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Abstract—In mixed criticality systems, it is vital to ensure
that there is sufficient separation between tasks of LO- and
HI-criticality applications, so that the behavior or mis-behavior
of the former cannot affect the functional or timing correctness
of the latter. To ensure appropriate spatial isolation, the
memory address spaces and cache use by LO- and HI-criticality
tasks must be distinct. A consequence of this separation is that
the cost of switching between tasks of the same criticality can
be small, whereas the cost of context switching between tasks
of different criticality levels can be much larger. In this paper,
we focus on integrating the differing context switch costs into
fixed priority preemptive scheduling, and the two mixed
criticality scheduling schemes based on it: SMC and AMC. We
derive simple, refined, and multi-set analyses for each scheme.
Further, we show that the refined and multi-set analyses are
not compatible with Audsley’s Optimal Priority Assignment
algorithm, we therefore propose a heuristic priority assignment
policy aimed at reducing the number of high cost context
switches. Our evaluation is grounded in measurements of
context switch times (save and restore costs) from a prototype
implementation of an explicitly managed cache on an FPGA.
The evaluation shows the effectiveness of the derived analyses
and the proposed priority assignment policy.

I. INTRODUCTION

An important trend in the design of real-time systems is the
integration of applications with different levels of criticality
onto the same hardware platform. Here, criticality is the term
used to described the level of assurance against failure needed
by each application. A Mixed Criticality System (MCS) is
one that comprises a set of applications with two or more
criticality levels. Most of the complex embedded real-time
systems found in the automotive and avionics industries are
evolving into MCS in order to meet stringent non-functional
requirements relating to cost, space, weight, heat generation,
and power consumption. The fundamental research question
underlying MCS is how to reconcile the conflicting
requirements of separation for assurance and sharing for
efficient resource usage. This question gives rise to theoretical
problems in modeling and verification, and systems problems
relating to the design and implementation of the hardware and
run-time software.

Since the seminal work of Vestal in 2007 [49] a standard
model has emerged (described in Section II), along with a
substantial thread of research on analysis of MCS assuming
fixed priority preemptive scheduling schemes [9], [10], [12],
[14], [21], [27], [30], [45], [57], see the survey on MCS [22]
for further details. All of these papers focus on the resource
sharing aspect of the mixed criticality scheduling problem.

Separation is however also vitally important. The relevant
safety standards (IEC61508, DO-178C, ISO26262) require that
either all applications are developed to the standard required for
the highest criticality application, or that independence between
different applications is achieved and demonstrated in both
spatial and temporal domains. In the temporal domain, this can
be ensured via appropriate RTOS mechanisms, for example
by aborting a LO-criticality task if it has not yet completed
when its execution time budget expires. In the spatial domain,
the memory address space(s) used by tasks from HI-criticality
applications must be inaccessible to tasks of LO-criticality
applications, and hence separate from their address spaces.
This requires the use of hardware memory protection and
memory mapping / virtual address spaces.

One approach to ensuring spatial isolation is to make use
of the concepts of processes and threads, where each process
has a separate memory address space. Using a single process
for all HI-criticality applications provides a single memory
address space, easing the costs of communication and
interaction between HI-criticality tasks, which are
implemented as threads within the process. Alternatively,
individual applications may each be implemented as a distinct
process, providing spatial isolation between applications of
the same criticality. LO-criticality applications and their tasks
can similarly be mapped to processes and threads. For the
purposes of spatial isolation, it is a requirement that
applications of different criticality levels cannot be mapped to
the same process; they must use disparate address spaces.

The use of processes and threads gives rise to varying context
switch costs [54]. Switching threads within a process (i.e. the
context switch between tasks of the same application) has a low
cost, since this involves switching only the resources unique
to the threads e.g. the processor state (program counter, stack
pointer, processor registers etc.) which is typically very fast and
may be assisted by hardware support. By contrast, switching
between processes (i.e. the context switch between tasks of
different criticality levels) may have a much higher cost. It
involves switching the resources related to the processes. In
particular, this involves switching the memory address space,
and can also involve operations on the cache, making process
switches a much more costly operation.

As an exemplar, we assume that there is a requirement to
isolate the cache usage of different processes from one another.
(Note, depending on the architecture, the cache contents may in
any case not be valid when switching between address spaces).
Following the work of Whitham et al. [52], we consider explicit



cache management, with hardware support for saving and
restoring the cache contents on process-level context switches.
We further assume that tasks which belong to the same process
are allocated different partitions within the cache. Together,
this ensures that when switching between tasks, the cache
contents of any preempted task are unchanged when it resumes
execution. The main advantage of the this approach is that the
only impact that a task (e.g. of LO-criticality) from one process
can have on the timing behavior of a task (e.g. of HI-criticality)
from another process is via interference due to its execution
time, which is strictly bounded via budget enforcement by
the RTOS, and a fixed context switch cost. It cannot slow
subsequent execution of the preempted task by evicting its
useful cache blocks, thus causing Cache Related Preemption
Delays (CRPD). Further, such separation helps avoid security
hazards, since a task belonging to a compromised low security
process cannot use the cache contents as a side channel to
obtain information about the behavior of a task from a high
security process which it has preempted or executes after [8],
[40], [41].

In this paper, we derive schedulability analysis for three
different fixed priority scheduling schemes for mixed
criticality systems, accounting for the differing context switch
costs incurred when switching between tasks. The task model
is set out in detail in Section II. The three schemes
considered are Fixed Priority Preemptive Scheduling (FPPS) –
Section III, Static Mixed Criticality (SMC) scheduling [10] –
Section IV, and Adaptive Mixed Criticality (AMC) scheduling
[9] – Section V. In each case, we derive three forms of
analysis: simple, refined, and multi-set. Section VI discusses
the dominance relations between the scheduling schemes and
their analyses. We show that the refined and multi-set analyses
for task models with differing context switch costs are not
compatible with Audsley’s Optimal Priority Assignment
(OPA) algorithm [6], [7]. We therefore propose, in Section
VII, a heuristic priority assignment technique aimed at
improving schedulability by reducing the number of large cost
context switches. In Section VIII, we recap on the explicit
cache management approach proposed by Whitham et al. [52]
and provide representative context switch costs covering the
time taken to save and restore data and instruction cache
contents on prototype hardware. The evaluation, in Section IX
shows the effectiveness of both the analyses and the priority
assignment technique. In order to make a systematic appraisal
of analysis performance, we used synthetic task sets; however,
to ground the evaluation, we used representative process and
thread level context switch times taking into account the
cache save and restore costs given in Section VIII. Finally,
Section X discusses related work, and Section XI concludes
with a summary and directions for future research.

II. TASK MODEL, TERMINOLOGY, AND NOTATION

In this paper, we are interested in applications executing
under Fixed Priority Preemptive Scheduling (FPPS) schemes
on a single processor. The applications are together assumed to
comprise a static set of n tasks (τ1, τj , . . . , τn), each assigned
a unique fixed priority. We use the notation hp(i) (and lp(i))
to mean the set of tasks with priorities higher than (lower than)

that of task τi. Similarly, we use the notation hep(i) (and lep(i))
to mean the set of tasks with priorities higher than or equal to
(lower than or equal to) that of τi. Further we use aff(i, j) to
denote the set of affected tasks that can execute between the
release and completion of task τi and also be preempted by
higher priority task τj , thus aff(i, j) = hep(i) ∩ lp(j).

