The Design of ESSENCE

A Constraint Language for Specifying Combinatorial Problems

Alan M. Frisch
Artificial Intelligence Group
Dept of Computer Science
University of York

Collaborators: Matthew Grum, Warwick Harvey, Chris Jefferson, Bernadette Martinez Hernandez, Ian Miguel
ESSENCE is....

• A **formal** language for specifying **combinatorial problems**
 - problem classes, not just instances
Motivation
Motivation 1: Automated Constraint Modelling

What is constraint modelling?

- Usually unsystematic – an art
- Social Golfers Problem requires finding a multiset of partitions.
- At least 72 ways to model this with atomic or set variables
Motivation 1: Automated Constraint Modelling

• Input spec must be sufficiently abstract so that no modelling decisions have been made in constructing it

• Thus, spec language must provide level of abstraction above that at which modelling decisions are made

• Having such a problem specification language is a prerequisite to studying automated modelling

Problem Specification in ESSENCE

CONJURE (Refinement)

Constraint Models In ESSENCE’
Motivation 2: Human Communication

• Formal problem specifications could facilitate communication between humans better than the informal ones currently used.

• Example: Could be used in CSPLib.
Design Objectives
Objective 1: Naturalness

- Necessary for human communication
- Necessary for input to automated modelling system
 - One cannot claim to have an automated modelling system if using it requires a major translation into the system’s input language.
Objective 2: Abstractness

- Necessary for input of automated modelling system
- Necessary to obtain naturalness
Objective 3: Capture CSP

- All problems specified in the language must be reducible to finite-domain CSP.

- Examples
 - Syntax ensures that every decision variable has a finite domain.
 - Bounds of a matrix cannot be a decision variable.
ESSENCE by Example
ESSENCE

<table>
<thead>
<tr>
<th>given</th>
<th>U new type enum, s,v : function (total) U → int (1..), B, K: int(1..)</th>
</tr>
</thead>
<tbody>
<tr>
<td>find</td>
<td>U′: set of U</td>
</tr>
<tr>
<td>such that</td>
<td>∑ u∈U′. s(u) ≤ B, ∑ u∈U′. v(u) ≥ K</td>
</tr>
</tbody>
</table>
ESSENCE

given U new type enum,
 s,v : function (total) U → int (1..),
 B, K: int(1..)

find U′: set of U

such that \(\sum_{u \in U′}. s(u) \leq B, \)
 \(\sum_{u \in U′}. v(u) \geq K \)

INSTANCE: Finite set U,
 for each u ∈ U: a size \(s(u) \in \mathbb{Z}^+ \), a value \(v(u) \in \mathbb{Z}^+ \)
 and positive integers B and K.

QUESTION: Is there a subset \(U′ \subseteq U \)
 such that \(\sum_{u \in U′} s(u) \leq B, \) and
 \(\sum_{u \in U′} v(u) \geq K ? \)
ESSENCE

given
- U new type enum,
- $s, v : \text{function (total)} \ U \rightarrow \text{int (1..)}$,
- $B, K : \text{int(1..)}$

find
- $U' : \text{set of } U$

such that
- $\sum_{u \in U'} s(u) \leq B$,
- $\sum_{u \in U'} v(u) \geq K$

Garey & Johnson [A Guide to the Theory of NP-completeness] 300+ problem specs

INSTANCE: Finite set U,
- for each $u \in U$: a size $s(u) \in \mathbb{Z}^+$, a value $v(u) \in \mathbb{Z}^+$
- and positive integers B and K.

QUESTION: Is there a subset $U' \subseteq U$
- such that $\sum_{u \in U'} s(u) \leq B$, and
- $\sum_{u \in U'} v(u) \geq K$?
Name the Problem?

ESSENCE

<table>
<thead>
<tr>
<th>given</th>
<th>U new type enum, s,v : function (total) U → int (1..), B, K: int(1..)</th>
</tr>
</thead>
<tbody>
<tr>
<td>find</td>
<td>U': set of U</td>
</tr>
<tr>
<td>such that</td>
<td>∑ u∈U'. s(u) ≤ B, ∑ u∈U'. v(u) ≥ K</td>
</tr>
</tbody>
</table>

INSTANCE: Finite set U, for each u∈U: a size s(u)∈Z^+, a value v(u)∈Z^+ and positive integers B and K.

QUESTION: Is there a subset U'⊆U such that ∑u∈U' s(u) ≤ B, and ∑u∈U' v(u) ≥ K?
Name the Problem?

