Improvements to Static Probabilistic Timing Analysis for Systems with Random Cache Replacement Policies

Rob Davis
Real-Time Systems Research Group,
Department of Computer Science,
University of York, York, UK.
rob.davis@york.ac.uk
Static Probabilistic Timing Analysis (SPTA)

- Aim is to show that the probability of timing failure falls below some threshold e.g. 10^{-9} failures per hour: pWCET v. budget

```
CPU

Program

Instruction Cache

Memory

Inputs

Random replacement policy

Probabilistic WCET (pWCET) distribution
```
pWCET distribution (1-CDF)

- pWCET without pre-emption
- pWCET with 1 pre-emption
- Upper bound ≤ relationship

![Diagram showing the probability distribution of execution time with different bounds and pre-emption scenarios.](image)
Simple model of execution

- Instructions are either:
 - Cache hit or cache miss
 - Misses take longer ($H = 1$ cycle, $M = 10$ cycles)

- Fully associative cache of N blocks
 - Memory blocks can be loaded into any block in cache
 - Each instruction resides in a memory block

- On a cache miss
 - Random choice of cache block to evict
 - Evict that block, load the requested block into the evicted location

- Probability of a cache hit:
 $$P_{hit}(k) = \left(\frac{N - 1}{N} \right)^k$$
 (when $k < N$ otherwise 0)

 - k is **re-use distance** = number of intervening evictions since the memory block was last loaded into cache
Static Probabilistic Timing Analysis
(for single path programs)

- Sequence of instructions represented by their memory blocks
 \(a, b, a^1, c, d, b^3, c^2, d^2, a^5 \)

- Get a probability distribution (pWCET) for each instruction
 - Depends only on re-use distance \(k \)
 - Possible to model instructions as independent, hence we can convolve distributions for instructions to get a pWCET distribution for a sequence of instructions

 E.g. two instructions with \(P_{hit} = 0.8 \) and \(0.7 \)
 \[
 \begin{pmatrix}
 1 & 10 \\
 0.8 & 0.2
 \end{pmatrix}
 \otimes
 \begin{pmatrix}
 1 & 10 \\
 0.7 & 0.3
 \end{pmatrix}
 =
 \begin{pmatrix}
 2 & 11 & 20 \\
 0.56 & 0.38 & 0.06
 \end{pmatrix}
 \]
pWCET distribution (1-CDF)
SPTA has some pessimism

- Sequence of instructions represented by their memory blocks: a, b, a\(^1\), c, d, b\(^3\), c\(^2\), d\(^2\), a\(^5\)

- Consider the a\(^5\)
 - 5 because of the intervening instructions c, d, b\(^3\), c\(^2\), d\(^2\)
 - c, d, are definitely misses
 - b\(^3\), c\(^2\), d\(^2\) considered as misses when analysing a\(^5\)

Pessimistic because the probability that b\(^3\), c\(^2\), d\(^2\) are all misses is already < 7.1x10\(^{-7}\) (with N = 256)

How can we obtain a tighter pWCET that is still correct (not optimistic)?
Reducing the pessimism

\[P_{hit} = \left(\frac{N - 1}{N} \right) \sum P_{miss} \]

But is it correct?
consider a, b, a¹, b¹ with \(N = 2 \)

for b¹ \[P_{hit} = \left(\frac{1}{2} \right)^{1/2} = 1/\sqrt{2} \]

Irrational value for a probability?
Counter example: Analysis from [5]

Consider \(a, b, a^1, b^1 \) with \(N = 4 \)

- Distributions for \(a, b, a^1 \)

 \[
 \begin{pmatrix}
 10 \\
 1
 \end{pmatrix} \begin{pmatrix}
 10 \\
 1
 \end{pmatrix} \begin{pmatrix}
 1 & 10 \\
 0.75 & 0.25
 \end{pmatrix}
 \]

- For \(b^1 \) \(\left(\frac{3}{4} \right)^{0.25} = 0.9306 \) according to [5]

- Hence

 \[
 \begin{pmatrix}
 10 \\
 1
 \end{pmatrix} \otimes \begin{pmatrix}
 10 \\
 1
 \end{pmatrix} \otimes \begin{pmatrix}
 1 & 10 \\
 0.75 & 0.25
 \end{pmatrix} \otimes \begin{pmatrix}
 0.9306 & 0.0694
 \end{pmatrix} = \begin{pmatrix}
 22 & 31 & 40 \\
 0.69795 & 0.2847 & 0.01735
 \end{pmatrix}
 \]
Consider \(a, b, a^1, b^1 \) with \(N = 4 \). Two cases:

- **Case 0**: \(a^1 \) is a hit (probability of occurrence = 0.75)

 - Given that \(a^1 \) is a hit then \(b^1 \) is guaranteed to also be a hit

 \[
 \text{Partial pWCET} = \begin{pmatrix} 10 \\ 1 \end{pmatrix} \times \begin{pmatrix} 10 \\ 1 \end{pmatrix} \times \begin{pmatrix} 1 \\ 0.75 \end{pmatrix} \times \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 22 \\ 0.75 \end{pmatrix}
 \]

- **Case 1**: \(a^1 \) is a miss (probability of occurrence = 0.25)

 - Given that \(a^1 \) is a miss then \(b^1 \) has \(P_{hit} = 0.75 \)

 \[
 \text{Partial pWCET} = \begin{pmatrix} 10 \\ 1 \end{pmatrix} \times \begin{pmatrix} 10 \\ 1 \end{pmatrix} \times \begin{pmatrix} 10 \\ 0.25 \end{pmatrix} \times \begin{pmatrix} 1 \\ 0.75 \end{pmatrix} \times \begin{pmatrix} 10 \\ 0.25 \end{pmatrix} = \begin{pmatrix} 31 & 40 \\ 0.1875 & 0.0625 \end{pmatrix}
 \]

- **Overall pWCET** = \[
 \begin{pmatrix} 22 & 31 & 40 \\ 0.75 & 0.1875 & 0.0625 \end{pmatrix}
 \]

This is precise - we covered all possibilities
Consider a, b, a^1, b^1 with $N = 4$.

- Precise analysis:
 \[
 \begin{pmatrix}
 22 & 31 & 40 \\
 0.75 & 0.1875 & 0.0625 \\
 \end{pmatrix}
 \]
 Exact but exponential complexity

- Analysis from [5]:
 \[
 \begin{pmatrix}
 22 & 31 & 40 \\
 0.69795 & 0.2847 & 0.01735 \\
 \end{pmatrix}
 \]
 Optimistic

- Simple analysis from [3]:
 \[
 \begin{pmatrix}
 22 & 31 & 40 \\
 0.5625 & 0.375 & 0.0625 \\
 \end{pmatrix}
 \]
 Pessimistic but Ok
Open Problem: Can we tighten the pWCET (1-CDF) found by SPTA?

- Sequence of instructions represented by their memory blocks $a, b, a^1, c, d, b^3, c^2, d^2, a^5$ with re-use distances
- Probability of a hit for a single instruction (for $k < N$)
 \[P_{hit}(k) = \left(\frac{N - 1}{N} \right)^k \]
- Convolve pWCET distributions for individual instructions to get overall pWCET distribution for the sequence
- Existing analysis is simple but somewhat pessimistic as intervening instructions are not necessarily certain to be misses
- Precise analysis is exponential in complexity

Can we find a tighter upper bound on the pWCET that can be computed efficiently?
Extent of the pessimism

Can we close this gap?