Jobs of a task may arrive either periodically at fixed intervals
of time, or sporadically after some minimum inter-arrival time
has elapsed. Each task, is characterized by its relative deadline
Di, worst-case execution time Ci, and minimum inter-arrival
time or period Ti. Tasks are assumed to have constrained
deadlines, i.e. Di ≤ Ti. It is assumed that once a task starts to
execute it will never voluntarily suspend itself. The processor
utilization Ui of task τi is given by Ci/Ti. The total utilization
U of a task set is the sum of the individual task utilizations.
The worst-case response time Ri of a task τi, is the longest
time from one of its jobs becoming ready to execute to that job
completing execution. A task is referred to as schedulable if its
worst-case response time is less than or equal to its deadline
(Ri ≤ Di). A task set is referred to as schedulable if all of its
tasks are schedulable. We use Ej(Ri) to denote the maximum
number of times that a task τj can execute (i.e. preempt) during
the response time Ri of some lower priority task τi.

Each task τi is categorized into one of two classes according
to its criticality Li which may be either HI or LO. Further,
each task is assumed to belong to an application mapped to
a specific process and hence address space. Ai indicates the
address space that task τi is mapped to. If tasks τi and τj
belong to the same process and hence use the same address
space, then Ai = Aj , otherwise Ai 6= Aj . We assume that
tasks of different criticality levels will not normally be mapped
to the same process and so share the same address space;
however, we do not preclude it. The analysis we derive covers
the most general case where the process and address space of
a task is arbitrary, independent of its criticality level.

We assume that a context switch from one task τi to another
τj has a large cost CC if it involves switching process and
hence a change in the address space (i.e. when Ai 6= Aj). In
contrast, if there is only a switch between threads of the same
process (i.e. when Ai = Aj), then the context switch cost CS

is small (CS < CC). Note that the context switch costs CC

and CS include the time spent switching to the preempting
task and later back to the preempted task.

We consider the standard mixed-criticality task model,
where LO-criticality tasks have a single WCET estimate
Ci(LO), while HI-criticality tasks have two estimates
Ci(LO) and Ci(HI) with Ci(HI) ≥ Ci(LO). Here, Ci(HI)
is obtained using conservative timing analysis methods
appropriate for guaranteeing the timing behavior of the
HI-criticality tasks under all conditions, for example as
required by a certification authority. By contrast, Ci(LO) is
the WCET estimate used by the system designer, which is
assumed to be sufficient to ensure the correct behavior of the
system during normal operating conditions.

We note that while the various safety standards specify up
to five different criticality levels, in practice many systems
comprise applications of just two different criticality levels and
so conform to the dual-criticality model assumed in this paper.



III. SCHEDULABILITY ANALYSIS FOR FPPS
In this section we derive schedulability analysis for the

task model set out in Section II, assuming FPPS and varying
context switch times. This analysis assumes a single WCET
estimate Ci per task; in the case of MCS, for LO-criticality
tasks we may substitute Ci(LO) and for HI-criticality tasks
we may substitute Ci(HI).

A. Simple Analysis
A simple analysis may be obtained by assuming that all

context switches have a large cost CC . Extending standard
response time analysis for fixed priority preemptive scheduling
[5], [33], gives:

Ri = Ci + CC +
∑

∀j∈hp(i)

⌈
Ri
Tj

⌉
(Cj + CC) (1)

Equation (1) can be solved using fixed point iteration starting
with a suitable initial value such as Ci, and ends either on
convergence or when the value exceeds Di in which case the
task is unschedulable.
Example: Consider three tasks: τA = (10, 50, 100, LO,AL),
τB = (10, 100, 200, HI,AH), τC = (200, 265, 300, LO,AL)
with parameters (Ci, Di, Ti, Li, Ai). Further, CC = 5 and
CS = 0. Assuming the analysis embodied in (1), then Deadline
Monotonic Priority Order (DMPO) is optimal [37]. With the
tasks in DMPO, then the response time of task τC , RC = 280,
and so the task set is deemed unschedulable.

B. Refined Analysis
The above analysis is pessimistic in that it assumes that

all jobs of all tasks that execute within the priority level-i
busy period equating to the response time of task τi incur the
maximum context switch time. In reality, the context switch
time depends on both the preempting task and the preempted
task. Taking this information into account, we may re-write
(1) as follows. Note we assume that the first job in the busy
period always experiences a large context switch time, since
the previously running job may be of a different criticality
level and hence associated with a different process and address
space. (We assume that at a priority below the hard real-time
tasks, soft real-time tasks may run in a background process).

Ri = Ci + CC +
∑

∀j∈hp(i)

⌈
Ri
Tj

⌉
(Cj + γi,j) (2)

where γi,j is defined as follows:

γi,j =

{
CC if ∃h ∈ aff(i, j)|Ah 6= Aj
CS otherwise (3)

Note γi,j equates to a large context switch time only if there
is some task τh that can execute during the busy period
(i.e. response time) of task τi, be preempted by task τj and
belongs to a different process and address space to τj .

Returning to the example task set, if we consider DMPO
{A,B,C}, then we again have RC = 280, since all context
switches can take the maximum value. However, assuming
priority ordering {B,A,C}, then we have RC = 265 since
the three preemptions by jobs of task τA incur a small context

switch cost CS , while the two preemptions by jobs of task
τB incur a large cost. This example shows that DMPO is not
optimal for FPPS with this task model. Further, the refined
analysis is not compatible with Audsley’s Optimal Priority
Assignment (OPA) algorithm [6], [7]. The reason for this is
that the response time of the task of interest e.g. τC can
depend on the relative priority ordering of higher priority tasks,
breaking Condition 1 in [29] which is necessary condition for
the applicability of Audsley’s algorithm.

C. Multi-set Analysis

The analysis given by (2) can be pessimistic, as illustrated
by the example task set with priority ordering {A,B,C}. Here,
it is assumed that all three jobs of task τA can incur large
context switch costs; however, in reality that is not the case.
Task τB only executes twice within the response time of task
τC and each time it executes, it can only be preempted at most
once by a single job of τA, since RB = 30.

The following multi-set analysis addresses this source of
pessimism by taking into account the number of times that
tasks of intermediate priorities may be preempted by task τj
within the response time of task τi, thus limiting the number
of large context switch costs (CC) included in the analysis.

Ri = Ci + CC +
∑

∀j∈hp(i)

(⌈
Ri
Tj

⌉
Cj + γMi,j

)
(4)

Recognizing the fact that task τj can preempt each intermediate
task τk at most Ej(Rk)Ek(Ri) times during the response
time of task τi, we first form a multi-set Mi,j containing
Ej(Rk)Ek(Ri) copies of the context switch time for task τj
preempting each task τk|k ∈ aff(i, j). (Recall that Ej(Rk) =
dRk

Tj
e).

Mi,j =
⋃

k∈aff(i,j)

 ⋃
Ej(Rk)Ek(Ri)

{
CC if Ak 6= Aj
CS otherwise

}
(5)

From the multi-set, we then obtain an upper bound γMi,j on
the total context switch cost caused by the maximum number,
Ej(Ri), of preemptions that can occur due to jobs of task τj
executing within the response time of τi.

γMi,j =

Ej(Ri)∑
q=1

F (q,Mi,j) (6)

where F (q,Mi,j) returns the q-th largest value from the multi-
set Mi,j .

Using the above multi-set analysis (4), then task τC in the
example task set has a response time of RC = 275 (rather than
RC = 280) when the tasks are in priority order {A,B,C}.
This is because although there are 3 possible preemptions by
task τA, only two of them can cause large context switch costs
by preempting task τB . This is reflected in the multi-set MC,A,
which contains the value CC twice, as EA(RB) = 1 and
EB(RC) = 2, and the value CS three times, as EA(RC) = 3.
The largest 3 values are then taken as the overall context switch
cost due to preemptions by task τA.



IV. SCHEDULABILITY ANALYSIS FOR SMC

In this section we derive schedulability analysis for Static
Mixed Criticality (SMC) scheduling [10], assuming varying
context switch times.

