Extending Ravenscar with CSP Channels

Diyaa-Addein Atiya and Steve King

Department of Computer Science, University of York,
Heslington, York, YO10 5DD, UK
{diyaa, king}@cs.york.ac.uk

Abstract. The Ravenscar Profile is a restricted subset of the Ada task-
ing model, designed to meet the requirements of producing analysable
and deterministic code. A central feature of Ravenscar is the use of
protected objects to ensure mutually exclusive access to shared data.
This paper uses Ravenscar protected objects to implement CSP chan-
nels in Ada — the proposed implementation is formally verified using
model checking. The advantage of these Ravenscar channels is trans-
forming the data-oriented asynchronous tasking model of Ravenscar into
the cleaner message-passing synchronous model of CSP. Thus, formal
proofs and techniques for model-checking CSP specifications can be ap-
plied to Ravenscar programs. In turn, this increases confidence in these
programs and their reliability. Indeed, elsewhere, we use the proposed
Ravenscar channels as the basis for a cost-effective technique for verify-
ing concurrent safety-critical system.

1 Introduction

Ada’s model for concurrent programming is powerful and extensive, but it is also
complex, making it difficult to reason about the properties of real-time systems.
Indeed, analysis of programs that make unrestricted use of Ada run-time features
like rendezvous, select statements, and abort is currently infeasible [4]. With
predictability and verifiability as design objectives, the Ravenscar Profile [3,4]
has been proposed as a greatly simplified subset of the Ada tasking model.

In Ravenscar, there is no task-to-task communication as that of Ada’s ren-
dezvous constructs. Instead, data communications between tasks are indirect,
through the use of protected objects. This makes protected objects central and
fundamental building blocks in Ravenscar programs. We use Ravenscar protected
objects to implement CSP [6] channels in Ada. This allows us to transform the
data-oriented asynchronous tasking model of Ravenscar into the synchronous
message-passing model of CSP. The advantages of doing this are manifold. For
example, the CSP model eliminates the need for the programmer to worry about
synchronization and physical data transfer between communicating tasks; all of
these are now embedded into the channel construct. Also, synchronous Raven-
scar programs are more amenable to formal proof and model checking. In turn,
this contributes to the production of more reliable and trustworthy systems.

The rest of this paper is organised as follows. Section 2 provides a brief
account of Ravenscar protected objects. Section 3 presents an implementation

T. Vardanega and A. Wellings (Eds.): Ada-Europe 2005, LNCS 3555, pp. 79-90] 2005.
(© Springer-Verlag Berlin Heidelberg 2005

80 D.-A. Atiya and S. King

of CSP channels in Ravenscar. Section 4 describes a CSP model for the Ravenscar
implementation. Using that CSP model, Section 5 shows that the implemented
Ravenscar channels have the same semantics as CSP channels. Finally, Section 6
draws conclusions and discusses related work.

2 Ravenscar Protected Objects

Simply, Ravenscar protected objects are Ada protected objects with extra re-
strictions imposed to meet various design requirements such as determinism and
schedulability analysis. Thus, as in Ada, a Ravenscar protected object ensures
mutually exclusive access to its encapsulated data, through a provided interface
of protected functions, protected procedures, and/or protected entries. However,
to meet the design requirements, the Profile imposes a number of restrictions
on protected objects. Many of these restrictions are syntactic; for example, the
Ravenscar Profile does not permit declaration of protected objects local to sub-
programs, tasks, or other protected objects. The discussion of such restrictions is
not relevant to this work; rather, we are interested in the restrictions imposed on
the functional aspects of protected objects, which can be summarised as follows:

R1 A protected object can have at most one entry.

R2 No more than one task may queue on an entry at any time.

R3 The barrier must be either static or the value of a state variable.

R4 As in Ada, potentially blocking operations are not allowed inside the body
of a protected object.

An application could further restrict R2 so that only one task is able to call
each protected entry. This paper adopts the stronger version of R2, as a static
check could be provided for it.

Figure 1 represents a Ravenscar protected object, Data, which comprises: a
protected entry Get, a protected procedure Put, and two variables. The first
variable, d, represents the encapulated data, which can be of any valid Ada
type T. The second variable, ReadyToRead, is of type Boolean and is used as a
barrier for Get. The definition of Data guarantees that every call to the protected
entry Get has to be followed by a call to the protected procedure Put before
the next entry call can execute. This protected object is used as part of the
implementation of CSP channels in Ravenscar, see Section 3.

