
Tools for creating and maintaining text-only web pages

ITBML 3rd Year Project Report

Omid Afzalalghom

Supervised by Dr. A.D.N. Edwards

Department of Computer Science
University of York

Heslington
York

YO1 5DD

Submission Date: 14th March 2002

Total word count including title page, abstract, table of contents, references and
bibliography: 19,810 (as calculated by Microsoft Word).

The appendix has not been included in the word count.

Tools for creating and maintaining text-only web pages

Abstract

The World Wide Web is an ever-increasing expanse of information and services. To
be excluded access to the Web is becoming a growing disadvantage, yet it is a reality
that faces many blind people today. Fortunately, there is a solution for blind web
users – text-only web pages.

Text-only web pages do not contain the graphical items often found in web pages,
such as images and image maps. The purpose of text-only web pages is to provide the
same information as standard web pages but in a more accessible fashion. By
providing these pages, web authors can ensure that the blind population are not at a
disadvantage to the millions of sighted people using the Web every day.

This project aims to produce a set of tools that will facilitate the creation and
maintenance of text-only web pages. Current web authoring products and web design
guidelines are discussed as well as the different browsers used by blind people. The
proposed tools are hoped to help web authors produce web pages that are more
accessible to blind people.

The software developed consists of three complementary tools. The first program
creates a parallel directory structure in which both standard and text-only web pages
can be stored. The second tool converts standard HTML web pages into text-only
format. The third program is a maintenance tool that ensures that each standard web
page has a text-only equivalent that is kept up-to-date.

The project concludes that the web authoring tools created are capable of improving
the accessibility of web pages. However, the tools have their limits and web authors
should endeavour to follow the design guidelines provided by the World Wide Web
Consortium. In doing this, web authors can enhance the accessibility of future web
pages.

Acknowledgements

I would like to thank Kris Fearon, the YorkWeb author, for her participation during
the analysis and design stages. My thanks also go to Dr. Alistair Edwards for his
invaluable supervision throughout this project.

Contents

1 Introduction..6

1.1 Visually impaired users and the growth of the Web......................................6
1.2 Text-only web pages ..6
1.3 Project aims..7

1.3.1 Parallel directory tool...7
1.3.2 Converting tool ..7
1.3.3 Maintenance tool..8

2 Background ..9

2.1 Economic advantage ..9
2.2 Legal requirements...10
2.3 Current web design guidelines...11
2.4 Java and HTML 4.01 ...13
2.5 Interview with the YorkWeb author ..14
2.6 Existing web authoring tools ...16

2.6.1 TOM...16
2.6.2 Betsie..16
2.6.3 W3C HTML validation service ...16
2.6.4 Bobby...17
2.6.5 MkDoc.com ...17

2.7 Screen readers and specialist browsers ..17
2.7.1 BrookesTalk...18
2.7.2 Lynx ...18
2.7.3 JAWS for Windows ...18

3 Methodology ...20

3.1 Development of test web page...21
3.2 Performance of BrookesTalk ...23
3.3 Performance of JAWS with Lynx..24
3.4 Performance of JAWS with Internet Explorer...25
3.5 Analysis..26

3.5.1 Frames..26
3.5.2 Image maps ..26
3.5.3 Images ..26
3.5.4 Scripts ..27
3.5.5 Proposed tools..28

3.6 Summary of analysis..28
3.7 Objectives of the tools ...29
3.8 Design ..29

3.8.1 Parallel directory structure tool..29
3.8.2 Text-only converter..30
3.8.3 Maintenance tool..30
3.8.4 The user interface...30

4 Implementation ..31
4.1 Options...31
4.2 Implementing the parallel directory structure tool.......................................32
4.3 Implementing the text-only converter..32
4.4 Redesigning the user interface ...33
4.5 Implementing the text-only converter (continued)33
4.6 Redesigning the parallel directory structure tool ...36
4.7 Implementing the maintenance tool...36
4.8 Constraints ...37
4.9 Summary ..38

5 Evaluation...39

5.1 Design of evaluation ..39
5.2 Results..42

5.2.1 Parallel directory structure tool..42
5.2.2 Text-only converting tool ..42
5.2.3 Maintenance tool..49

5.3 Usability of the software..50
5.4 Summary ..52

6 Conclusion ..53

6.1 Criticism...53
6.2 Further work...54

7 References...55

8 Bibliography ...57

9 Appendix...60

9.1 Parallel directory structure tool..60
9.2 Text-only converting tool ..61
9.3 Maintenance tool..64

Figures

Figure 1. Process used by YorkWeb author to create a text-only web page..............15
Figure 2a. Test web page supporting frames but not JavaScript.22
Figure 2b. Test web page supporting JavaScript but not frames.23
Figure 3a. Purpose-built web page as viewed with the BrookesTalk browser.43
Figure 3b. Text-only version of the purpose-built web page as viewed with the
BrookesTalk browser. ..44
Figure 4a. York University home page as seen with the Lynx viewer.46
Figure 4b. York University home page after text-only conversion as seen with the
Lynx viewer. ..47
Figure 5a. Manchester University home page as viewed with Internet Explorer......48
Figure 5b. Manchester University home page after text-only conversion as viewed
with Internet Explorer. ...49
Figure 6. Usability of software in accordance with W3C’s WAI guidelines.51
Figure 7. HTML elements that hindered accessibility for blind users.......................52

Chapter One - Introduction

 - 6 -

1 Introduction

1.1 Visually impaired users and the growth of the Web
Visually impaired people are being denied access to one of the most valuable
resources of information in the world – the World Wide Web. The Web has become a
feature of everyday life in most Western countries, with people using it for many
reasons including: education, to find information, and to buy a variety of products and
services. In the UK and the USA over 50% of the population use the Internet [Nua,
2001], so it is becoming a growing disadvantage to be excluded access to it.

There are 1.7 million people in the UK who are visually impaired. Impaired vision
simply means that someone's sight does not work or does not work as well as it might
[RNIB, 2001]. People whose sight has not completely deteriorated often prefer to
read the same web pages that fully sighted people do; this might be achieved with the
aid of a screen magnifier, for example. Unfortunately, blind people require further
assistance if they wish to read the same pages.

For a blind person, a specialist text-based web browser such as Lynx can be used if
they wish to access a standard web page with graphical items. Lynx will extract only
the text from a web page so that it is in a suitable format for a screen reader to convert
it into speech output. However, blind people usually do not want to be seen as being
different from sighted people and so prefer to use common web browsers such as
Netscape Navigator or Microsoft’s Internet Explorer in conjunction with a screen
reader. A screen reader converts text on the screen into audio or tactile output, which
can then be transmitted to a blind person via speech synthesis or a tactile Braille
display respectively. Unfortunately, screen readers cannot convey the meaning
behind many of the graphical items that pervade web pages today.