SMC is based on Vestal’s original approach [49] using fixed
priorities, but extended with run-time monitoring. Thus, if a
job of a LO-criticality task τi does not complete execution by
Ci(LO), then it is aborted. Further, if any HI-criticality task
executes for its Ci(LO) WCET estimate without completing
execution, then the system enters HI-criticality mode. Under
SMC, LO-criticality tasks continue to be released and to execute
in HI-criticality mode; however, they are not required to meet
their deadlines in that mode. (Note the difference from classical
FPPS, which effectively requires that LO-criticality tasks meet
their deadlines in HI-criticality mode).

A. Simple Analysis and Refined Analysis

Under SMC, the worst-case response times for all tasks in
the LO-criticality mode may be computed using the following
fixed point iteration, adapted to account for context switch
costs. Note in the simple analysis γi,j = CC , whereas in the
refined analysis γi,j is defined by (3).

Ri(LO) = Ci(LO) + CC

+
∑

∀j∈hp(i)

⌈
Ri(LO)

Tj

⌉
(Cj(LO) + γi,j) (7)

Similarly, the worst-case response times for all tasks in the
HI-criticality mode may be computed using the following fixed
point iteration. Note only HI-criticality tasks are required to
be schedulable in HI-criticality mode.

Ri(HI) = Ci(Li) + CC

+
∑

∀j∈hp(i)

⌈
Ri(HI)

Tj

⌉
(Cj(Lj) + γi,j) (8)

Since Ci(HI) ≥ Ci(LO), it follows that Ri(HI) ≥ Ri(LO)
and so schedulability of HI-criticality tasks can be checked
using only (8), while that of LO-criticality tasks can be checked
using only (7).

B. Multi-set Analysis

We now apply the techniques used in the multi-set approach
(Section III-C) to SMC. Schedulability of each LO-criticality
task τi is determined by computing its worst-case response
time in LO-criticality mode as follows:

Ri(LO) = Ci(LO) + CC (9)

+
∑

∀j∈hp(i)

(⌈
Ri(LO)

Tj

⌉
Cj(LO) + γMi,j(LO)

)

where γMi,j(LO) is defined according to (6), with all of the
response time values used in both (6) and (5) taking their
R(LO) values (i.e. Ri(LO) in (6) and Rk(LO) and Ri(LO)
in (5)).

Similarly, schedulability of each HI-criticality task τi is
determined by computing its worst-case response time in HI-
criticality mode:

Ri(HI) = Ci(Li) + CC (10)

+
∑

∀j∈hp(i)

(⌈
Ri(HI)

Tj

⌉
Cj(Lj) + γMi,j(HI)

)
where γMi,j(HI) is defined according to (6), with all of the
response time values used in both (6) and (5) taking their
R(HI) values. Note this requires that R(HI) values are
computed for higher priority LO-criticality tasks. Although
such tasks are not required to be schedulable in HI-criticality
mode, under SMC they still execute and crucially they will
typically have longer response times in that mode, which may
increase the number of costly preemptions that can occur
within the response time of the lower priority HI-criticality
task τi.

While the response time of a LO-criticality task τk in
HI-criticality mode can be computed using (10) this can be
problematic. Iteration must not be stopped when the deadline
is reached, since the task may be unschedulable in
HI-criticality mode but continue to execute anyway. Further, if
the response time computed via (5) exceeds the task period,
then the value calculated may be optimistic; in general
analysis that is suitable for arbitrary deadlines (Di ≥ Ti) [48]
would be required in that case. Fortunately, such complex
analysis is unnecessary here due to the way in which the
response time Rk(HI) for a LO-criticality task is used in the
multi-set calculation. Instead, we may limit the maximum
value of Rk(HI) to the task’s period Tk (i.e. if (10)
converges on a value of Rk(HI) < Tk we use that value,
otherwise iteration stops as soon as Rk(HI) ≥ Tk and a
value of Rk(HI) = TK is assumed).

We now show why this is sufficient to account for the
maximum possible number of preemptions. Consider the term
Ej(Rk)Ek(Ri) in (5). This term bounds the maximum
number of times that task τj could potentially preempt task
τk during the response time of task τi. (Note Rk is Rk(HI)
and Ri is Ri(HI) in the case we are interested in). Further,
the maximum number of preemptions by task τj during the
response time of task τi is limited to Ej(Ri(HI)) in (6).
Thus the maximum possible number of preemptions of τk by
τj that could contribute to the context switch cost is given by:

min(Ek(Ri(HI))Ej(Rk(HI)), Ej(Ri(HI))) (11)

= min

(⌈
Ri(HI)

Tk

⌉⌈
Rk(HI)

Tj

⌉
,

⌈
Ri(HI)

Tj

⌉)
Since the following property holds for the ceiling function
dx/yedy/ze ≥ dx/ze, then for any value of Rk(HI) ≥ Tk in
(11), the minimum value is given by the term on the right hand
side of the min() function. Hence Rk(HI) = Tk suffices to
correctly account for any value of Rk(HI) ≥ Tk. Intuitively,
once the response time Rk(HI) reaches the task’s period, then
the task could be active at any time and thus the bound on
the number of preemptions is only limited by the number of
releases of the higher priority task.



V. SCHEDULABILITY ANALYSIS FOR AMC

In this section we derive schedulability analysis for Adaptive
Mixed Criticality (AMC) scheduling [9], assuming varying
context switch times. With AMC, if a job of a HI-criticality task
τi executes for its Ci(LO) WCET estimate without completing,
then the system enters HI-criticality mode. AMC differs from
SMC in that in HI-criticality mode, previously released jobs
of LO-criticality tasks are aborted (or have their priorities
reduced so that they no longer interfere with HI-criticality
tasks) and subsequent releases of LO-criticality tasks are not
started. Similar to SMC, only HI-criticality tasks are required
to be schedulable in HI-criticality mode.

The behavior of all tasks in LO-criticality mode is the same
for both AMC and SMC, hence the analysis of LO-criticality
mode presented in sections IV-A and IV-B also applies to AMC.
Below we present analysis for HI-criticality tasks covering HI-
criticality mode and the transition to it.

A. Simple Analysis and Refined Analysis

The analysis for AMC first computes the worst-case response
time Ri(LO) for each task τi in LO-criticality mode via (7).
The response time Ri(HI) of a HI-criticality task, covering
HI-criticality mode and the transition to it, can be determined
by the following fixed point iteration, where γi,j is defined as
CC for the simple analysis and by (3) for the refined analysis.

Ri(HI) = Ci(HI) + CC (12)

+
∑

∀j∈hpH(i)

⌈
Ri(HI)

Tj

⌉
(Cj(HI) + γi,j)

+
∑

∀j∈hpL(i)

⌈
Ri(LO)

Tj

⌉
(Cj(LO) + γi,j)

where hpH(i) is the set of HI-criticality tasks with priority
higher than that of task τi and hpL(i) is the set of LO-criticality
tasks with priority higher than that of task τi.

Equation (12) limits the interference from LO-criticality
tasks by noting that no further jobs of these tasks can be
released after the change to the HI-criticality mode which must
occur at or before Ri(LO).

B. Multi-set Analysis

We now apply the techniques used in the multi-set approach
(Section III-C) to AMC. The analysis for AMC first computes
the worst-case response time Ri(LO) for each task τi in LO-
criticality mode via (9).

Since under AMC, LO-criticality tasks do not execute in
HI-criticality mode, we only need to consider the response
time Ri(HI) of each HI-criticality task τi in that mode. In
the calculation of Ri(HI) for a HI-criticality task τi, given
in (13) below, we separately consider the context switch costs
due to preemptions by some higher priority HI-criticality task
τj , given in total by γMi,j(HI) and those due to preemptions by

some higher priority LO-criticality task τj , given by γMi,j(LO).
Note, the latter are limited to occurring during Ri(LO).