3 Implementing CSP Channels in Ravenscar

In CSP, communication between concurrent processes occurs by passing values
on channels. Two types of events can happen on a channel: input and output.
An input receives a value from a channel and assigns that value to a variable. An
output event, on the other hand, sends out a value to a channel. Respectively,
the CSP notation for input and output is ¢?z : T and c!v — where ¢ is the
channel name, z is the variable to which the input value is assigned, v is the

Extending Ravenscar with CSP Channels 81

protected Data is

entry Get(var: out T);

procedure Put(var: in T);
Private

d : T;

ReadyToRead : Boolean := False;
end Data;

protected body Data is
entry Get(var: out T) when ReadyToRead is

begin

var = d;

ReadyToRead := False;
end Get;

procedure Put(var: in T) is
begin
d := var;
ReadyToRead := True;
end Put;
end Data;

Fig. 1. Protected object Data

value output through the channel, and T is the type of values communicated on
the channel c.

CSP channels are synchronous; that is, both the input and the output pro-
cesses have to be ready for a communication to proceed, and whoever gets to the
communication point first has to wait for the other party. In this section we con-
sider two Ada tasks, Producer and Consumer, and provide an implementation
of a CSP channel for communicating values from Producer to Consumer.

We need two protected objects:

1. Data (Figure 1): encapsulates the data communicated between the tasks,
and ensures that every read by Consumer is followed with a write by Pro-
ducer. The protected object comprises a protected entry Get, a protected
procedure Put, and two variables. Only the task Consumer can call Get and
only the task Producer can call Put.

2. Sync (Figure 2): ensures that whoever reads/writes first has to wait for syn-
chronisation with the other party before leaving the channel. The protected
object comprises a protected entry Stay, a protected procedure Proceed, and
a boolean variable HasRead which is used as a barrier for Stay. Only the
task Producer can call Stay and only the task Consumer can call Proceed.

The two protected objects conform to the restrictions of Ravenscar. However,
Data and Sync can simulate the behaviour of a CSP channel only if calls by
Producer and Consumer are made according to the following protocols. To write

82 D.-A. Atiya and S. King

protected Sync is

entry Stay;

procedure Proceed;
Private

HasRead : Boolean := False;
end Sync;

protected body Sync is
entry Stay when HasRead is
begin
HasRead := False;
end Stay;

procedure Proceed is
begin
HasRead := True;
end Proceed;
end Sync;

(S

Fig. 2. Protected object Sync

a value v to the channel, the Producer task has to make the following two calls:
Data.Put(v); Sync.Stay;

And, to read a value v from the channel, the Consumer task has to make the
following two calls: Data.Get (v) ; Sync.Proceed;

The Read and Write protocols are depicted in Figure 3, and are implemented
as the interface procedures to the Ada package representing Ravenscar channels,
see [1-Appendix C].

To show how the two protected objects can simulate a CSP channel, consider
the initial state. When Producer and Consumer reach the protected object Data,
only Producer can execute the procedure Data.Put(v) — if Consumer gets there
first, it will wait at the entry barrier until Producer finishes writing the data to
the protected object. When Producer finishes writing the data to Data it changes

Put(v)—>] Data l«—Get(v

Producer

Stay—> Sync l«—Proceed

Fig. 3. Write/Read protocols; entry calls are shown in bold

Extending Ravenscar with CSP Channels 83

the entry barrier ReadyToRead into True, giving Consumer the chance to proceed
and read the data just written. However, leaving Data, the Producer will wait
at the entry barrier of Sync until Consumer finishes its reading operation. Now,
when Consumer reaches the protected object Sync, it changes the entry barrier
HasRead to True, enabling Producer to proceed. Thus, the two tasks move on
to carry their own computations.

4 The Formal Model of Ravenscar Channels

From the discussion above, one can see that the correctness of our implementa-
tion depends on which task calls which protected entry/procedure. Nonetheless,
the behaviour of the two protected objects and the “read” and “write” protocols
is independent of the communicated data, which could be of any type. Thus, the
correctness of Ravenscar channels depends on the communicating tasks, and not
on the communicated data — this remark will become more evident in the formal
model presented below. As in occam [7] our implementation provides a One-To-
One CSP channel; that is, only two tasks can communicate over a single channel.
This small number of tasks suggests that model-checking is a good approach for
verification. Therefore, we provide a CSP model of the implementation and verify
it using the FDR [5] tool.

