j =

{
CC if ∃h ∈ aff(i, j)|Ah 6= Aj

CS otherwise (1)

Where hp(i) denotes the set of tasks with priorities higher than that of task τi, and aff(i, j) denotes the set of affected tasks that
can execute between the release and completion of task τi and also be preempted by higher priority task τj , these tasks have



priorities higher than or equal to that of task τi, but lower than that of task τj . The term γi,j equates to a large context switch
time only if there is some task τh that can execute during the busy period (i.e. the response time) of task τi, be preempted by
task τj , and belongs to a different process and address space to τj .

It is easy to construct examples with three tasks τA, τB , and τC with AA = AC and AA 6= AB showing that the worst-case
response time of task τC depends upon the relative priority order of tasks τA and τB ; such an example is given in [3]. This
means that Deadline Monotonic (DM) priority assignment [6] is no longer optimal. Further, the analysis is not compatible with
Audsley’s Optimal Priority Assignment (OPA) algorithm [7], since the dependence on the relative priority ordering of higher
priority tasks breaks a necessary condition for the applicability of Audsley’s algorithm [8].

IV. OPEN PROBLEMS

A priority assignment algorithm or policy P is said to be optimal with respect to a schedulability test S and a given task
model, if and only if there are no task sets that are compliant with the task model that are deemed schedulable by test S using
another priority assignment policy, that are not also deemed schedulable by test S using policy P .

We are interested in finding optimal priority assignments for systems with context switch costs that depend on whether the
preempting and the preempted task belong to the same process, and so share a common address space. Here, each task belongs
to one of two (or more) distinct processes, and the analysis used is the refined test for FPPS given above (or alternatively, the
multi-set analysis given in [3]). In each case, an optimal priority assignment could be found by exploring all n! possible priority
orderings; however, such an approach becomes intractable even for relatively small task sets (e.g. for n = 15, n! > 1012).
Rather, we are interested in efficient methods of finding an optimal (or close to optimal) assignment; ideally with complexity
that is polynomial in the number of schedulability tests.

Priority assignment toolkit and ideas
In prior work on priority assignment for fixed priority systems, a number of techniques have proven useful:

(i) Establishing the properties of a priority ordering by considering if schedulability is maintained when the priorities of
particular tasks are swapped, for example swapping tasks that have adjacent priorities but are out of DM order [9].

(ii) Work on Robust Priority Assignment [10] has established certain properties (such as the optimality of DM priority
ordering) that hold in the presence of general forms of additional interference. It can be useful to disregard subsets of
tasks, representing them only as additional interference, to enable a simpler form of reasoning about the optimal priority
ordering of the tasks that remain.

(iii) Simple sufficient tests (using only the large context switch costs) and simple necessary conditions (using only the small
context switch costs) that are compatible with Audsley’s algorithm can be used to guide priority assignment [11]. These
techniques enable partial assignments to be found that are certain to be schedulable, while discarding others that are
certain to be unschedulable.

As an initial idea, if we could show that if a schedulable priority ordering exists, then a revised ordering with all of the tasks
belonging to each specific process in DM partial order is also schedulable, then reasoning along these lines might reduce the
overall problem to one of merging DM partial orders for each process – potentially a much simpler problem.

For more background information on techniques for priority assignment in fixed priority systems, see the review on this
topic [9]. Finally, we note that solutions to the problems posed may lead to improved solutions to the more complex problem
of priority assignment for FPPS with Cache Related Preemption Delays (CRPD) [12] [13].
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