ESSENCE

<table>
<thead>
<tr>
<th>Given</th>
<th>Find</th>
<th>Such that</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U) new type enum, (s, v : \text{function} \ (\text{total}) \ U \rightarrow \text{int} \ (1..),)</td>
<td>(U' : \text{set of} \ U)</td>
<td>(\sum_{u \in U'} s(u) \leq B,)</td>
</tr>
<tr>
<td>(B, K : \text{int}(1..))</td>
<td></td>
<td>(\sum_{u \in U'} v(u) \geq K)</td>
</tr>
</tbody>
</table>

Name the Problem?

Garey & Johnson [A Guide to the Theory of NP-completeness] 300+ problem specs

INSTANCE: Finite set \(U \), for each \(u \in U \): a size \(s(u) \in \mathbb{Z}^+ \), a value \(v(u) \in \mathbb{Z}^+ \) and positive integers \(B \) and \(K \).

QUESTION: Is there a subset \(U' \subseteq U \) such that \(\sum_{u \in U'} s(u) \leq B, \) and \(\sum_{u \in U'} v(u) \geq K \)?
Optimisation

ESSENCE

<table>
<thead>
<tr>
<th>given</th>
<th>U new type enum, $s,v : function (total) U \rightarrow \text{int (1..)}, B: \text{int(1..)}$</th>
<th>parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>find</td>
<td>U': set of U</td>
<td>vars/domains</td>
</tr>
<tr>
<td>such that</td>
<td>$\sum_{u \in U'} s(u) \leq B$</td>
<td>constraints</td>
</tr>
<tr>
<td>maximizing</td>
<td>$\sum_{u \in U'} v(u)$</td>
<td>objective</td>
</tr>
</tbody>
</table>
Specifying the Valid Instances

ESSENCE

<table>
<thead>
<tr>
<th>given</th>
<th>U new type enum, $s,v : \text{function (total)} \ U \rightarrow \text{int (1..)}$, $B: \text{int(1..)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>where</td>
<td>$\forall u \in U . s(u) \leq B$</td>
</tr>
<tr>
<td>find</td>
<td>U': set of U</td>
</tr>
<tr>
<td>such that</td>
<td>$\sum_{u \in U'} s(u) \leq B,$</td>
</tr>
<tr>
<td>maximizing</td>
<td>$\sum_{u \in U'} v(u)$</td>
</tr>
</tbody>
</table>

- **parameters**
- **restrictions**
- **vars/domains**
- **constraints**
- **objective**
Two Other Kinds of Statements

- language ESSENCE version 1.2.0
 - distinguish ESSENCE from ESSENCE’
 - used to check version compatibility

- letting ...
 - used to declare identifiers and user-defined types
 - examples appear later
Instance Data

- Gives values to parameters
- Defined in a separate file
- Not considered in this talk
The SONET Problem

Given \(nrings \) rings, \(nnodes \) nodes, a set of pairs of nodes (communication \(demand \)) and an integer \(capacity \) (of each ring). Install nodes on rings satisfying demand and capacity constraints. Minimise installations.

Instance: \(nrings=2, \ nnodes=5, \ capacity = 4 \)
\(demand: \ n1 \ & \ n3, \ n1 \ & \ n4, \ n2 \ & \ n3, \ n2 \ & \ n4, \ n3 \ & \ n5 \)

Solution:

```
\[ n2 \]
\[ n1 \]
\[ n4 \]
\[ n3 \]
\[ n5 \]
```
SONET Problem in ESSENCE

given \(nrings, \ nnodes, \ capacity: \ \text{int} \ (1..) \)

letting \(\text{Nodes} \) be domain \(\text{int} \ (1..\nnodes) \)

given \(\text{demand} \): set of set (size 2) of \(\text{Nodes} \)

find \(\text{network} \): mset (size \(nrings \)) of set (maxSize \(capacity \)) of \(\text{Nodes} \)

minimising \(\sum \ \text{ring} \in \text{network}. \ |\text{ring}| \)

such that \(\forall \ \text{pair} \in \text{demand}. \ \exists \ \text{ring} \in \text{network}. \ \text{pair} \subseteq \text{ring} \)
In a golf club there are a number of golfers who wish to play together in \(g \) groups of size \(s \). Find a schedule of play for \(w \) weeks such that no pair of golfers play together more than once.