4.1 Ravenscar Protected Objects in CSP

Let PO be a Ravenscar protected object that has an entry task'. Also, let the
tasks communicating on PO be drawn from the non-empty” set ValidTaskId.
There are six components that determine the state of PO.

— The data encapsulated, data, of type T.

— The entry task’s identifier, entry_task, which determines the one task that
can call the protected entry of the object.

— The current value of the boolean entry barrier, barrier.

— A boolean flag (waiting) that is true exactly when the entry task is waiting
on the entry queue.

— The set of writers (C ValidTaskId), those tasks currently actively executing
a procedure or an entry call.

— The set of readers (C ValidTaskId), those tasks currently actively executing
a function call.

We model PO as a CSP process with nine channels, each corresponding to
some interaction between the protected object and its environment.

! Since both Data and Sync has an entry task, we here limit the CSP model to that
restricted form of protected objects. A full formal model of Ravenscar protected
objects is presented and verified in [1,2].

2 ValidTaskld is not empty since it contains the entry task associated with PO.

84 D.-A. Atiya and S. King

channel read, write, enter, wait, start, leave : ValidTaskId
channel update_bar : ValidTaskId x Boolean
channel [T'| get, put : ValidTaskld x T

The channel read (write) is used to communicate the events where a task issues
a call to a protected function (procedure). If the entry task issues a call to the
protected-object entry, and the barrier is true and no other task is accessing the
object, then the entry task can gain access; this is modelled by a communication
over the enter channel. Otherwise, the entry task must wait. If at some later
point, the barrier becomes true and there are no tasks accessing the object, then
the waiting entry task may start. An event on the channel leave corresponds
to a task leaving the protected object. Changes in the state of the barrier are
signalled through the update_bar channel, after the execution of a protected
procedure or the protected entry. Finally, the channels get and put are used for
accessing and updating the protected object’s data.
There are nine processes that control the external behaviour of PO.

1. When a task issues a function call, it may become a reader within the pro-
tected object; this is signalled by the communication of the task’s identifier
over the read channel. This event is permitted if there are no writers, and
no waiting entry task with an open barrier

BecomeReader(data, entry_task, barrier, waiting, writers, readers) =
writers = () A = (barrier A waiting) &
read?t : ValidTaskId \ ({entry_task} < waiting > 0) —
PO(data, entry_task, barrier, waiting, writers, readers U {t})

If the entry task is waiting, then it cannot also become a reader”.

2. When a task issues a procedure call, it may become a writer within the pro-
tected object; this is signalled by the communication of the task’s identifier
over the write channel. This event is permitted if there are no writers, and
no waiting entry task with an open barrier. Also, if the entry task is waiting,
then it cannot become a writer.

BecomeWriter(data, entry_task, barrier, waiting, writers, readers) =
writers = 0 A = (barrier A waiting) &
write?t : ValidTaskId \ ({entry_task} <t waiting >) —
PO(data, entry_task, barrier, waiting, {t}, readers)

3. When the entry task issues the protected entry call, it may become a writer
or it may have to wait, depending on the barrier. In both cases, there must
be no writers, and the entry task must not be already waiting.

(a) If the barrier is open, then the entry task may enter the object; this is
signalled by the event enter.entry_task.

3 AQBr>C = If B then A else C.

Extending Ravenscar with CSP Channels 85

ETEnter(data, entry_task, barrier, waiting, writers, readers) =
writers = O A barrier A — waiting &
enter.entry_task —
PO(data, entry_task, barrier, waiting, { entry_task}, readers)

The entry task becomes the sole writer.
(b) If the barrier is closed, then the entry task must wait on the entry queue;
this is signalled by the event wait.entry_task.

ETWait(data, entry_task, barrier, waiting, writers, readers) =
writers = 0 A = barrier A = waiting &
wait.entry_task —
PO(data, entry_task, barrier, True, writers, readers)

The next process describes how the waiting entry task can proceed.
. If the barrier is open, there are no writers, and there is a waiting entry task,
then it may become a writer.

ETStart(data, entry_task, barrier, waiting, writers, readers) =
writers = O A barrier A waiting &
start.entry_task —
PO(data, entry_task, barrier, False, { entry_task}, readers)

When the waiting task starts, it leaves the entry queue.

. When a reading task completes its function call, it leaves the protected
object; this is signalled by the communication of the task’s identifier over
the leave channel.