Ri(HI) = Ci(HI) + CC (13)

+
∑

∀j∈hpH(i)

(⌈
Ri(HI)

Tj

⌉
Cj(HI) + γMi,j(HI)

)

+
∑

∀j∈hpL(i)

(⌈
Ri(LO)

Tk

⌉
Cj(LO) + γMi,j(LO)

)
We first derive an upper bound on γMi,j(HI) by considering

the potential for large context switch costs CC due to the
preemptions of task τi and intermediate priority tasks by jobs
of a HI-criticality task τj , within the response time of task
τi. Here we need only consider those tasks, in aff(i, j), that
can execute during the busy period of task τi and can be
preempted by τj . We consider the HI- and LO-criticality tasks
in this set separately. We use affL(i, j) = hepL(i) ∩ lpL(j)
to denote the LO-criticality tasks, and similarly affH(i, j) =
hepH(i) ∩ lpH(j) to denote the HI-criticality tasks.

HI-criticality task τj can preempt each job of a lower
priority LO-criticality task τk at most Ej(Rk(LO)) times.
This is the case since the response time of τk cannot exceed
Rk(LO) in LO-criticality mode, and if the system enters
HI-criticality mode then τk would be aborted. Further,
LO-criticality task τk can execute at most Ek(Ri(LO)) times
during the response time of HI-criticality task τi. This is the
case since if the response time of τi exceeds Ri(LO), then
the system must have entered HI-criticality mode and so no
more releases of LO-criticality task τk are permitted. Thus the
number of preemptions of τk by τj , within the response time
of τi is upper bounded by Ej(Rk(LO))Ek(Ri(LO)). (By
comparison the upper bound on the number of preemptions is
Ej(Rk(HI))Ek(Ri(HI)) for SMC).

By contrast, HI-criticality task τj can preempt each job of a
lower priority HI-criticality task τh at most Ej(Rh(HI)) times.
Further, HI-criticality task τh can execute at most Eh(Ri(HI))
times during the response time of task τi. Thus the number
of preemptions of τh by τj , within the response time of τi
is upper bounded by Ej(Rh(HI))Eh(Ri(HI)). (This is the
same as for SMC).

To compute γMi,j(HI), we first construct a multi-set MHI
i,j

which contains all the possible context switch costs due to
preemptions by HI-criticality task τj of jobs of LO-criticality
tasks τl|l ∈ affL(i, j) and of jobs of HI-criticality tasks τh|h ∈
affH(i, j) which could potentially occur during the response
time of HI-criticality task τi.

Mi,j(HI) = (14)⋃
h∈affH(i,j)

 ⋃
Ej(Rh(HI))Eh(Ri(HI))

{
CC if Ah 6= Aj
CS otherwise

}
∪

⋃
l∈affL(i,j)

 ⋃
Ej(Rl(LO))El(Ri(LO))

{
CC if Al 6= Aj
CS otherwise

}
From the multi-set, we then obtain an upper bound γMi,j(HI)

on the total context switch costs caused by the maximum



number, Ej(Ri(HI)), of preemptions that can occur due to
jobs of task τj executing within the response time of τi.

γMi,j(HI) =

Ej(Ri(HI))∑
q=1

F (q,Mi,j(HI)) (15)

where F (q,Mi,j(HI)) returns the q-th largest value from the
multi-set Mi,j(HI).

The derivation of an upper bound on γMi,j(LO) follows a
similar approach. Here, we are interested in the potential for
large context switch costs CC due to the preemptions of task
τi and intermediate priority tasks by jobs of a LO-criticality
task τj , within the response time of HI-criticality task τi. Since
τj is a LO-criticality task, it can only execute and hence only
preempt when the system is in LO-criticality mode. γMi,j(LO)
is therefore defined according to (6), with all of the response
time values used in both (6) and (5) taking their R(LO) values
(i.e. Ri(LO) in (6) and Rk(LO) and Ri(LO) in (5)). (By
comparison, the larger R(HI) values are used for SMC).

VI. DOMINANCE RELATIONSHIPS

A scheduling policy X is said to dominate a policy Y if all
tasks sets that are schedulable under Y are also schedulable
under X , and there are also task sets that are schedulable under
X , but not under Y .

We observe that, by construction, for each scheduling policy
(FPPS, SMC, and AMC) the multi-set analysis dominates the
refined analysis which in turn dominates the simple analysis.
Further, for each approach to accounting for context switch
costs (multi-set, refined, simple) the AMC analysis dominates
the SMC analysis which in in turn dominates the FPPS analysis.

VII. PRIORITY ASSIGNMENT

As shown in section III, Deadline Monotonic Priority
Ordering (DMPO) is not optimal for the refined or multi-set
analysis for FPPS, and nor are those analyses compatible with
Audsley’s OPA algorithm. Further, since the counter-examples
presented in Section III do not require different execution
time estimates C(LO) and C(HI), then those negative
results also apply to the refined and multi-set analyses for
SMC and AMC. (Note that Audsley’s algorithm is optimal for
SMC and AMC with no context switch costs, and also with a
simple analysis of context switch costs which inflates
execution times).

Below, we introduce a priority assignment heuristic for a
simplified task model which assumes that all of the
LO-criticality tasks are mapped to a single process and share
a common address space AL, and similarly that all of the
HI-criticality tasks are mapped to a single process and share
an address space AH . (This is an efficient arrangement since
it means that only context switches between criticality levels
incur a large cost).

The intuition for the priority ordering heuristic is that
deadlines have the largest impact on priority assignment, and
so in the cases where DMPO does not provide a feasible
priority ordering, it is likely that if a feasible ordering exists it
will be similar to DMPO (i.e. it may be obtained from DMPO
by swapping just a few tasks in the priority order).

Preliminary experiments using exhaustive search for a feasible
priority ordering showed this to be the case.

The heuristic shown in Algorithm 1 therefore starts with
DMPO. If DMPO is not schedulable, then the algorithm
swaps the priority of two neighboring tasks and determines if
the system is schedulable with the new priority order. If not,
then another pair of neighboring tasks will have their
priorities swapped. If this is not successful, then DMPO will
be restored and the algorithm then proceeds with the next pair
of neighboring tasks. The algorithm thus explores at most n2

priority orderings, compared to n! with an exhaustive search.
This keeps the runtime tractable, while providing effective
performance. (Note, for the multi-set experiments with 10
tasks, shown in Fig. 2 in Section IX, analysis using exhaustive
search took over 70 minutes, whereas with the priority
assignment heuristic it took less than 30 seconds. With more
than 10 tasks, exhaustive search quickly becomes intractable).

Algorithm 1: PriorityAssignmentHeuristic({τ1 . . . τn})
1: bool isSchedulable = false;
2: int i = 1;
3: while (¬ isSchedulable ∧ i < n− 1) do
4: {Outer loop, swaps the priority of two consecutive tasks};
5: swapPriority(i, i+ 1);
6: isSchedulable = checkSchedulability();
7: if (isSchedulable) then
8: break;
9: end if

10: int j = i;
11: while (¬ isSchedulable ∧ j < n− 1) do
12: {Inner loop, swaps the priority of two consecutive tasks};
13: swapPriority(j, j + 1);
14: isSchedulable = checkSchedulability();
15: if (isSchedulable) then
16: break;
17: end if
18: swapPriority(j + 1, j);
19: j = j + 1;
20: end while
21: {If not successful, roll back};
22: swapPriority(i+ 1, i);
23: i = i+ 1;
24: end while
25: return isSchedulable;

VIII. EXPLICIT CACHE MANAGEMENT AND CONTEXT
SWITCH COSTS

In this section, we recap on the approach of Whitham et
al. [52] to explicit cache management, which saves and restores
the cache contents on context switches.