One solution to this problem is for web authors to follow design guidelines provided
by organisations such as the World Wide Web Consortium (W3C). These guidelines
encourage the design of more universal web pages, accessible to both sighted and
visually impaired users. Though with over two billion web pages already in existence
it is unrealistic to expect a mass overhaul of design. Also, web designers who focus
upon aesthetics are reluctant to compromise presentability for accessibility in order to
accommodate a minority.

Another solution to the problem is for web authors to provide text-only web pages,
which screen readers can process.

1.2 Text-only web pages
Web authors should ensure that text-only web pages retain as much of the original
content as possible so that little or no meaning is lost. This ensures that a blind person

Chapter One - Introduction

 - 7 -

can discuss a web page with a sighted person, confident that they have read the same
information.

It should be emphasised that text-only pages are not only of use to blind people. If a
user has a slow connection to the Internet then it can be convenient to access the text-
only version of a website, thereby avoiding downloading graphical items. Text-only
pages can also be of use to people using handheld computers such as Personal Data
Assistants (PDAs) where the small screen size means that images are unsuitable.

The current problem for blind people is twofold: there are very few text-only web
pages in existence and many of those that do exist are not kept up-to-date. There are
two possible reasons for the apparent dearth of text-only pages: ignorance and
laziness. Many web authors are simply unaware of the diverse needs of their
audience, whilst for others text-only web pages require too much effort. The
ignorance that is partly responsible for the scarcity of text-only web pages is quite
remarkable considering that disabled people in the UK spend an estimated £40 billion
a year on goods and services [DRC, 2002]. It is hoped that the proposed tools will be
of use to those web authors who find that text-only web maintenance is too time-
consuming.

1.3 Project aims
With a reported 98% of websites being inaccessible to blind people [iCan, 2000] the
importance of introducing text-only web pages is clear. The aim of this project was to
develop a suite of software tools that would help web authors to both create and
maintain text-only HTML web pages in parallel with standard graphical web pages.

The three distinct tools that I planned to implement were hoped to:

• Automate the creation of a parallel directory structure
• Convert a graphical web page to a text-only web page
• Warn a web author when text-only web pages require updating

1.3.1 Parallel directory tool
This tool will set the foundations for better web design by creating a parallel directory
structure for the web author. There will be a parent directory with two child
directories, one for the storage of graphical web pages and one for the text-only
equivalents.

1.3.2 Converting tool
The purpose of this tool is to take a standard graphical web page and convert it into a
text-only version. Any HTML code that has been identified during the project
analysis stage as unmanageable by screen readers, or specialist web browsers, should

Chapter One - Introduction

 - 8 -

be expunged from the new text-only file. The new text-only web page will then be
saved in the second child directory.

1.3.3 Maintenance tool
The maintenance tool should compare the contents of the two child directories at
regular specified intervals. Whenever the web author writes and saves a new
graphical web page this tool will alert him/her that a text-only version should also be
produced. The web author can then use the converting tool to create that text-only
version. The maintenance tool will also monitor the graphical web pages for
modifications and prompt the web author to modify the corresponding text-only
versions.

These tools will be further discussed in Chapter three.

Chapter Two - Background

 - 9 -

2 Background
Why do websites need to be made more accessible? I feel that this question should be
answered before beginning to build the proposed tools in order to justify the need for
them.

It could be argued that websites should be designed to be usable by all to the greatest
extent possible. Edwards [CHI, 1996] proposes that to provide universal access
would require little extra effort if designers were more aware of their audience’s
abilities. By identifying the needs of blind users, web authors could provide web
pages that are fully accessible to people without sight. This idea of a universal design
does not mean that one party gains from another’s loss; it can very often be of benefit
to everybody. For example, the introduction of sloped entrances to buildings for
wheelchair users also provides easier access for people using pushchairs. In this way,
a well thought-out website designed for ease-of-use is very likely to benefit everyone
that uses it and not just blind users.

There are two other reasons for improving the accessibility of websites: economic
advantage and legislation.

2.1 Economic advantage
The concept is simple: The more accessible a website is the greater the potential
audience. Consequently, an increase in visitors to a website could lead to rising sales
revenue in addition to greater advertising power. The visually impaired community
comprises over two million people in the UK [RNIB, 2001], which represents a
substantial market opportunity to any company. In fact, home shopping services
offered by many supermarkets could be exactly what visually impaired people
require. However, many of the websites offering such services remain inaccessible to
those who, arguably, need them most.

The situation is progressing though with market leaders Tesco showing the way. On
22nd May 2001 Tesco Access become the first website to be awarded the RNIB’s “See
It Right Accessible Website” logo. After complaints from some visually impaired
customers the supermarket chain Tesco designed a new, more accessible, website.
Tesco involved twenty people with visual impairments in the design of the new site,
which has far fewer images and more links with descriptions. The new website
received the RNIB stamp of approval after their usability specialists tested it against
their own rigorous standards. The average online spend at Tesco is £90 [Guardian,
2001] so with a further two million people now able to access their services they can
expect to see an increase in revenue. If only 1% of the nation’s two million visually
impaired population were to make the average online spend of £90, Tesco would be
reaping an extra £1.8 million in sales revenue.

Chapter Two - Background

 - 10 -

A more accessible website can also lead to lower overheads. The number of required
technical support staff can be reduced as a result of fewer enquiries from customers
being denied access. However, the cost of supporting a larger number of customers
may sometimes offset this previous advantage gained. An indisputable benefit is that
there is less chance of negative publicity if a website is accommodating all users
without discrimination. In the case of Tesco Access the company not only avoided
negative publicity but also gained free publicity that praised their innovation. Finally,
there is an increasing chance of companies incurring considerable legal costs if the
law is not adhered to, which will be discussed next.

2.2 Legal requirements
The Disability Discrimination Act 1995 (DDA) came into force, in part, in the UK in
December 1996. Part III of the Act gives disabled people access rights to goods and
services provided by both public and private sector organisations. Section 19 of the
DDA [DDA, 1995] states:

“It is unlawful for a provider of services to discriminate against a disabled person in
refusing to provide, or deliberately not providing, to the disabled person any service
which he provides, or is prepared to provide, to members of the public.”

Whilst there is no explicit mention of website accessibility in the DDA it is possible
to see how one might apply the above regulation to a website. The Act gives the
following as examples of services: “access to and use of means of communication”
and “access to and use of information services” [DDA, 1995].