ReaderLeave(data, entry_task, barrier, waiting, writers, readers) =
leave?t : readers —
ReaderLeave(data, entry_task, barrier, waiting, writers, readers \ {t})

. When a writing task completes its procedure or entry call, it leaves the pro-
tected object; this is signalled by the communication of the task’s identifier
over the leave channel.

WriterLeave(data, entry_task, barrier, waiting, writers, readers) =
leave?t : writers —
update_bar.t?b — PO(data, entry_task, b, waiting,), readers)

The barrier may have changed as a result of the actions of the writer, so it
must be updated — the leaving task updates the barrier.
. Any of the tasks currently reading or writing may read the protected data;
this is signalled by a communication on the get channel.

GetData(data, entry_task, barrier, waiting, writers, readers) =
get?t : (readers U writers)!data —
GetData(data, entry_task, barrier, waiting, writers, readers)

86 D.-A. Atiya and S. King

8. Any of the tasks currently writing may write to the protected object; this is
signalled by a communication on the put channel.

PutData(data, entry_task, barrier, waiting, writers, readers) =
put?t : writers?d : T —
PO(d, entry_task, barrier, waiting, writers, readers)

The process PO repeatedly offers the choice between the above processes.

PO(data, entry_task, barrier, waiting, writers, readers) =

(BecomeReader(data, entry_task, barrier, waiting, writers, readers)
O Become Writer(data, entry_task, barrier, waiting, writers, readers)
O ETFEnter(data, entry_task, barrier, waiting, writers, readers)

O ETWait(data, entry_task, barrier, waiting, writers, readers)

O ETStart(data, entry_task, barrier, waiting, writers, readers)

O ReaderLeave(data, entry_task, barrier, waiting, writers, readers)
O WriterLeave(data, entry_task, barrier, waiting, writers, readers)
O GetData(data, entry_task, barrier, waiting, writers, readers)

O PutData(data, entry_task, barrier, waiting, writers, readers))

Now, we will use this CSP model of Ravenscar protected objects to provide
a formal semantics for Ravenscar channels.

4.2 The Two Protected Objects

The two protected objects can be defined as instantiations of the above PO
process through renaming. Let the set channels, and the two bijective relations
D and S be defined as follows:

channels ::= read | write | enter | wait | start | leave | update_bar | get | put

D ={z: channels o (z,D_x)}
S ={z: channels o (z,S_x)}

That is, the relation D (5) add the suffix D_ (S_) to each channel of the process
PO. Now, using the CSP renaming operator, the protected objects Data and
Sync can be defined as:

Data = PO[D]
Sync = PO[S]

Data is the process that can perform the event D(e) whenever PO can perform
the event e. Similarly, Sync is the one that can perform the event S(e) when-
ever PO can perform the event e. Since they are both defined in terms of the
renaming operator, both Data and Sync are guaranteed to preserve the proper-
ties of Ravenscar protected object exhibited by PO. In particular, the behaviour
of Data and Sync is independent of the data they encapsulate.

Extending Ravenscar with CSP Channels 87

4.3 The Protocols

As well as the two protected objects, the implementation of the Ravenscar chan-
nel requires two protocols to regulate how the tasks can write to or read from
the protected objects. To write a value to the channel, the Producer task has to
make the following two calls: Data.Put (v) ; Sync.Stay;

We model this protocol by the following CSP process, REC(_).

channel obtain : ValidTaskld x T; ack : ValidTaskld
REC(t) = obtain.t?value — Write(t, value); ack.t — REC(t)
Write(t, value) = PutData(t, value); WSynchronise(t)

That is, the process REC/(_) repeatedly waits to receive an event (comprising
the identification of writing task and the value to be written) on the channel
obtain. When the value to be written is obtained, the process then executes
the Write(—,_) protocol to write the received value to the Ravenscar channel.
Finally, a successful Write is acknowledged by an event on the channel ack.

The PutData process stands for the call Data.Put. First, the task has to
gain a write access to the protected object Data. Then, the task executes the
procedure Put; this is signalled by communicating the task’s identifier and the
value over the channel D_put. Finally, the task leaves the protected object,
updating the entry barrier as it leaves.

PutData(t, value) =
D_write't — D_put!t'value — D_leave!t — D_update_bar.t! True — Skip

The WSynchronise process stands for the call Sync.Stay. First, the task has
to gain write access as the entry task of the protected object Sync. Then, the task
executes the entry Stay; this is signalled by communicating the task’s identifier
over the channel S_put. Finally, the task leaves the protected object, updating
the entry barrier as it leaves.