Instance: \(s = g = w = 3 \)

Solution:

<table>
<thead>
<tr>
<th>weeks</th>
<th>groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1,2,3]</td>
<td>[4,5,6]</td>
</tr>
<tr>
<td>[1,4,7]</td>
<td>[2,5,8]</td>
</tr>
<tr>
<td>[1,5,9]</td>
<td>[2,6,7]</td>
</tr>
</tbody>
</table>
In a golf club there are a number of golfers who wish to play together in \(g\) groups of size \(s\). Find a schedule of play for \(w\) weeks such that no pair of golfers play together more than once.

\[
\text{given} \quad w, \ g, \ s: \text{int} \\
\text{letting} \quad \text{golfers} \text{ be new type of size } g\ast s \\
\text{find} \quad \text{sched} : \text{set (size w) of partition (numParts g, partSize s) from golfers} \\
\text{such that} \quad \forall \text{week}_1, \text{week}_2 \in \text{sched. } \text{week}_1 \neq \text{week}_2 \rightarrow \\
\quad \forall \text{group}_1 \in \text{parts(week}_1), \text{ group}_2 \in \text{parts(weeks}_2). \\
\quad | \text{group}_1 \cap \text{group}_2 | < 2
\]
Processing Stages
T - I - S

TIS is more general, much harder to implement.
Conjure does TIS (which is uncommon).
ESSENCE enables TIS (hence ITS).

I - T - S

problem spec

Translate

Instance data

Instantiate

Solve

Solutions

problem spec

instance data

Instantiate

Translate

Solve

Solutions
Types vs Domains
Types vs Domains

• Types
 - ESSENCE is strongly typed language.
 - Every expression has a type independent of where it occurs, which can be inferred and checked for correctness.
 - Types are used to determine the denotation of overloaded operators. E.g.: set union vs multiset union.

• Domains
 - ESSENCE is a finite-domain language.
 - Every decision variable has a finite domain of values.
 - Domains can be quite intricate sets. E.g.: any finite set of integers
Types ≠ Domains

• It is tempting to view types and domains as the same things
 - both prescribe a range of values a variable can take

• Consequence: the intricate sets defined as domains would have to be handled by the type system. E.g. every finite set of integers would be a type.

• Design goal: keep the type system simple. (Domains must be rich).

• Therefore: Types ≠ Domains
Types vs Domains

- Each **type** denotes a non-empty sets that contain all elements that have a similar structure.

- Each **domain** denotes a possibly-empty set whose elements are drawn from the same type.
 - Thus, each domain is associated with an underlying type.
 - E.g.: domain comprising 1..10 has underlying type `int`.
 - E.g.: domain comprising all sets of two integers between 1 and 10 has underlying type `set of int`.

- Type checking, type inference and operator overloading are based on types, not domains.
Types vs Domains

-Domains can (and often do) contain parameters
 - E.g., in SONET:
 find *network*: mset (size *nrings*) of set (maxSize *capacity*) of *Nodes*
 - hence their values are determined at instantiation time

-Types can’t contain parameters
 - thus they can be reasoned with at translation time (prior to instantiation) to determine grammaticallity.
Types vs Domains
Different Roles in the Grammar

• The grammar is specified by a typed BNF.

• “Domain” is a non-terminal in this grammar.
 - It generates the domains of the language
 - There is no “type” non-terminal, types do not appear in ESSENCE specs (though every expression has a unique type).
Types
Types

- **Atomic types**

<table>
<thead>
<tr>
<th>Atomic types</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>int</td>
<td></td>
</tr>
<tr>
<td>bool</td>
<td></td>
</tr>
<tr>
<td>all user-defined enumerated types</td>
<td>letting players be new type enum {alan, berna, chris, ian}</td>
</tr>
<tr>
<td></td>
<td>given U new type enum</td>
</tr>
<tr>
<td>all user-defined unnamed types</td>
<td>letting golfers be new type of size g*s</td>
</tr>
</tbody>
</table>
Types

- Type constructors
 - where τ is any type and ω is any ordered type (bool, int, any enumerated type)