The DDA guards against discrimination as well as encouraging positive action
towards making services such as websites accessible to the entire population. Legal
action against companies exhibiting such discrimination has already been seen in both
the USA and Australia. In the USA the National Federation of the Blind (NFB) filed
a lawsuit against America Online (AOL). Although this case fell under the
jurisdiction of the Americans with Disabilities Act 1990 (ADA), the same situation
could arise in the UK. The NFB claimed that the software used by AOL was
incompatible with screen reader software used by its members and their services were
therefore inaccessible. AOL made an out-of-court settlement with the NFB and
subsequently agreed to design future software to be compatible.

Section 302 of the ADA 1990 [ADA, 1990] states that:

“No individual shall be discriminated against on the basis of disability in the full and
equal enjoyment of the goods, services, facilities, privileges, advantages, or
accommodations of any place of public accommodation by any person who owns,
leases (or leases to), or operates a place of public accommodation.”

Chapter Two - Background

 - 11 -

This, along with Section 508 amendments of the Rehabilitation Act 1973, demands
the same of US websites as the DDA 1995 does of UK websites. Section 508 requires
Federal agencies to ensure that electronic and information technology is accessible to
employees and members of the public with disabilities to the extent it does not pose
an undue burden [Section 508, 1998].

From 1st October 1999 it has been UK law for service providers to make “reasonable
adjustments” for disabled people, such as changing the way they provide their
services [DRC, 2002]. The Special Educational Needs and Disability Rights Act,
May 2001 [SENDRA, 2001] has made it unlawful for:

“The body responsible for an educational institution to discriminate against a
disabled student in the student services it provides, or offers to provide.”

In the USA all web pages created or modified after 21st June 2001 must meet the
standards drawn up by the Access Board. The Access Board is a Federal agency
responsible for developing accessibility standards designed to aid those with
disabilities.

All of these Acts mean that companies should be aware of not only the law of their
own country, but also the law of any other country where they have customers or
websites. If a UK company has a US-based website or American customers then it
should meet the requirements of the ADA 1990 as well as the DDA 1995. The W3C
guidelines can help to ensure that organisations are in accordance with these Acts.

2.3 Current web design guidelines
The W3C’s Web Accessibility Initiative (WAI) is the closest thing to a regulatory
body that the Web has. It advises web authors and web developers how to design
web pages that are accessible to disabled people. The guidelines have different
priorities ranging from one to three:

Priority 1

“A Web content developer must satisfy this checkpoint. Otherwise, one or
more groups will find it impossible to access information in the document.
Satisfying this checkpoint is a basic requirement for some groups to be able
to use Web documents.”

Priority 2
“A Web content developer should satisfy this checkpoint. Otherwise, one or
more groups will find it difficult to access information in the document.
Satisfying this checkpoint will remove significant barriers to accessing Web
documents.”

Chapter Two - Background

 - 12 -

Priority 3
“A Web content developer may address this checkpoint. Otherwise, one or
more groups will find it somewhat difficult to access information in the
document. Satisfying this checkpoint will improve access to Web
documents.”

[WAI, 1999]

There are then three conformance levels as follows: level A where all Priority 1
checkpoints are satisfied; level Double-A where all Priority 1 and 2 checkpoints are
satisfied; and level Triple-A where all Priority 1, 2, and 3 checkpoints are satisfied.
Clearly web authors should be aiming for at least either level A or Double-A.

The WAI guidelines are rather lengthy so I have summarised the recommendations
regarding only visually impaired users, as they are whom the proposed tools are
designed to indirectly help. The following guidelines are Priority 1:

Provide text equivalent to visual items. This should be done using the ALT tag for
images and image maps. An ALT tag holds a text description of an image; it appears
on the screen when a user places the mouse cursor over the image. An image map has
two or more parts that when clicked upon will link to different web pages. A list of
text links should be provided in addition to an image map. For movies and
animations a caption or transcript should be supplied additionally.

The LONGDESC tag can be used if the visual item requires an extended written
description. The LONGDESC tag can link to another web page where a fuller
narrative can be given. LONGDESC tags and ALT tags are not always necessary
though, as some images do not require text descriptions. Nielsen [2000] suggests that
if the only purpose of an image is to improve the appearance of a web page then the
user does not need to hear a description of it. This does not mean that the ALT tag
should be excluded; an empty ALT tag should be used instead. For example, instead
of ALT=“small square bullet” use “ALT=“ ””. This would inform a screen reader
that the image could be ignored.

Use client-side image maps. Client-side image maps should be used instead of
server-side image maps as they allow the user to interact with a preferred input. Text
equivalents to client-side image maps can be provided to allow the user to use the
keyboard instead of the mouse for example; server-side image maps do not
accommodate such a choice.

Do not rely upon colour to convey information. There should be reasonable
contrast between background and foreground. Users should be allowed to change the
font type and size. Style sheets should be used in place of the FONT tag to maintain a
more consistent format. Relative font sizes should be used in place of absolute font
sizes to allow the user to increase and decrease the font size as they wish.

Chapter Two - Background

 - 13 -

Only use tables where necessary. Tables should not be used for layout purposes as
they cause problems for users using screen readers. Only truly tabular information
should be represented in tables and the TR and TH tags should be used to identify
rows and columns.

Provide alternatives to embedded interfaces. If JavaScript is used then an
alternative web page should be accessible that does not use JavaScript. A text
equivalent using the <NOSCRIPT> tag could be provided for people that do not wish
to use JavaScript.

The following guidelines are Priority 2:

Ensure user control of moving text. Screen readers are unable to read moving text
so blinking and scrolling text should be avoided. Therefore, the BLINK and
MARQUEE tags responsible for such text should not be used. Users should be
allowed to freeze any moving text. As Netscape does not support the MARQUEE tag
and Microsoft Internet Explorer does not support the BLINK tag, these tags are not
conducive to a universal design.

Provide alternative to frames. Frames are distinct areas of the screen that can be
navigated independently of each other. Screen readers have particular difficulty
handling frames so the NOFRAME tag should be employed to overcome this
problem. The NOFRAME tag can hold the HTML code to an alternative web page
that does not use frames. A web page should scroll from top to bottom rather than
side to side as screen readers read across the page. If a page uses columns in its
layout then screen readers will inevitably struggle to relay the information to the user.

Label forms correctly. Input values on forms should have a default value as some
browsers have problems with empty fields. Each field should be clearly labelled as
some screen readers read lists of consecutive links as one link. The label should
immediately precede its field.