WSynchronise(t) =
(S_enter.t — Skip O S_wait.t — S_start.t — Skip);
S_put't — S_leave!t — S_update_bar.t!False — Skip

An important remark here is that the communicated value does not deter-
mine the subsequent behaviour of the REC(_) process. The reading protocol,
SEND(_), is defined similarly [1-Appendix C]. As REC(_), the behaviour of
SEND(_) is independent of the communicated data.

4.4 Ravenscar Channels

The process representing a Ravenscar One-To-One channel is the parallel com-
position of the two protected objects, the write protocol, and the read protocol.

RavenChannel(ty, t2) = REC(t,)
[WriterEvents||
(Data(0, to, False, False, 0, 0) ||
Sync(False, t;, False, False, (), ())
[ReaderEvents || SEND(ts)

88 D.-A. Atiya and S. King

The two protected objects run independently of each other, hence the in-
terleaving operator. The protocols for writing and reading synchronise with the
two protected objects on the events described by the sets WriterFvents and
ReaderEvents, respectively.

WriterEvents = {| D_read.t;, D_write.ty, D_enter.t, D_wait.ty, D_start.t,,
D_leave.t;, D_update_bar.ty .true, D_put.t;, D_get.1,
S_read.t;, S_write.t;, S_enter.ty, S_wait.t,, S_start.ty,
S_leave.ty, S_update_bar.ty.false, S_put.ty, S_get.t; [}

ReaderEvents = { D_read.ty, D_write.ty, D_enter.ty, D_wait.ty, D_start.ts,
D_leave.ty, D_update_bar.ty.false, D_put.ts, D_get.ts,
S_read.ly, S_write.ty, S_enter.ty, S_wait.ty, S_start.ta,
S_leave.ty, S_update_bar.ty.true, S_put.ty, S_get.to |}

The behaviour of Data, Sync, REC, and SEND does not depend on the data
communicated. Thus, the behaviour of RavenChannel(_) is also independent of
the communicated data.

5 Correctness of Ravenscar Channels

Consider a CSP network of parallel processes (Net = Py || Py || .. || Py). If our
Ravenscar channel is correct, we should be able to replace all CSP channels in
Net with the RavenChannel processes, without affecting the external behaviour
of the network. We will show that this is possible if Net satisfies the following
two conditions:

1. Net is free from the external choice operator (O).

2. The channels used by Net are One-To-One; that is, each channel ¢ is used
by exactly one process P; for input and exactly one process P; (i # j) for
output.

Consider the following CSP process

channel transmit : T

Left(t) = obtain.t?value — transmit!value — ack.t — Left(t)
Right(t) = ready.t — transmit?value — deliver.tlvalue — Right(t)

JCSPCHANNEL(ty, t) = Left(t1) [{ transmit [}]| Right(t2) \ {| transmit [}

In their work [8] on implementing CSP channels for Java, P. Welsh and
J. Martin have given a proof-by-hand that JOSPCHANNEL, shown in figure 4,
can be used as CSP channels for any network Net satisfying the two conditions
above. The replacement of the CSP channels with the JOSPCHANNEL happens
by transforming each process P; as follows:

— replace all occurrences of “clz —” by “obtain.ilx — ack.i —7
— replace all occurrences of “c?z —” by “ready.i — deliver?z —”

Extending Ravenscar with CSP Channels 89

——obtain.t?value) <«——ready.t——
Left transmit.value >~ Right
<——ack.t deliver.tlvalue -

Fig. 4. JCSP Channel

This result is of special interest to us as now the problem of proving the correct-
ness of Ravenscar channel can be reduced to proving that our process
RavenChannel is equivalent to JOSPCHANNEL.

Theorem 1 (Implementation is Correct). Let Net = Py || Py || .. || P»
be a network of parallel processes. Assume that Net satisfies the following two
conditions:

— Net is free from the external choice operator (O).
— Fach channel ¢ in Net is One-To-One, i.e. ¢ is used by exactly one process
P; for input and exactly one process P; (i # j) for output.

Then, we can replace the channels in Net with RavenChannel processes while
preserving the external behaviour of Net.