<table>
<thead>
<tr>
<th>Constructor</th>
<th>Denotation (approximate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>set of τ</td>
<td>every finite subset of τ</td>
</tr>
<tr>
<td>mset of τ</td>
<td>every finite multiset drawn from τ</td>
</tr>
<tr>
<td>function $\tau_1 \rightarrow \tau_2$</td>
<td>every finite partial function with domain τ_1 and codomain τ_2</td>
</tr>
<tr>
<td>tuple (τ_1, \ldots, τ_n)</td>
<td>$\tau_1 \times \cdots \times \tau_n$</td>
</tr>
<tr>
<td>rel of $(\tau_1 \times \cdots \times \tau_n)$</td>
<td>every finite subset of $\tau_1 \times \cdots \times \tau_n$</td>
</tr>
<tr>
<td>partition from τ</td>
<td>every partition of every finite subset of τ</td>
</tr>
<tr>
<td>matrix indexed by $[\omega_1, \ldots, \omega_n]$ of τ</td>
<td>every n-dimensional matrix such that each dimension i is indexed by some finite range of values of type ω_i and each matrix entry is a member of τ.</td>
</tr>
</tbody>
</table>

- Others could easily be added.
Domains
Domains

- A set of values all of the same type.
- Formed by annotating a type name with restrictions that select particular values of the type.
 - `int (1..10)` (underlying type: int)
 - `set (size 2) of int (1..10)` (underlying type: set of int)
- Every type is a domain (with no restrictions).
- Annotations can contain parameter expressions, but not unbound quantified variables or decision variables.
Annotating Atomic Types

- players \((\text{alan..chris})\)
- int \((1..3, 5..10)\)
- int \((1..)\)
- int \((..1, 1..)\)
- int \((\text{lower..upper})\)
- int \((S U \{0,1}\))
Annotating Type Constructors

- set, mset, partition, relation, function can be annotated with size, maxSize, minSize

- mset can be annotated with maxOccur, minOccur

- Examples
 - mset (maxOccur 5) of int
 - set (minSize m, maxSize n) of int
 - partition (size n+2) from mset (maxSize 4) of int (1..100)

- Syntax designed to assure non-ambiguity
Annotating Type Constructors

- function can be annotated with one of partial and total and one of surjection, injection, bijection.

- Examples
 - function (total, injection) players → players
 - function (total) int → int (empty)
 - function (total) int(1..10) → int (infinite)
 - function (total) int(1..10) → int(1..10) (finite)
Annotating Type Constructors

• partition can be annotated with
 - partSize, maxPartSize, minPartSize,
 - numParts, maxNumParts, minNum
 - regular, complete

• Examples
 - partition from int (1..32)
 - partition (size 32) from int (1..32)
 - partition (complete) from int (1..32)
 - partition (partSize 4, complete) from int (1..32)
 - partition (partSize 6, complete) from int (1..32)
Three Ways to Use Domains

• Every decision variable must have a domain
 - find M: matrix indexed by $[\text{int}(1..k)]$ of $\text{int} (1..n)$

• Every parameter must have a domain
 - given M: matrix indexed by $[\text{int}(1..10)]$ of int
 - given N: matrix indexed by $[\text{int}(1..)]$ of int

• Quantified variables can be drawn from a domain
 - $\forall x: \text{int}(1..10)$
 - $\forall s: \text{set (size 2) of int (1..10)}$
Three Ways to Use Domains

• Every decision variable must have a domain
 - find M: matrix indexed by $\{\text{int}(1..k)\}$ of int $(1..n)$
 - **must be finite**.

• Every parameter must have a domain
 - given M: matrix indexed by $\{\text{int}(1..10)\}$ of int
 - given N: matrix indexed by $\{\text{int}(1..)\}$ of int
 - **can be infinite**.

• Quantified variables can be drawn from a domain
 - $\forall x: \text{int}(1..10)$
 - $\forall s: \text{set (size 2)}$ of int $(1..10)$
 - **must be finite**.
Three Ways to Use Domains

• Every decision variable must have a domain
 - find M: matrix indexed by $\text{int}(1..k)$ of int $(1..n)$
 - must be finite. **must be definite.**

• Every parameter must have a domain
 - given M: matrix indexed by $\text{int}(1..10)$ of int
 - given N: matrix indexed by $\text{int}(1..)$ of int
 - can be infinite. **can be indefinite.**

• Quantified variables can be drawn from a domain
 - $\forall x: \text{int}(1..10)$
 - $\forall s: \text{set (size 2)}$ of int $(1..10)$
 - must be finite. **must be definite.**
Expressions
Expressions

- Denote objects in the universe of computation
- Every object in the universe of computation has a name in the language. Achieved by a set of value constructors.
Expressions