I have not included the Priority 3 guidelines in my summary, as they are more
concerned with the presentation of the web page rather than its functionality. Web
authors can use all of the above checkpoints to design a more accessible website for
visually impaired users. I intended to use some of these guidelines myself when
designing the proposed web authoring tools. The guidelines helped me to understand
which elements of HTML it is that screen readers have problems handling.

2.4 Java and HTML 4.01
The most recent version of HTML is HTML 4.01 and the proposed tools were
designed with this in mind. HTML is the publishing language of the World Wide

Chapter Two - Background

 - 14 -

Web and it defines all elements and attributes that may appear in HTML documents.
Elements that determine the structure of a web page are those such as links, tables,
applets, text and images. Fonts, colours and style sheets contribute towards the
presentation of web pages whilst forms and scripts govern the interaction within an
HTML document. Applets, which are written in the Java language, can often
exacerbate web page accessibility for blind people. A Java applet is a small program
embedded into a web page whose code is transferred to the browser for execution.
Due to the fact that the Java code is embedded within the HTML document, this
information has, until recently, been inaccessible to software such as screen readers.
This made the comprehension of web pages written using applets very difficult for
blind people.

However, Sun Microsystems [Sun], have developed a piece of software called the
Java Access Bridge. This piece of technology allows applications such as screen
readers to gain access to the code behind Java applets. The screen reader interacts
with the Java Application Programming Interface via the Java Virtual Machine to
access the applets and convey the intended information to the user. JAWS for
Windows now provides support for the Java Access Bridge.

2.5 Interview with the YorkWeb author
Before embarking upon the design of the planned tools I decided to ascertain the
needs of a web author. I arranged an interview with Kris Fearon, the author of the
University of York’s text-only web pages, which are also known as YorkWeb. Kris is
responsible for maintaining the University’s central pages but has the additional
responsibility of providing parallel text-only pages for use by, among others, visually
impaired people.

Kris expressed her desire to be able to provide one universal set of web pages
accessible by all; she finds that maintaining parallel text-only pages is time-
consuming and laborious. Her current modus operandi when a new web page is to be
created is outlined in (Figure 1).

Chapter Two - Background

 - 15 -

Figure 1. Process used by YorkWeb author to create a text-only web page.

Kris writes the graphical version of web pages first and then immediately creates the
text-only version so as to avoid any out-of-date pages. Her method of creating the
text-only version is to cut and paste the body text from the original web page into a
new file, omitting any images. Kris then uses the online validation tool Bobby
provided by the Centre for Applied Special Technology (CAST) to assess the
usability of her new text-only web page. If the pages passes validation then the job is
done, otherwise further alterations must be made.

Kris identified the main disadvantage of this model to be the time required to create
and validate the text-only page. The most time-consuming part of the model is the
validation with Bobby. Kris found the results that Bobby produced to be cumbersome
and difficult to decipher. The advice offered by Bobby was disorganised and often
very technical making it difficult to act upon.

A suitable refinement to the model in Figure 1 would be to validate the graphical web
page once it has been written. If the original web page is validated then the text-only

Chapter Two - Background

 - 16 -

page should pass validation as it is created from the graphical web page. By
following web design guidelines such as those issued by the W3C, authors can build
solid foundations from which text-only web pages can then be created.

The problem of meeting Bobby’s standards could be effectively overcome by letting a
piece of software create and modify the text-only web page. Although Kris stated that
she would prefer a universal set of web pages, she said that an automated tool that
would facilitate the operations shown in Figure 1 would also be of interest to her.
Kris had not tried any existing tools that offered such services but there is software
already available that can help web authors.

2.6 Existing web authoring tools
Before I could begin to design the intended tools I wished to look at several products
within the field of web-authoring software and text-only web pages. I hoped that by
exploring the field of web accessibility I could gain an insight into exactly what is
required, thus avoiding building something that was unnecessary. Moreover, I would
not be wasting time reinventing the wheel.

2.6.1 TOM
TOM (text-only maker) is a joint venture between the National Center for
Supercomputing Applications (NCSA) and the University of Illinois [TOM]. Its
purpose is to create text-only web pages from graphical web pages with as little
human assistance as possible. TOM can also add ALT tags to all images in a
document, rendering a page more accessible to blind people. TOM appears to be no
longer available through the link advertised on many web pages so I was not able to
test the program.

2.6.2 Betsie
The BBC Education Text to Speech Internet Enhancer, or Betsie [Betsie] as it is more
commonly known, is a Common Gateway Interface (CGI) script implemented with
the Perl interpreter. A CGI script is run from a web server and passes information
between a web browser and a web server. Betsie works by receiving a request to
view a web page, passing the URL to the web server and then parsing the content of
the web page to produce a text-only web page. Betsie will strip out items such as
IMG tags leaving only the ALT text description or completing removing the image if
there is no ALT tag. Betsie was created in June 1998 in an attempt to make the BBC
website accessible to blind people.

2.6.3 W3C HTML validation service
Web authors can use the free validation service provided by the W3C [W3C
Validator] to check the conformance levels of their websites, i.e. level “AA”, or level
“AAA”. The program produces a report on a given website highlighting any errors or

Chapter Two - Background

 - 17 -

discrepancies. If the website meets the requirements of the W3C then the web author
may display the W3C logo on the site to show its level of accessibility.

2.6.4 Bobby
Bobby is a free online validation tool provided by the Center for Applied Special
Technology (CAST) [Bobby]. A web author can submit a URL to Bobby and receive
an online report within seconds highlighting the areas of the web page that do not
conform to the W3C WAI guidelines. Bobby seems to have difficulty with
JavaScript, often returning jumbled and meaningless text in the report. On the whole
though, Bobby will produce a report emphasising the areas in which the website does
not conform to the W3C checkpoints. If all Priority 1 objectives are met then the
website can display a logo displaying that the W3C Level “A” has been met. The
Level “AA” logo can be used if Priority 2 objectives have been met and similarly for
Priority 3.

2.6.5 MkDoc.com
MkDoc is a software package that helps web authors to create standards-compliant
websites [MkDoc]. Through a web interface, MkDoc uses the W3C checkpoints to
guide the user towards designing and creating a more accessible and navigable
website. For example, MkDoc will ensure that all the hyperlinks have a meaning so
they can be understood when read out of context; it will not allow a link that says,
“Click here”. Perhaps one the most useful features of MkDoc is the breadcrumb trail-
navigation bar. This is a bar that represents the hierarchical structure of a website
allowing users to quickly jump between levels. A common problem with web pages
is that users can easily lose track of where they are in a document and are left to rely
upon the back and forward buttons of their browser to navigate. Unfortunately
MkDoc is not free, a single website license costing €800.