Whitham et al. assume a direct mapped cache (write-through
for data cache), which is supplemented by a Cache Budget
Register (CBR) that records the number of cache lines to be
saved/restored, a save/restore stack (SRS) and control logic.
The SRS is used to store the tag values1 for the cache lines
used by preempted tasks. The control logic implements a state
machine to control cache filling and a control port to allow
the RTOS software to initiate save and restore operations.

On a context switch, the save operation pushes the CBR
and the tags for the specified number of cache blocks on to
the SRS. The associated restore operation undoes the effects

1A tag encodes the address of the memory block stored in a cache line.



of the save. It uses the CBR to determine the number of tag
values to pop from the SRS. For each tag value popped, it
loads the associated memory block from main memory into
the cache. Finally, it pops the CBR value from the SRS. Note
that since save operations involve only accesses to the local
SRS, as opposed to main memory, they are much faster than
restore operations.

Whitham et al. [52] prototyped explicit cache management
on a Xilinx Spartan- 6 FPGA, using a Xilinx Microblaze IP
core. The design is illustrated in Figure 1, reproduced from [52].

 
Fig. 1. FPGA prototype explicit cache management

The prototype implementation runs at 75 MHz (i.e. a 13.3ns
clock cycle). On this system, context switching, to and from
a task without saving and restoring the data and instruction
cache contents, takes 28 µs. The time to save and restore the
cache contents depends on the total size of the cache and the
size of each cache line. Assuming data and instruction caches
of equal size and 32 byte cache lines, the total save and restore
time in nanoseconds (ns) can be estimated from measurements
of the system according to the following formula:

overhead = 651ns+ ((N ∗ 2) ∗ 147)ns (16)

where N is the number of 32 byte cache lines in each of
the 2 caches (data and instruction). The total save and restore
overhead, covering both caches, is given in Table I for a variety
of different cache sizes.

TABLE I
EXPLICIT CACHE MANAGEMENT OVERHEADS

Data cache and instruction cache Save and restore overhead
2 KBytes 19.47 µs
4 KBytes 38.29 µs
8 KBytes 75.92 µs
16 KBytes 151.80 µs
32 KBytes 301.70 µs
64 KBytes 602.76 µs

128 KBytes 1204.88 µs

Note that the prototype implementation does not include
management of virtual memory (it only uses a single address
space).

While we used the prototype implementation to provide
realistic values for different context switch costs, the analysis
presented in Sections III, IV, and V is not restricted to this
implementation or values. It can be applied to any system
using FPPS, SMC, or AMC scheduling, where tasks can be
classified into different groups with different costs for inter-

and intra-group context switches. In practice, the actual costs
incurred would depend on the set of thread-level and process-
level resources that need to be switched and the time taken to
save and restore their state.

IX. EXPERIMENTAL EVALUATION

In this section we provide a systematic evaluation of the
performance of the three different forms of analysis: simple,
refined, and multi-set, for each of the three scheduling
policies: FPPS, SMC, and AMC, using synthetic task sets.
The aim of these experiments is to show the improvement in
schedulability (i.e. guaranteed performance) that can be
obtained by accounting for two different context switch costs
rather than a single large cost i.e. the improvement that the
refined and multi-set approaches using the priority assignment
heuristic provide over the simple approach which is
representative of the current state-of-the-art.

A. Task set parameter generation
The task set parameters used in our experiments were

generated as follows:
• The number of tasks n in each task set was 10.
• Task utilizations (Ui = Ci/Ti) were generated using the

UUnifast algorithm [17], giving an unbiased distribution
of utilization values.

• Task periods were generated according to a log-uniform
distribution with a factor of 100 difference between the
minimum and maximum possible task period. This
represents a spread of task periods from 10ms to 1
second, as found in many hard real-time applications.

• Task deadlines were set equal to their periods.
• The LO-criticality execution time of each task was set

based on the utilization and period: Ci(LO) = Ui/Ti.
• The HI-criticality execution time of each task was a fixed

multiplier of the LO-criticality execution time, Ci(HI) =
CF · Ci(LO), where CF = 2.0.

• The probability that a generated task was a HI-criticality
task was given by the parameter CP , where CP = 0.5.

• All LO-criticality tasks were mapped to a single process
and address space AL. Similarly, all HI-criticality tasks
were mapped to another single process and address space
AH . Thus large context switch costs are only incurred
when switching between tasks of different criticality levels.

All task parameters were computed in integer units of
microseconds (µs), for example task periods ranged from 104

to 106 µs.
The default values used for small and large context switch

costs were CS = 30µs and CC = 600µs respectively. These
values correspond approximately to the cost of a basic context
switch on the prototype hardware (see Section VIII), and to the
cost of a context switch where 64 KByte data and instruction
caches are saved and restored. The effect of varying the large
context switch cost is examined in Section IX-C.

B. Baseline experiment
In our experiments, the task set utilization was varied from

0.025 to 0.9752. For each utilization value, 1000 task sets were

2Note utilization was computed from the C(LO) values only.



generated and the schedulability of those task sets determined
using each of the three scheduling policies: FPPS, SMC, and
AMC, and four forms of analysis: simple, refined, multi-set,
and no-cost, which assumes (optimistically) that all context
switch costs are zero. Results were also obtained for the multi-
set analysis combined with the priority assignment heuristic
and combined with exhaustive priority optimization. In all other
cases, Deadline Monotonic Priority Order (DMPO) was used.
The graphs are best viewed via an electronic copy of the paper
in color.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4  0.5  0.6  0.7  0.8  0.9  1

S
ch

e
d

u
la

b
le

 T
a
sk

se
ts

Utilization

AMC no costs
AMC exhaustive

AMC priority heuristic
AMC multiset analysis
AMC refined analysis
AMC simple analysis

SMC no costs
SMC exhaustive

SMC priority heuristic
SMC multiset analysis
SMC refined analysis
SMC simple analysis

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4  0.5  0.6  0.7  0.8  0.9  1

S
ch

e
d

u
la

b
le

 T
a
sk

se
ts

Utilization

FPPS no costs
FPPS exhaustive

FPPS priority heuristic
FPPS multiset analysis
FPPS refined analysis
FPPS simple analysis

Fig. 2. Success ratio for baseline configuration.

The results of the baseline experiment are shown in Figure 2,
which plots the percentage of task sets generated, using the
default parameters specified in Section IX-A, that were deemed
schedulable by each of the analyses at utilization levels from
0.4 to 1.0.

Observe that for AMC, the improvement obtained by using
multi-set analysis as opposed to refined or simple analysis
is much larger than it is for SMC or FPPS. This is because
the multi-set analysis for AMC is able to account for the
fact that after the LO-criticality response time Rh(LO) of a
HI-criticality task of interest τh, LO-criticality tasks can no
longer execute and hence any further preemptions by higher
priority HI-criticality tasks can only incur a small context
switch cost. With SMC and FPPS, LO-criticality tasks are
eligible to execute during all of Rh(HI), and so preemptions
by higher priority HI-criticality tasks can incur a large cost
over that longer interval.

Both the priority assignment heuristic and exhaustive priority
optimization further improve the performance of the multi-set
analysis for SMC and AMC. With the heuristic providing close
to optimal performance, when compared to exhaustive search
on small task sets.

C. Weighted schedulability experiments
In this section, we provide additional experimental results

showing how the performance of the analysis techniques varies
with: (i) the number of orders of magnitude range between the
minimum and maximum task period, (ii) the task set cardinality,
and (iii) the large context switch cost CC . In these experiments,
all parameters, with the exception of the one being varied, took

their default values as described in Section IX-A. Note that
due to the long runtime, we do not show results for exhaustive
priority optimization on these graphs.

In Figures 3, 4, and 5, we show the weighted schedulability
measure Wy(p) [13] for schedulability test y as a function of
some parameter p. For each value of p, this measure combines
results for the task sets τ generated for all of a set of equally
spaced utilization levels (0.025 to 1.0 in steps of 0.025).