<table>
<thead>
<tr>
<th></th>
<th>(\tau) is set of (\tau')</th>
<th>(\tau) is mset of (\tau')</th>
<th>(\tau) is partition from (\tau')</th>
<th>(\tau) is rel of ((\tau_1 \times \cdots \times \tau_n))</th>
<th>(\tau) is function from (\tau_1 \rightarrow \tau_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(e_1:\tau \cup e_2:\tau)</td>
<td>(\tau)</td>
<td>(\tau)</td>
<td>(\tau)</td>
<td>(\tau)</td>
</tr>
<tr>
<td>2</td>
<td>(e_1:\tau \cap e_2:\tau)</td>
<td>(\tau)</td>
<td>(\tau)</td>
<td>(\tau)</td>
<td>(\tau)</td>
</tr>
<tr>
<td></td>
<td>(e_1:\tau \subseteq e_2:\tau)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(e_1:\tau \supset e_2:\tau)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(e_1:\tau \subset e_2:\tau)</td>
<td>bool</td>
<td>bool</td>
<td>bool</td>
<td>bool</td>
</tr>
<tr>
<td></td>
<td>(e_1:\tau \subseteq e_2:\tau)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(e_1:\tau \supset e_2:\tau)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(</td>
<td>e:\tau</td>
<td>)</td>
<td>int</td>
<td>int</td>
</tr>
<tr>
<td>5</td>
<td>(e':\tau' \in e:\tau)</td>
<td>bool</td>
<td>bool</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>(\text{max}(e:\tau))</td>
<td>(\tau' \uparrow)</td>
<td>(\tau' \uparrow)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\text{min}(e:\tau))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>(\text{toSet}(e:\tau))</td>
<td>set</td>
<td>set</td>
<td>set of</td>
<td>set of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>of (\tau')</td>
<td>of (\tau')</td>
<td>tuple (\langle \tau_1, \ldots, \tau_n \rangle)</td>
<td>tuple (\langle \tau_1, \tau_2 \rangle)</td>
</tr>
<tr>
<td>8</td>
<td>(\text{toMset}(e:\tau))</td>
<td>mset</td>
<td>mset</td>
<td>mset of</td>
<td>mset of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>of (\tau')</td>
<td>of tuple (\langle \tau_1, \ldots, \tau_n \rangle)</td>
<td>tuple (\langle \tau_1, \tau_2 \rangle)</td>
<td>tuple (\langle \tau_1, \tau_2 \rangle)</td>
</tr>
<tr>
<td>9</td>
<td>(\text{toRel}(e:\tau))</td>
<td></td>
<td></td>
<td>rel of</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>((\tau_1 \times \tau_2))</td>
<td></td>
</tr>
</tbody>
</table>
Expressions

<table>
<thead>
<tr>
<th>Expression</th>
<th>(\tau) is</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>set of (\tau')</td>
<td>mset of (\tau')</td>
<td>partition from (\tau')</td>
<td>rel of ((\tau_1 \times \cdots \times \tau_n))</td>
<td>function (\tau_1 \to \tau_2)</td>
</tr>
<tr>
<td>defined(e:(\tau))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>set of (\tau_1)</td>
</tr>
<tr>
<td>range(e:(\tau))</td>
<td></td>
<td></td>
<td></td>
<td>set of (\tau_2)</td>
<td></td>
</tr>
<tr>
<td>e:(\tau(e_1:\tau_1))</td>
<td></td>
<td></td>
<td>(\tau_2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>image(e:(\tau), e_1:(\tau_1))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>image(e:(\tau), e_1:set of (\tau_1))</td>
<td></td>
<td>set of (\tau_2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>preimage(e:(\tau), e_2:(\tau_2))</td>
<td></td>
<td></td>
<td>set of (\tau_1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>inverse(e:(\tau), e':function (\tau_2 \to \tau_1))</td>
<td></td>
<td></td>
<td></td>
<td>bool</td>
<td></td>
</tr>
<tr>
<td>e:(\tau(e_1:\tau_1, \ldots, e_n:\tau_n))</td>
<td></td>
<td></td>
<td>bool</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e:(\tau(\ldots, _, \ldots))</td>
<td></td>
<td></td>
<td>rel of ((\tau_{i_1}, \ldots, \tau_{i_k}))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>together(e_1:(\tau'_1), e_2:(\tau'_2), e:(\tau))</td>
<td></td>
<td></td>
<td></td>
<td>bool</td>
<td></td>
</tr>
<tr>
<td>apart(e_1:(\tau'_1), e_2:(\tau'_2), e:(\tau))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>party(e':(\tau'), e:(\tau))</td>
<td></td>
<td></td>
<td>set of (\tau')</td>
<td></td>
<td></td>
</tr>
<tr>
<td>participants(e:(\tau))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>set of (\tau')</td>
</tr>
<tr>
<td>parts(e:(\tau))</td>
<td></td>
<td></td>
<td>set of (\tau')</td>
<td></td>
<td></td>
</tr>
<tr>
<td>freq(e:(\tau), e':(\tau'))</td>
<td></td>
<td></td>
<td></td>
<td>int</td>
<td></td>
</tr>
<tr>
<td>hist(e:(\tau), e':matrix indexed by [(\omega) of (\tau')])</td>
<td></td>
<td></td>
<td>matrix indexed by [(\omega) of int]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Abstraction in ESSENCE
by providing several powerful features that enable abstraction.