2.7 Screen readers and specialist browsers
Blind people have two options for web browsing: they can use a standard browser
with a screen reader or use a specialist browser. If a blind person prefers to use a
standard web browser such as Microsoft Internet Explorer then they will require the
assistance of a screen reader such as JAWS for Windows. Some specialist browsers
such as BrookesTalk come equipped with speech engines, others such as Lynx are
used in conjunction with a screen reader.

A screen reader gives blind people access to software applications by converting the
display of a computer into verbal output. A screen reader intercepts screen data as an
application sends it to the screen buffer. This data is then sent to a speech synthesiser
for text-to-speech conversion before being allowed to continue on to the screen for
display. Neither the screen display nor the application being used is altered during
this process.

Chapter Two - Background

 - 18 -

A typical screen reader has two modes: live mode and review mode. Live mode is
usually used during keyboard input and text is spoken as it is entered. Review mode
allows the user to highlight different areas of the screen to be read aloud. By using
either the mouse or the cursor keys the user can move the cursor around the screen to
select different words, lines or windows to be converted to speech.

2.7.1 BrookesTalk
A different kind of specialist browser is BrookesTalk, which uses the Microsoft
Speech Engine [BrookesTalk]. BrookesTalk provides additional aid to the user via a
menu that provides access to: a document abstract; the headings of the document; the
document keywords and all the hyperlinks in the document. BrookesTalk is more
suited to users with some residual sight, as it does not handle frames or image maps.

This review has helped me form a better idea of the needs of blind people regarding
web accessibility. The next chapter will summarise my findings and discuss the
specifications and design of the proposed tools.

2.7.2 Lynx
The specialist text-based browser, Lynx, overcomes the problem of such web pages
by removing images and image maps leaving only text. Lynx will replace images
with their ALT text, if present, and likewise for image maps. The browser is also
capable of handling frames by providing text links to each frame of the web page. In
this manner, one frame can be viewed at a time enabling the successful use of a screen
reader.

2.7.3 JAWS for Windows
JAWS uses its speech synthesiser and the sound card of a computer to translate the
on-screen information into an audio output. JAWS can also output to a refreshable
Braille display, which is an electronic device used to read text sent from a computer to
a monitor.

Refreshable Braille displays work in conjunction with screen readers and interface
with computers through an input/output port. A screen reader sends text to a Braille
display as the user guides the cursor to read specific areas of the computer screen.
The Braille display then converts the text to tactile output by displaying it using a
series of mechanical dots. These dots move up and down to form Braille characters
that can be read by the user. Refreshable Braille displays use an eight-dot code rather
than the standard six-dot code. The extra two dots are used to convey supplementary
information, such as cursor position and text formatting. The main disadvantages of
Braille are that it is difficult to learn and that the equipment, such as Braille displays,
is expensive.

By using a screen reader a blind person can access the same websites as everybody
else without the need for a specialist browser. The disadvantage of this approach is

Chapter Two - Background

 - 19 -

that many screen readers cannot effectively represent certain elements such as frames
and image maps. A web page might be split vertically into two frames with a column
of text in each. A screen reader will not read the page a column at a time; it will read
across the page thus returning a meaningless jumble of words. A screen reader cannot
translate images and image maps into audio output either, as it will only read text.

The topics discussed in this chapter can all influence website design. Web authors
have at their disposal various web authoring tools and web design guidelines. The
proposed tools were intended to help web authors adhere to these guidelines. The
exact requirements and the design of the tools are discussed in the next chapter.

Chapter Three - Methodology

 - 20 -

3 Methodology
In the previous chapter the reasons for providing more accessible web pages and the
methods for designing them were discussed. Whilst a universal design of web pages
seems the ideal solution, it will be some time before the Web is truly accessible to
everybody due to its incredible size. In the meantime, text-only web pages can
provide a quick and easy middle ground for blind Web users.

The W3C guidelines outlined in Chapter two were written with visually impaired
users in mind. However, people that have some degree of vision remaining usually
prefer to make use of it and so use the same web pages as fully sighted users.
Therefore, the majority of people that use text-only web pages are blind. The term
“blind” refers to someone with visual acuity of 3/60 or worse, or 6/60 with a restricted
field of vision. 6/60 means that the observer “would be able only to discriminate at
six metres what the normally sighted person would see clearly at 60 metres”
[Chapman, 1988].

From the W3C guidelines I highlighted the following areas to be addressed: frames
image maps, images, and the <SCRIPT> tag. These four aspects of HTML are all
barriers to blind people trying to access the Web. I recognised other features of
HTML that proved to be obstacles to blind users, forms and tables being two such
problems. However, these two particular aspects have given rise to much thought and
work involving some complex theories. The non-visual representation of tables, for
example, has been the study of an entire student project at the University of York
[Kemenade, 2000]. Therefore, given my time constraint I elected to concentrate on
the four elements previously mentioned.

I decided to use frames and scripts as examples of document structures impeding
accessibility. Both of these HTML elements have accompanying alternative tags that
can be used to provide accessibility to a wider audience. The <FRAMES> tag is
coupled with the <NOFRAMES> tag whilst the <SCRIPT> tag should be used in
conjunction with the <NOSCRIPT> tag. Neither frames nor scripts should affect
accessibility when there are complementary tags such as <NOFRAMES> and
<NOSCRIPT> to be used.

I focussed on image maps and images due to the high percentage of web pages
containing them. According to Beckett’s 1997 survey [Beckett, 1997], there are
images present in 87.42% of web pages. Also, many images are inherently visual
such as photographs. This is a prime example of when the ALT tag should be used to
provide the blind user with a text alternative to the image. Unfortunately, web authors
often neglect this opportunity for greater accessibility; a mere 21.19% of all
tags have an ALT text [Beckett, 1997].

Chapter Three - Methodology

 - 21 -

I used three web browser solutions available to blind people to demonstrate the way in
which these aspects can hinder access to the Web: BrookesTalk, JAWS with the Lynx
Viewer [Lynx], and JAWS in co-operation with Microsoft Internet Explorer 6. The
choice of these three browser solutions represented the three different approaches that
a blind user might take when using the Web. BrookesTalk is the all-in-one browser
with a built-in speech engine, Lynx is a text-based browser, and JAWS is a screen
reader.

3.1 Development of test web page
To highlight the strengths and weaknesses of each browser I required a web page
containing all four of the elements listed above. At this stage I had two choices: find
a suitable web page on the Web or create one myself. Trawling the Web for an
appropriate web page could have been quite time consuming so I opted for building
one myself. This approach ensured that I had the exact test data required.