Let Sy(τ, p) be the binary result (1 or 0) of schedulability
test y for a task set τ with parameter value p:

Wy(p) = (
∑
∀τ

U(τ) · Sy(τ, p))/
∑
∀τ

U(τ) (17)

where U(τ) is the utilization of task set τ .
The weighted schedulability measure reduces what would

otherwise be a 3-dimensional plot to 2 dimensions [13].
Weighting the results by task set utilization reflects the higher
value placed on being able to schedule higher utilization task
sets.
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Fig. 3. Weighted schedulability for varying range of task periods.

Figure 3 shows how schedulability varies with the range of
task periods from a factor of 100.5 ≈ 3 difference between
the maximum and minimum period to a factor of 103 = 1000
difference. Observe that as the minimum period remains fixed,
schedulability is reduced in all cases as the range of periods
becomes smaller. There are two reasons for this. Firstly, task
sets with a wider range of periods are intrinsically easier to
schedule with fixed priorities, as shown by the lines for no
context switch costs. Secondly, when context switch costs are
taken into account, then the reduction in task periods also
reduces schedulability since the ratio of context switch time
to task execution times increases. Note that as the range of
task periods reduces, the relative performance of the priority
assignment heuristic improves. This happens because with a
smaller range of task periods, the tasks have similar deadlines,
and so there is more scope to adjust the priority ordering away
from DMPO to reduce the overall context switch costs.

Figure 4 shows how schedulability varies with task set
cardinality. Here, as the number of tasks increases, so the
impact of context switch costs becomes larger and so
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Fig. 4. Weighted schedulability for varying task set cardinality.

schedulability decreases for all analyses except those marked
“no costs” which do not account for such costs. As the
number of tasks increase, so does the relative improvement
obtained by using the multi-set analysis combined with the
priority assignment heuristic for SMC and AMC.
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Fig. 5. Weighted schedulability for varying context switch cost (large).

Figures 5 shows how schedulability varies with increasing
context switch costs. As expected, weighted schedulability
decreases approximately linearly with increasing context switch
costs. As the context switch costs increase, so the improvement
obtained via the multi-set analysis combined with the priority
assignment heuristic becomes more pronounced.

X. RELATED WORK

Early work on accounting for scheduling overheads in Fixed
Priority Preemptive Scheduling (FPPS) by Katcher et al. [34]
in 1993, Burns [20] in 1994, and Burns et al. [23] in 1995,
focused on scheduler overheads and processor context switch
costs, accounting for the maximum number of preemptions that
could potentially occur. Echague et al. [31] aimed to solve the
problem more precisely for periodic task sets by finding the
exact number of preemptions; however, they did not include the

duration of the context switches which can lead to an increased
number of preemptions. In 2007 Yomsi and Sorel [56] showed
that for periodic task sets, the critical instant does not occur
on simultaneous release of the tasks when context switch costs
are considered, and derived the exact number of preemptions
for each job in the hyper-period.

Much of the subsequent work has focused on providing
analyses for specific types of preemption related overheads
caused by hardware resources that are in use at the time of
preemption, for example delays relating to the sharing of caches
or scratch-pads, or on ways of ameliorating these effects, for
example via cache partitioning.

Analysis of Cache Related Preemption Delays (CRPD) and
their integration into schedulability analyses for FPPS used
the concepts of Useful Cache Blocks (UCBs) and Evicting
Cache Blocks (ECBs). In 1996, Busquets et al. introduced the
ECB-Only approach [24], which considers just the preempting
task; while in 1998, Lee et al. developed the UCB-Only
approach [36], which considers just the preempted task(s).
Both the UCB-Union approach [47] developed by Tan and
Mooney in 2007, and the ECB-Union approach [1] derived by
Altmeyer et al. in 2011 consider both the preempted and
preempting tasks. As does an alternative approach [46]
developed by Staschulat et al. in 2005. These approaches
were later superseded by multiset based methods (ECB-Union
Multiset and UCB-Union Multiset) which dominate them [2].
These methods have subsequently been adapted to EDF
scheduling by Lunniss et al. [39] [38].

Cache partitioning is one way of eliminating CRPD; however,
this results in inflated WCETs due to the reduced cache partition
size available to each task. In 2014, Altmeyer et al. [3], [4]
derived an optimal cache partitioning algorithm for the case
where each task has its own partition. They showed that the
trade off between longer WCETs and CRPD often favors
sharing the cache rather than partitioning it.

An alternative form of local memory to cache is a scratch pad.
If a scratch pad is to be shared between tasks in a preemptive
system, then either the scratch pad contents need to be static
(i.e. shared by all tasks) which can be ineffective, or the scratch
pad contents need to be dynamic, i.e. saved and restored on
preemptions. In 2012, Whitham et al. [52], [53] developed
a dynamic scratch pad memory reuse scheme and showed
how Scratch pad Related Preemption Delays (SRPD) could be
integrated into schedulability analysis for FPPS.

Other work has focused on adaptations to the FPPS policy
that reduce the number of context switches and their impact, for
example scheduling using preemption thresholds and limited
or deferred preemption.

Preemption thresholds [35], [43], [44], [51] provide a means
of reducing the number of preemptions by making certain
groups of tasks non-preemptable with respect to each other.
In 2014, Bril et al. [18] integrated CRPD into analysis for
fixed-priority scheduling with preemption thresholds. Further
work in this area by Wang et al. [50] in 2015 showed that by
using preemption thresholds, groups of tasks can share a cache
partition while still avoiding CRPD.

Two different models of fixed priority scheduling with
deferred preemption have been developed. In the fixed model,



introduced by Burns in 1994 [20], preemption is only
permitted at fixed preemption points within the code of each
task. This method is also referred to as co-operative
scheduling. In the floating model [11], [55], an upper bound
is given on the length of the longest non-preemptive region of
each task, at run-time non-preemptive behavior is then
controlled by the operating system. Exact schedulability
analysis for the fixed model was derived by Bril et al. in 2009
[19]. In 2010, Bertogna et al. integrated preemption effects
into analysis of the fixed model, considering both fixed [15]
and variable [16] costs. In 2012, Davis and Bertogna [28],
derived an optimal method of assigning both priorities and the
length of the final non-preemptive region of each task in order
to maximize schedulability. In 2015, Cavicchio et al. [26]
derived an optimal method of placing preemption points that
minimizes CRPD. For further information on limited
preemption scheduling see the survey by Buttazzo et al. [25].

In 2014, Mohan et al. [40], [41] presented analysis for fixed
priority non-preemptive scheduling, assuming that a Flush Task
(FT) is required to run whenever execution switches from a
high security task to a low security task. A min-cost flow
graph formulation was used to upper bound the maximum
number of flushes required within the response time of a
task. The upper bound is found by considering (in polynomial
time) possible permutations of the order of the jobs within
the busy period of the task, without regard to their actual
arrival times. Further work in this area considered both non-
preemptive and preemptive scheduling [42]. The approach has
also been adapted to mixed criticality systems scheduled using
non-preemptive AMC [8].

The analysis derived in this paper builds on the schedulability
tests for FPPS [5], [33], SMC [10], and AMC [9]. It and
employs some of the multi-set techniques first used for CRPD
analysis in [2], tailored to the analysis of context switch costs.

XI. CONCLUSIONS

In mixed criticality systems, it is vital to ensure that there
is sufficient separation between tasks of LO- and HI-criticality
applications, so that the behavior or mis-behavior of the former
cannot affect the functional or timing behavior of the latter. To
ensure appropriate spatial isolation, the memory address spaces
used by LO- and HI-criticality tasks must be distinct. In this
paper, we modeled tasks as belonging to different processes.
Tasks within the same process share an address space that is
distinct from the address spaces used by tasks belonging to
other processes. A consequence of this separation is that the
cost of switching between tasks of the same same process (e.g.
the same criticality level) is low, whereas the cost of context
switching between tasks of different processes (e.g. different
criticality levels) can be much higher, due to the additional
resources that need to be switched.

