A Standard Notation for Real-Time Scheduling

Rob Davis
Real-Time Systems Research Group
University of York
Introduction

- Last 20 years has seen significant growth in the number of people active in the Real-Time Scheduling community and the number of publications

- Today more than ever, it is important we make our research as easy as possible for others to understand and build upon

- All experienced difficulty and frustration trying to decipher unfamiliar, arbitrary and cryptic notation [1]

Proceedings: http://www.cs.unc.edu/~baruah/AlanFest/Procs.pdf

[1] It would be unfair to pick out any one paper for criticism but I see you checked hoping it wasn’t yours!
Pirate Notation

- A cruel and unusual punishment for reviewers

\[C_r - RA_r - r_r = \text{sum}(\forall l > r \left(r_l \cdot \text{ceil}(C_r, R_l) \right)) \]

- \(C_r \) is the completion time of task \(r \) relative to its release time
- \(RA_r \) is the time for which task \(r \) is delayed due to Resource Accesses
- \(r_r \) is the runtime of task \(r \)
- \(R_l \) is the Release interval of task \(l \)
A Standard Notation

- All experienced the pleasure of reading interesting, insightful, well-structured papers with clear step-by-step analysis, that uses precise terminology, and a concise, consistent and well thought-out notation [8]

[8] It would be unfair to pick out any one paper for praise but I see you checked this time hoping it was yours!

- Alan contributed greatly
 - through the volume and quality of his published research (450+ publications)
 - Number of people reading his work (~15,000 citations)
 - Number of PhD students he’s supervised and nurtured into independent researchers

- Shaped a de-facto standard terminology and notation adopted by many in the real-time community
A Standard Notation

In honour of Alan’s 0x3C birthday and his enduring contribution to real-time systems research, we hope that this de-facto standard notation will from now on be referred to as:

Burns Standard Notation

and its use become so widespread that in a few years it will be hard to find a new paper on real-time scheduling that does not use it.
Burns Standard Notation

- An easy notation to use, understand and extend

\[R_i = B_i + C_i + \sum_{k \in hp(i)} \left(\frac{R_i}{T_k} \right) C_k \]

- \(R_i \) Response time of task \(\tau_i \)
- \(B_i \) Blocking time for task \(\tau_i \)
- \(C_i \) Computation time of task \(\tau_i \)
- \(T_k \) minimum inter-arrival time of task \(\tau_i \)
- \(hp(i) \) set of tasks with priorities higher than that of task \(\tau_i \)
Burns Standard Notation

- **Guidelines** for using and extending Burns Standard Notation appear in the paper, along with the most commonly used examples.

Please do use

Burns Standard Notation

Don’t use

Pirate Notation