The web page that I created consisted of a frames version and a non-frames version.
If the browser being tested did not support frames then it interpreted the code between
the <NOFRAMES> and </NOFRAMES> tags, otherwise it interpreted the code
between the <FRAMESET> and </FRAMESET> tags. Figure 2a shows the web
page as viewed through a browser that supports frames. Figure 2b depicts the web
page viewed as its non-frames version. The links in the left-hand frame of the web
page in Figure 2a, when clicked upon, loaded a new page into the right-hand frame,
which held the main page. This method facilitates navigation, as the menu is always
visible to the user. In Figure 2b the “News”, “Sport” and “Search” links were moved
to be part of the main page. In this case the back and forward buttons of the browser
were used to navigate between pages.

I included an image map in the web page, which consisted of two rectangles, a circle
and a triangle (see Figure 2a). Each shape, when clicked upon, links to another web
page. Each shape in the image map had an associated ALT text as did the map itself.
The image map is an element often used on the index page of a website to act as a site
map.

Three different images were incorporated into the web page to test different attributes
of the tag. The first image had no ALT tag but did have a <NAME> tag; it
was named “poet”. The second image had no ALT tag but was linked to another page
with the anchor tag <A>. The third image had an ALT tag giving a brief description
of the picture and was also linked to another page using the <A> tag. These three
different tags, ALT, <A> and <NAME>, were used in order to provide the browsers
and screen reader with as much information as possible to use when trying to
represent the images to the user.

Chapter Three - Methodology

 - 22 -

To demonstrate the <SCRIPT> tag I included a small piece of JavaScript in the web
page source code. The script, if run, simply printed a line of text saying “hello
world”. I also included a <NOSCRIPT> tag, which provided an alternative for
browsers that did not support scripts. If the browser did not support scripts then the
message “Your browser does not support scripts” was displayed. As can be seen in
Figure 2a the browser did not support scripts. The browser in Figure 2b however did
support scripts and so the message “hello world” was displayed. These two script
examples are chosen purely for test purposes. For a real web page the script would
probably be more extensive and the <NOSCRIPT> alternative would be a satisfactory
substitute for the script.

Figure 2a. Test web page supporting frames but not JavaScript.

Chapter Three - Methodology

 - 23 -

Figure 2b. Test web page supporting JavaScript but not frames.

The next section describes the installation process of the software and the way in
which each browser handled the four significant elements of HTML.

3.2 Performance of BrookesTalk
BrookesTalk is a web browser for blind and visually impaired users, which is being
developed at Oxford Brookes University. After installing the browser from a CD I
familiarised myself with its operations and then used it to view the test web page.
The non-frames version was displayed so I deduced that BrookesTalk does not
support frames. I commanded the browser to read out the whole document and I
observed the way it processed each of the remaining three aspects.

The image map was displayed but not mentioned in the audio output. Moreover, none
of the links incorporated in the image map were extracted so a blind user would have
been unaware of these further pages and the image map.

BrookesTalk provided the blind user with no alternative representation of the images.
BrookesTalk did not use the information in the <NAME> tag, which was attached to
the first image. This disregarded information could have been used to convey some
representation of the image to the blind user. The second image, which linked to
another page, was displayed as an “unknown link” on the links menu. This would

Chapter Three - Methodology

 - 24 -

obviously become confusing if there were several unknown links, as the user would
not be able to differentiate between them. The ALT tag of the third image was not
read out by BrookesTalk meaning that a blind person would be oblivious to any
images in a web page. The third image was also displayed on the links menu as
“unknown link” despite having an ALT tag.

BrookesTalk did not display the “hello world” text, which indicates that it does not
support JavaScript. The browser instead displayed the code within the <NOSCRIPT>
tag, “Your browser does not support scripts”.

3.3 Performance of JAWS with Lynx
For convenience a Lynx viewer was used rather than Lynx itself, thereby saving on
installation and configuration time. The Lynx viewer is an online tool that emulates
how a web page would appear through Lynx. The viewer does not provide simulation
for image maps however. This did not cause a problem as the W3C website describes
how the Lynx browser provides a text menu of the ALT texts from the image map. If
ALT texts have been excluded then the URLs are used instead [W3C]. In this way,
the Lynx browser would extract the words “circle”, “rectangle” and “triangle” from
my test web page as these are the ALT texts. The JAWS screen reader was used to
convert the text displayed by Lynx into speech output.

I used the Lynx viewer to access the test web page and discovered that Lynx did
support frames. The browser represented each of the two frames with a hyperlink to
each frame so that they could be viewed individually. I could view either the left-
hand frame (the menu) on a full screen or I could view the right-hand frame (the main
page) on a full screen.

The image map was represented by the text “USEMAP”. However, this is only how
the Lynx viewer processes image maps and not how the actual Lynx browser would
represent it. As discussed, the Lynx browser would have indicated the presence of the
image map by displaying the ALT texts as hyperlinks. In brief, the Lynx browser
would show four links represented by the words, “rectangle”, “circle”, “triangle” and
“rectangle”.

Lynx handled the images much better than BrookesTalk did from the perspective of a
blind person. The first image was represented by the text “[INLINE]”, which whilst
not intuitive could be remembered by a user and thereafter associated with the
occurrence of an image. The Lynx viewer did not use the <NAME> tag of the first
image. The second image was displayed as a hyperlink with the text “[LINK]”. The
third image was represented as a hyperlink using its ALT tag, “Picture of Ludwig Van
Beethoven”. The text equivalent that Lynx provides for frames, image maps and
images can all be conveyed to a blind user with the assistance of a screen reader.

Chapter Three - Methodology

 - 25 -

The web page displayed the text “Your browser does not support scripts” indicating
that Lynx does not support the <SCRIPT> tag. The issue of scripts causing
inaccessibility to blind users is further discussed in the analysis section.

3.4 Performance of JAWS with Internet Explorer
After downloading and installing a demonstration version of JAWS for Windows I
used it in conjunction with Microsoft Internet Explorer to view the test web page.

Internet explorer supports frames so the frames version of the web page appeared in
the browser window as expected. JAWS correctly began reading the topmost line of
text beginning “The International Olympic…”. After reading the second line of text
JAWS then moved to the next lowest line. Unfortunately for blind users this was not
the third line of the text but the “No frames” option from the menu in the left-hand
frame. This demonstrated that frames are not suitable for screen readers and should
be avoided.