We assumed that process-level context switches, which
switch address space, also require that the cache contents are
saved and subsequently restored via an explicit cache
management mechanism. Combined with cache partitioning
between tasks belonging to the same process, this mechanism
eliminates Cache Related Preemption Delays (CRPD). This

ensures that the only impact of a LO-criticality task
(belonging to one process) on a HI-criticality task (belonging
to another process) is due to the task execution time which is
enforced by the RTOS, and a fixed context switch cost. This
approach also has the advantage that it prevents security
hazards due to a compromised low security process obtaining
information from the cache contents of a high security
process which it either preempts or follows.

Measurements from an existing prototype implementation on
a 75 MHz FPGA showed that the context switch costs are of
the order of 30µs for a thread-level context switch and 600µs
for a process-level context switch, which additionally saves and
restores the contents of 64 Kbyte data and instruction caches.

The main contribution of this paper is in integrating the
differing context switch costs into schedulability analysis for
fixed priority preemptive scheduling, and the two mixed
criticality scheduling schemes, SMC and AMC, based on it.
We derived simple, refined, and multi-set analyses for each
scheme. Further, our analysis covers the general case where
multiple applications (of either HI- or LO-criticality) are each
mapped to a different process. It assumes that there are two
different context switch costs, corresponding to inter-process
context switches (a large cost) and intra-process context
switches (a small cost). Many different processes may be
considered with no increase in complexity in the analysis.

We showed that the refined and multi-set analyses are not
compatible with Audsley’s Optimal Priority Assignment (OPA)
algorithm [6], [7]. We therefore proposed a heuristic priority
assignment technique aimed at improving schedulability by
reducing the number of high cost context switches for systems
where all HI-criticality tasks are mapped to one process, and
all LO-criticality tasks to another. Our systematic evaluation
showed the effectiveness of the different analyses and the
priority assignment technique, using representative context
switch costs obtained from the prototype system.

In practice, the cost of context switches must be accounted
for in any valid schedulability analysis used to verify the timing
correctness of a real-time system using pre-emptive scheduling.
Accounting for two different context switch costs provides a
more precise analysis than subsuming a single large context
switch cost into task execution times or ignoring these costs
altogether. Compared to simple analysis, the more precise multi-
set approach can provide the headroom necessary to add more
functionality to a system without requiring costly hardware
upgrades or software optimization. Alternatively, it may show
that a system is schedulable when the simple analysis does
not, avoiding the need for unnecessary and costly changes.

One of the disadvantages of employing fully preemptive
scheduling is the large number of context switches that may
occur. There are a number of techniques that have been
developed that can reduce the number of context switches and
hence improve schedulability. In future, we aim to explore the
integration of different context switch costs into mixed
criticality scheduling with deferred preemption [21] and with
preemption thresholds [57], as well as extension of the
approach to systems with more than two criticality levels [32].



Acknowledgements
The research in this paper is partially funded by the ESPRC

grant, MCCps (EP/K011626/1) and by the NWO Veni Project
“The time is now: Timing Verification for Safety-Critical Multi-
Cores”. EPSRC Research Data Management: No new primary
data was created during this study.

REFERENCES

[1] S. Altmeyer, R. I. Davis, and C. Maiza. Cache related pre-emption aware
response time analysis for fixed priority pre-emptive systems. In RTSS,
pages 261–271, December 2011.

[2] S. Altmeyer, R. I. Davis, and C. Maiza. Improved cache related pre-
emption delay aware response time analysis for fixed priority pre-emptive
systems. Real-Time Systems, 48(5):499–526, 2012.

[3] S. Altmeyer, R. Douma, W. Lunniss, and R.I. Davis. Evaluation of cache
partitioning for hard real-time systems. In ECRTS, pages 15–26, July
2014.

[4] S. Altmeyer, R. Douma, W. Lunniss, and R.I. Davis. On the effectiveness
of cache partitioning in hard real-time systems. Real-Time Systems, pages
1–46, Jan 2016.

[5] N. C. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings.
Applying new scheduling theory to static priority pre-emptive scheduling.
Software Engineering Journal, 8:284–292, 1993.

[6] N.C. Audsley. Optimal priority assignment and feasibility of static
priority tasks with arbitrary start times. Technical report, Dept. Computer
Science, University of York, UK, 1991.

[7] N.C. Audsley. On priority assignment in fixed priority scheduling. pages
39–44, May 2001.

[8] Hyeongboo BAEK and Jinkyu LEE. Incorporating security constraints
into mixed-criticality real-time scheduling. IEICE Transactions on
Information and Systems, E100.D(9):2068–2080, 2017.

[9] S. Baruah, A. Burns, and R.I. Davis. Response-Time Analysis for Mixed
Criticality Systems. In Real-Time Systems Symposium (RTSS), IEEE,
pages 34–43, 2011.

[10] S. Baruah and S. Vestal. Schedulability Analysis of Sporadic Tasks
with Multiple Criticality Specifications. In Proceedings of the Euromicro
Conference on Real-Time Systems, pages 147–155, 2008.

[11] S. K. Baruah. The limited-preemption uniprocessor scheduling of sporadic
task systems. In 17th Euromicro Conference on Real-Time Systems
(ECRTS 2005), 6-8 July 2005, Palma de Mallorca, Spain, Proceedings,
pages 137–144, 2005.

[12] S.K. Baruah and A. Burns. Implementing mixed criticality systems in
Ada. In A. Romanovsky, editor, Proc. of Reliable Software Technologies
- Ada-Europe 2011, pages 174–188. Springer, 2011.

[13] A. Bastoni, B. Brandenburg, and J. Anderson. Cache-related
preemption and migration delays: Empirical approximation and impact
on schedulability. In OSPERT, pages 33–44, July 2010.

[14] I. Bate, A. Burns, and R.I. Davis. An enhanced bailout protocol for
mixed criticality embedded software. IEEE Transactions on Software
Engineering, PP(99):1–1, 2016.

[15] M. Bertogna, G. Buttazzo, M. Marinoni, G. Yao, F. Esposito, and
M. Caccamo. Preemption points placement for sporadic task sets. In
Real-Time Systems (ECRTS), 2010 22nd Euromicro Conference on, pages
251–260. IEEE, 2010.

[16] M. Bertogna, O. Xhani, M. Marinoni, F. Esposito, and G. Buttazzo.
Optimal selection of preemption points to minimize preemption overhead.
In Real-Time Systems (ECRTS), 2011 23rd Euromicro Conference on,
pages 217–227. IEEE, 2011.

[17] E. Bini and G. Buttazzo. Measuring the performance of schedulability
tests. Real-Time Syst., 30:129–154, May 2005.

[18] R. J. Bril, S. Altmeyer, M. M. H. P. van den Heuvel, R.I. Davis, and
M. Behnam. Integrating cache-related pre-emption delays into analysis
of fixed priority scheduling with pre-emption thresholds. In RTSS, pages
161–172, 2014.

[19] R.J. Bril, J.J. Lukkien, and W.F.J. Verhaegh. Worst-case response time
analysis of real-time tasks under fixed-priority scheduling with deferred
preemption. Real-Time Systems, 42(1):63–119, 2009.

[20] A. Burns. Preemptive priority based scheduling: An appropriate
engineering approach. In S.H. Son, editor, Advances in Real-Time
Systems, pages 225–248. Prentice-Hall, 1994.

[21] A. Burns and R. I. Davis. Adaptive mixed criticality scheduling with
deferred preemption. In Real-Time Systems Symposium (RTSS), 2014
IEEE, pages 21–30. IEEE, 2014.