At the time ESSENCE was designed, these were unique or rare among constraint languages.
A Wide Range of Types

given \(nrings, \) \(nnodes, \) \textit{capacity}: int (1..)

letting \(\text{Nodes} \) be domain int (1..\(nnodes \))

given set of set (size 2) of \(\text{Nodes} \)

find \(\text{network}: \text{mset} \) (size \(nrings \)) of \(\text{set} \) (maxSize \(\text{capacity} \)) of \(\text{Nodes} \)

maximising \(\sum \text{ring} \in \text{network}. \text{|ring|} \)

such that \(\forall \text{pair} \in \text{demand}. \exists \text{ring} \in \text{network}. \text{pair} \subseteq \text{ring} \)
Nested Types

given \(nrings, \ nnodes, \ capacity: \ int (1..) \)

letting \(Nodes \) be domain \(int (1..\nnodes) \)

given \(\) set of set (size 2) of \(Nodes \)

find \(network: \textbf{mset} \) (size \(nrings \)) of \(\textbf{set} \) (maxSize \(capacity \)) of \(Nodes \)

maximising \(\sum \ ring \in \ network. \ |ring| \)

such that \(\forall \ pair \in \text{demand}. \ \exists \ ring \in \ network. \ pair \subseteq ring \)
given \(w, g, s \)

letting \(\text{golfers} \) be new type of size \(g*s \)

find \(\text{sched}: \text{set (size } w \text{)} \) of partition (numParts \(g \), partSize \(s \)) from \(\text{golfers} \)

such that \(\forall \text{week}_1, \text{week}_2 \in \text{sched}. \ \text{week}_1 \neq \text{week}_2 \rightarrow \)

\(\forall \text{group}_1 \in \text{parts(week}_1\text{)}, \text{group}_2 \in \text{parts(week}_2\text{)}. \)

\(| \text{group}_1 \cap \text{group}_2 | < 2 \)
Quantification over Variables

given \(n_{rings}, n_{nodes}, capacity: \text{int (1..)} \)

letting \(\text{Nodes} \) be domain int (1..\(n_{nodes} \))

given set of set (size 2) of \(\text{Nodes} \)

find \(\text{network}: \text{mset (size } n_{rings} \text{) of set (maxSize } capacity \text{) of } \text{Nodes} \)

maximising \(\sum \text{ring} \in \text{network}. |\text{ring}| \)

such that \(\forall \text{pair} \in \text{demand}. \exists \text{ring} \in \text{network}. \text{pair} \subseteq \text{ring} \)
Analysis, Reflection, Evaluation
Analysis: Expressiveness of ESSENCE

- Using descriptive complexity theory, Mitchell and Ternovska [2008]
 - Prove: simple, first-order fragment captures NP
 - Prove: adding nested types leads to poly-time hierarchy
 - Prove: adding succinct domains leads to NEXP-time
 - Conjecture: complexity of any problem specified in ESSENCE is $\text{NTIME}[n \text{ raised to the power } n, k \text{ times}]$ for some k.
Reflection on Design Process

• Usual order of design
 - Implementation
 - Design language
 - Write problem specifications

• We worked in the reverse order!
Evaluation: Naturalness

• Specifications of 70+ problems found in the CSP literature written by two computer science undergraduates with no background in constraint programming.

• http://www.cs.york.ac.uk/aig/constraints/AutoModel/Essence/specs120/

• paper contains comparisons to other languages
Evaluation: Sufficient Abstraction

• Insufficient facilities for abstraction can force the introduction of unnecessary objects or distinctions, which introduces symmetry into the specification.

• Elimination of symmetry has been used to evaluate ESSENCE

• Every problem we have considered has an ESSENCE spec that contains no symmetries other than those inherent in problem.

• No other language meets this test
Thank you!

Further information on ESSENCE and CONJURE

www.cs.york.ac.uk/aig/constraints/AutoModel