JAWS did not offer any representation for the image map whatsoever and likewise for
the three images. I deemed these outcomes anomalous in view of the fact that there
were some ALT texts present. In order to test whether JAWS could read ALT texts I
decided to turn the “Show pictures” option off in Internet Explorer. This option
results in corresponding ALT texts being displayed in place of images.

With the “Show pictures” option deactivated the image map was replaced by its ALT
text, which in turn was read aloud by JAWS. Whilst the ALT texts of the individual
shapes within the image map were not displayed, this was still a marked
improvement. A blind user would at least be aware that an image map was present
even if not able to use it.

The first and second images were still ignored by JAWS as they had no ALT texts but
the third image was now replaced by its ALT tag. JAWS read aloud the ALT text
thus conveying some meaning of the image to the blind user. This result emphasises
the importance of ALT tags and their role in increasing accessibility to web pages for
blind people.

Internet explorer supports JavaScript so “hello world” was displayed at the foot of the
web page. The message was presented as HTML text so JAWS had no problem in
translating it into audio output. Had the JavaScript been more elaborate it may have
resulted in something that JAWS could not have translated. JavaScript can be used to
achieve many goals and text output is one of the simplest. I will discuss what
happens with more complicated scripts in the next section.

Chapter Three - Methodology

 - 26 -

3.5 Analysis
By using the different combinations of web browser and screen reader I experienced
some of the difficulties that blind web users encounter. I could understand why the
four chosen elements of web pages posed particular problems for blind people. I
could also see the need for some kind of converting tool that would improve the
accessibility of web pages. These issues are discussed in the following subsections.

3.5.1 Frames
Although both the Lynx viewer and Internet explorer handled frames properly,
BrookesTalk did not support frames. Also, whilst Internet Explorer supported frames
JAWS could not read the information within them correctly. If BrookesTalk and
JAWS are not fully compatible with frames then text-only web pages should not
contain frames. If a web page does not include the <NOFRAMES> tag the blind user
is left with no alternative to frames. A user of BrookesTalk would find a web page
without the <NOFRAMES> tag to be completely inaccessible. Based on these
findings I recommended that web authors should include the <NOFRAMES> tag
whenever the <FRAMESET> tag is used. This measure will ensure that an
alternative to frames is always provided for blind users. I therefore proposed that
text-only web pages should not contain the <FRAMESET> tag meaning that a blind
user would instead see the non-frame version of a web page. Consequently, the
converting tool should remove any <FRAMESET> and </FRAMESET> tags and the
HTML code within them. The </FRAMESET> tag simply denotes the end of the
frames section and should always accompany the <FRAMESET> tag. The
<NOFRAMES> tag can remain however, as browsers will process the subsequent
code in the absence of a <FRAMESET> tag. This method was hoped to provide an
appropriate solution, which would result in text-only web pages that are accessible to
blind people.

3.5.2 Image maps
Of the three tested solutions only Lynx could render image maps into a form fully
accessible to blind users. JAWS could make the user aware that an image was present
but offered no method of accessing the pages that it linked to. BrookesTalk managed
even less, not giving any textual representation of the image map at all. Lynx was
highly effective in the way that it handled image maps and so I hoped to recreate that
efficacy with the converting tool. I proposed that my tool should replace image maps
with their hyperlinks and the text “Image Map Link”. To remove the image maps the
<MAP>, </MAP> and <AREA> tags were identified as those to be expunged. The
<MAP> and </MAP> tags denote an image map and the <AREA> tag denotes each
area within an image map.

3.5.3 Images
Images were handled rather ineptly by BrookesTalk not offering the blind user any
audio equivalence at all. In contrast, Lynx made full use of whatever ALT tags were
included in the web page. Once the “Show pictures” option had been turned off

Chapter Three - Methodology

 - 27 -

JAWS also made good use of the ALT texts. From the evidence discussed it was
decided that the converting tool should replace all images in web pages by their ALT
texts. In order to do this the converting tool should strip out any tags leaving
only their ALT tags. This measure will increase accessibility to web pages for blind
people on the condition that web authors always include ALT tags.

3.5.4 Scripts
Neither BrookesTalk nor Lynx provided support for JavaScript although an
alternative was provided via the <NOSCRIPT> tag. If this tag had not been used,
however, a blind user would not have been aware that they were being denied access
to the full representation of the web page. For example, if I had not included the
<NOSCRIPT> tag in the test web page then BrookesTalk and Lynx would not have
displayed “Your browser does not support scripts”. Instead, there would be no
message at all, yet a user of Internet Explorer would have seen the “hello world”
caption. So the exclusion of the <NOSCRIPT> tag puts blind users at a clear
disadvantage to sighted users. The onus lies on the web author to include an
appropriate <NOSCRIPT> tag as its complexity could be beyond an authoring tool.

Internet Explorer was able to process the JavaScript and JAWS subsequently read the
output, “hello world”. Although the blind user would not have suffered any
disadvantage in this case, had the JavaScript been more complex then they might have
done. If a JavaScript uses a lot of “document.write” (i.e. text output) scripting as the
test page did then information is made visible in the source code and a screen reader
can process it. However, if the JavaScript creates a menu and the menu choices are in
a separate file, then the screen reader cannot access that code and so cannot convey
the information to the user. So despite the fact that Internet Explorer can interpret the
<SCRIPT> tag, a screen reader will not always be able to relay the output to a blind
user. From this evidence it can be seen how the inclusion of the <SCRIPT> tag in a
web page could reduce accessibility for blind people.

I conclude from this that web authors should always use the <NOSCRIPT> tag to
provide an alternative to the <SCRIPT> tag for blind users. Text-only web pages
should not contain the <SCRIPT> tag but should instead use the code between the
<NOSCRIPT> and the </NOSCRIPT> tag. The <NOSCRIPT> tag itself should not
be included otherwise the browsers that support scripts will not read the code after the
<NOSCRIPT> tag. Therefore, I proposed the converting tool to expunge any
<SCRIPT> and </SCRIPT> tags and content therein. The </SCRIPT> tag closes the
section of code beginning with the <SCRIPT> tag; the two go hand-in-hand. I also
decided that the text-only converter should remove any <NOSCRIPT> and
</NOSCRIPT> tags, thereby leaving only plain HTML code that all browsers can
interpret. Again, the </NOSCRIPT> tag simply closes the section of code beginning
with <NOSCRIPT>.

Chapter Three - Methodology

 - 28 -

This section showed that each of the four elements examined can cause problems for
blind web users. The next step was to look for a solution that could overcome these
problems by creating text-only web pages.