[22] A. Burns and R. I. Davis. A survey of research into mixed criticality
systems. ACM Comput. Surv., 50(6):82:1–82:37, November 2017.

[23] A. Burns, K. Tindell, and A. Wellings. Effective analysis for engineering
real-time fixed priority schedulers. IEEE Transactions on Software
Engineering, 21(5):475–480, May 1995.

[24] J. V. Busquets-Mataix, J. J. Serrano, R. Ors, P. Gil, and A. Wellings.
Adding instruction cache effect to schedulability analysis of preemptive
real-time systems. In RTAS, pages 204–212, June 1996.

[25] G. C. Buttazzo, M. Bertogna, and G. Yao. Limited preemptive scheduling
for real-time systems. a survey. IEEE Transactions on Industrial
Informatics, 9(1):3–15, 2013.

[26] J. Cavicchio, C. Tessler, and N. Fisher. Minimizing cache overhead via
loaded cache blocks and preemption placement. In 2015 27th Euromicro
Conference on Real-Time Systems, pages 163–173, July 2015.

[27] Y. Chen, K.G. Shin, and H. Xiong. Generalizing fixed-priority scheduling
for better schedulability in mixed-criticality systems. Information
Processing Letters, 116(8):508–512, 2016.

[28] R. I. Davis and M. Bertogna. Optimal fixed priority scheduling with
deferred pre-emption. In Real-Time Systems Symposium (RTSS), 2012
IEEE 33rd, pages 39–50. IEEE, 2012.

[29] R.I. Davis and A. Burns. Improved priority assignment for global fixed
priority pre-emptive scheduling in multiprocessor real-time systems. In
Real-Time Systems, Volume 47, Issue 1, pages 1–40, 2010.

[30] F. Dorin, P. Richard, M. Richard, and J. Goossens. Schedulability and
sensitivity analysis of multiple criticality tasks with fixed-priorities. Real-
Time Systems Journal, 46(3):305–331, 2010.

[31] J. Echague, I. Ripoll, and A. Crespo. Hard real-time preemptively
scheduling with high context switch cost. In Proceedings Seventh
Euromicro Workshop on Real-Time Systems, pages 184–190, Jun 1995.

[32] T. Fleming and A. Burns. Extending mixed criticality scheduling. In
Proc. WMC, RTSS, pages 7–12, 2013.

[33] M. Joseph and P. Pandya. Finding Response Times in a Real-Time
System. The Computer Journal, 29(5):390–395, May 1986.

[34] D.I. Katcher, H. Arakawa, and J.K. Strosnider. Engineering and analysis
of fixed priority schedulers. IEEE Trans. Softw. Eng., 19, 1993.

[35] U. Keskin, R.J. Bril, and J.J. Lukkien. Exact response-time analysis
for fixed-priority preemption-threshold scheduling. In Work-in-Progress
Session ETFA, 2010.

[36] C.-G. Lee, J. Hahn, Y.-M. Seo, S.L. Min, R. Ha, S. Hong, C. Y. Park,
M. Lee, and C. S. Kim. Analysis of cache-related preemption delay in
fixed-priority preemptive scheduling. IEEE Transactions on Computers,
47(6):700–713, 1998.

[37] J.Y.-T. Leung and J. Whitehead. On the complexity of fixed-priority
scheduling of periodic real-time tasks. In Performance Evaluation 2(4),
pages 237–250, 1982.

[38] W. Lunniss, S. Altmeyer, and R. I. Davis. A comparison between fixed
priority and edf scheduling accounting for cache related pre-emption
delays. Leibniz Transactions on Embedded Systems, 1(1):01–1–01:24,
2014.

[39] W. Lunniss, S. Altmeyer, C. Maiza, and R. I. Davis. Integrating cache
related pre-emption delay analysis into edf scheduling. In RTAS, pages
75–84, April 2013.

[40] S. Mohan, M. K. Yoon, R. Pellizzoni, and R. Bobba. Real-time
systems security through scheduler constraints. In 2014 26th Euromicro
Conference on Real-Time Systems, pages 129–140, July 2014.

[41] S. Mohan, M-K. Yoon, R. Pellizzoni, and R. B. Bobba. Integrating
security constraints into fixed priority real-time schedulers. Real-Time
Syst., 52(5):644–674, September 2016.

[42] R. Pellizzoni, N. Paryab, M. K. Yoon, S. Bak, S. Mohan, and R. B.
Bobba. A generalized model for preventing information leakage in hard
real-time systems. In 21st IEEE Real-Time and Embedded Technology
and Applications Symposium, pages 271–282, April 2015.

[43] J. Regehr. Scheduling tasks with mixed preemption relations for
robustness to timing faults. In RTSS, pages 315–25, December 2002.

[44] M. Saksena and Y. Wang. Scalable real-time system design using
preemption thresholds. In Proceeding of the IEEE Real-Time Systems
Symposium (RTSS), pages 25–34, December 2000.

[45] F. Santy, L. George, P. Thierry, and J. Goossens. Relaxing mixed-
criticality scheduling strictness for task sets scheduled with FP. In
Proceedings of the Euromicro Conference on Real-Time Systems, pages
155–165, 2012.



[46] J. Staschulat, S. Schliecker, and R. Ernst. Scheduling analysis of real-
time systems with precise modeling of cache related preemption delay.
In ECRTS, July 2005.

[47] Y. Tan and V. Mooney. Timing analysis for preemptive multi-tasking
real-time systems with caches. Trans. on Embedded Computing Sys.,
6(1), 2007.

[48] K. W. Tindell. Extendible approach for analysing fixed priority hard
real-time tasks. Journal of Real-Time Systems, 6, 1992.

[49] S. Vestal. Preemptive Scheduling of Multi-criticality Systems with
Varying Degrees of Execution Time Assurance. In Real-Time Systems
Symposium (RTSS), IEEE, 2007.

[50] C. Wang, Z. Gu, and H. Zeng. Integration of cache partitioning and
preemption threshold scheduling to improve schedulability of hard real-
time systems. In Proceedings of the Euromicro Conference on Real-Time
Systems (ECRTS), pages 69–79, 2015.

[51] Y. Wang and M. Saksena. Scheduling fixed-priority tasks with preemption
threshold. In Proceedings of the International Conference on Real-Time
Computing Systems and Applications (RTCSA), pages 328–335, 1999.

[52] J. Whitham, N. C. Audsley, and R. I. Davis. Explicit reservation of
cache memory in a predictable, preemptive multitasking real-time system.

ACM Transactions on Embedded Computing Systems (TECS), 13(4s):120,
2014.

[53] J. Whitham, R.I. Davis, N.C. Audsley, S. Altmeyer, and C. Maiza.
Investigation of scratchpad memory for preemptive multitasking. In
RTSS, pages 3–13, December 2012.

[54] S. Yamada and S. Kusakabe. Effect of context aware scheduler on
tlb. In 2008 IEEE International Symposium on Parallel and Distributed
Processing, pages 1–8, April 2008.

[55] Gang Yao, Giorgio Buttazzo, and Marko Bertogna. Bounding the
maximum length of non-preemptive regions under fixed priority
scheduling. In Embedded and Real-Time Computing Systems and
Applications, 2009. RTCSA’09. 15th IEEE International Conference
on, pages 351–360. IEEE, 2009.

[56] P. M. Yomsi and Y. Sorel. Extending rate monotonic analysis with
exact cost of preemptions for hard real-time systems. In 19th Euromicro
Conference on Real-Time Systems (ECRTS’07), pages 280–290, July
2007.

[57] Q. Zhao, Z. Gu, and H. Zeng. Pt-amc: Integrating preemption thresholds
into mixed-criticality scheduling. In 2013 Design, Automation Test in
Europe Conference Exhibition (DATE), pages 141–146, March 2013.