Proof. It is sufficient to prove that the processes JCSPCHANNEL and
RavenChannel are equivalent. We used FDR to prove this equivalence and suc-
cessfully discharged the two assertions:

1. SimpleRavenChannel(prod, cons) T JCSPCHANNEL(prod, cons)
2. JOSPCHANNEL(prod, cons) C SimpleRavenChannel(prod, cons)
Where

ValidTaskId = {prod, cons}

SimpleRavenChannel(ty, t2) = RavenChannel(ty, t2) \ Internal

Internal = {| D_read, D_write, D_enter, D_wait, D_start, D_leave,
D_update_bar, D_put, D_get, S_read, S_write, S_enter,
S_wait, S_start, S_leave, S_update_bar, S_put, S_get [} 0O

Actually, this proof-by-equivalence approach gives us more than just the
correctness of our implementation. Since SimpleRavenChannel and JCSP
CHANNEL are equivalent, we know that our channel implementation inher-
its all the properties satisfied by the Java implementation of One-to-One CSP
channels, as described in [8]. For example, as in Java channels, we can tell that
our Ravenscar implementation works fine as long as there are at most two con-
current threads in existence (one is writing and one is reading). Indeed, a simple
check with FDR (increasing the number of elements in ValidTaskId beyond two)
reveals that RavenChannel can deadlock. This is a positive result in its own right,
as now the equivalence between Simple RavenChannel and JCSPCHANNEL not
only increases the confidence about our implementation but also informs us
about possible limitations.

90 D.-A. Atiya and S. King

6 Conclusions

The tasking model of Ravenscar is asynchronous. Unfortunately, this means that
Ravenscar programs do not lend themselves nicely to verification techniques like
model checking. In this paper we have implemented One-to-One CSP channels
in Ravenscar. As a consequence, we can now transform the asynchronous tasking
model of Ravenscar into the synchronous message passing model of CSP.

Like in CSP, using channels in Ravenscar programs eliminates the need to
worry about issues of synchronisation and physical transfer of data between
tasks. Also, synchronous Ravenscar programs are more amenable to formal
proofs and techniques for model checking. For example, we can now use tools like
FDR to check Ravenscar programs for properties like deadlock/livelock freedom.
This all contributes to the production of more reliable and trustworthy systems.

To verify our implementation, we showed that the CSP semantics of our
Ravenscar channels is equivalent to the semantics of the one-to-one channels in
the JCSP library [8] for Java. This is a valuable result, as it allows arguments of
correctness and proofs about properties of JCSP channels to be automatically
deployed in favour of our Ravenscar channels.

Elsewhere, we have used Ravenscar channels as a key element in developing
a cost-effective technique for verifying Ravenscar programs: more details of that
work are available in [1].

References

1. D. Atiya. Verification of Concurrent Safety—critical Systems: The Compliance No-
tation Approach. PhD thesis, University of York. Submitted in October 2004.

2. D. M. Atiya, S. King, and J. C. P. Woodcock. A Circus semantics for Ravenscar
protected objects. In FMFE 2003, volume 2805 of Lecture Notes in Computer Science,
pages 617—-635. Springer-Verlag, 2003.

3. A. Burns, B. Dobbing, and G. Romanski. The Ravenscar tasking profile for high
integrity real-time programs. In L. Asplund, editor, Ada-FEurope 98, volume 1411 of
Lecture Notes in Computer Science, pages 263—275. Springer-Verlag, 1998.

4. A. Burns, B. Dobbing, and T. Vardanega. Guide for the use of the Ada Ravenscar
Profile in high integrity systems. Technical Report YCS-2003-348, Department of
Computer Science, University of York, UK, January 2003.

5. Formal Systems (Europe) Ltd. Failures-divergences refinement: FDR2 user manual.
May, 2000.

6. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall International
Series in Computer Science. Prentice Hall, 1998.

7. SGS-THOMSON Microelectronics Limited. occam 2.1 reference manual. May, 1995.

8. P. H. Welch and J. M. R. Martin. A CSP Model for Java Multithreading. In
P. Nixon and I. Ritchie, editors, Software Engineering for Parallel and Distributed
Systems, pages 114-122. ICSE 2000, IEEE Computer Society Press, June 2000.

	Introduction
	Ravenscar Protected Objects
	Implementing CSP Channels in Ravenscar
	The Formal Model of Ravenscar Channels
	Ravenscar Protected Objects in CSP
	The Two Protected Objects
	The Protocols
	Ravenscar Channels

	Correctness of Ravenscar Channels
	Conclusions
	References