3.5.5 Proposed tools
The roots of some web page inaccessibility problems were highlighted in the last
section. From the evidence discussed there was a clear need emerging for some kind
of conversion tool. This tool would need to be able to take HTML files and alter them
in accordance with the suggestions made during the earlier analysis. This converting
tool would produce a text-only version of a web page that did not contain the four
elements identified as contributing to inaccessibility.

The proposed converting tool was the key to providing web pages that are more
accessible to blind people. By automating an otherwise laborious process the tool
facilitates the creation of text-only web pages. This automation allows even web
authors with little knowledge of HTML or the needs of blind web users to provide
text-only pages. However, in providing web authors with the means to translate a
graphical web page into text-only format I created the need for two additional tools.
The web author needed a structure in which to store the web pages and also some
method of maintenance. As discovered with MkDoc [MkDoc], easily navigable sites
begin with a sound directory structure. The converting tool needed a source to read
from as well as a destination to write to. To overcome this problem I chose to create a
tool that could implement a parallel directory structure. The thought behind this was
that graphical web pages would be stored in one directory and text-only web pages
would be stored in the other. The text-only converter would then read a graphical
web page from one directory, convert it, and then store it into the text-only directory.

The parallel directory structure was also planned to play a role in the maintenance of
the text-only web pages. Once the text-only web pages were created it was necessary
to keep them up-to-date. To ensure that this was done I settled on a system that would
compare the contents of the two directories and look for differences. First the system
should check to see that a text-only version of any given graphical web page exists; if
it doesn’t then the web author should be warned. Second, if a text-only version does
exist, the last modification dates of both files should be matched. If the graphical web
page has been modified more recently the web author should be alerted that the text-
only version might need updating. This maintenance system was intended to run
continuously.

3.6 Summary of analysis
To summarise the findings made in the analysis it can be said that the proposed tools
must be able to eliminate the following elements from web pages: frames, image
maps, images and scripts. These four aspects of HTML have been shown to hinder

Chapter Three - Methodology

 - 29 -

access to web pages from the standpoint of a blind person. It will not suffice,
however, to simply remove these four barriers altogether. An alternative must be
provided so that the blind web user is provided with the same information as a sighted
user. In the case of images this would be achieved by replacing the image with its
ALT text. The objectives and design of the proposed tools are discussed in the
following section.

3.7 Objectives of the tools
The analysis outlined the requirements of the proposed converting tool as being to:

• Remove all <FRAMESET> and </FRAMESET> tags from a given web page
and content therein;

• Remove all <MAP>, </MAP> and <AREA> tags;
• Replace all image maps with their hyperlinks represented by the text “Image

Map Link”;
• Remove all tags;
• Replace all images with their ALT texts;
• Remove all <SCRIPT> and </SCRIPT> tags from a given web page and

content therein;
• Remove all <NOSCRIPT> and </NOSCRIPT> tags from a given web page;

In addition to the text-only converter were the maintenance tool and the parallel
directory structure tool. The maintenance tool was intended to ensure that each
graphical web page has an up-to-date text-only equivalent. The directory tool was
planned to provide a framework from which the other two tools could operate.

3.8 Design
I chose Perl (Practical Extraction and Reporting Language) to implement the three
proposed tools. I decided upon this particular language as Perl has many facilities for
string manipulation and data reformatting, both of which I would be employing. I had
no previous knowledge of any other programming languages so I was at no particular
disadvantage to use Perl over other possibilities. I planned to develop the tools on a
Windows platform rather than Unix due to my familiarity with the Windows
environment and inexperience of Unix.

3.8.1 Parallel directory structure tool
The tool to create the parallel directory structure was designed to be the first menu
option on the main web page of the user interface. When the user made this selection
the tool would then create a directory named “webfiles” followed by two
subdirectories named “textandimages” and “textonly”. Standard web pages were to

Chapter Three - Methodology

 - 30 -

be stored in the “textandimages” subdirectory and the newly converted text-only
pages were to be stored in the other.

3.8.2 Text-only converter
I planned for the text-only converter to be a menu option on the main web page of the
user interface. The user would select the option and then be presented with a text
field, a “Browse” button and a “Convert” button. The user would then be faced with
the choice of typing in the file name to be converted or selecting it by pressing the
“Browse” button and choosing it from the file listing. The user would then click on
the “Convert” button and the file name would be passed to the converting program.
The program would then translate the contents of that file into a text-only version and
store it in its relevant directory.

3.8.3 Maintenance tool
The maintenance tool was intended to run as a demon on the web author’s computer.
A demon is a process that remains dormant until a particular condition is met. In the
case of this program the condition to be met was that a graphical web page did not
have an up-to-date text-only equivalent. When this situation arose the demon was
expected to spring into action and warn the web author that a text-only version of a
web page was required. The demon would then ask the web author whether the text-
only version should be automatically created using the converting tool. The demon
was set to check for discrepancies every thirty minutes so as not to annoy the web
author too often.

3.8.4 The user interface
The next decision to be made was how to present the tools to the user; should the
software be command-line driven or should a graphical user interface be employed? I
decided that the tools should be designed with accessibility at the forefront of my
mind. After all, the software is aiming to improve accessibility so it should lead by
example. To achieve the desired level of user-friendliness I opted for a web interface
as the front-end of the system. This choice was based on the assumption that all web
authors should be comfortable and familiar with a web browser. Using a web browser
also meant that a blind web author could access it via their preferred method of
browsing.

Chapter Four -

 - 31 -

 Implementation

4 Implementation
In the previous chapter the elements of web pages that pose barriers to blind web
users were discussed. The resulting list of objectives outlined what should be done to
exclude these obstacles from text-only web pages. The design section then proceeded
to describe a software solution that would meet these objectives. With a clear idea of
what was required from the proposed tools I then had to consider how to implement
them.

4.1 Options
I had two options for implementing the planned solution: take either a client-side or a
server-side approach. A client-side solution would mean that the software would run
from the web author’s computer. The Internet would not be required to use the tools
in this case, as the software would be operating in a standalone environment. A
server-side solution would operate from a web server and would be accessed from the
web author’s computer via the Internet.

The advantage of a server-side solution is that the tools could be accessed from any
computer with access to the Internet. If a web author travelled around the country
using different computers then this method would eliminate the need to keep
reinstalling the software. The disadvantage of adopting this approach is that the
software would be inaccessible to someone without access to the Internet. Most, if
not all, web authors would have access to the Internet but not necessarily twenty-four
hours per day. During times when a suitably fast Internet connection was not
available (for example, on a train) then the software would be inaccessible. Another
disadvantage of a server-side solution is that the maintenance tool would require a
permanent connection to the Internet to function correctly. The maintenance tool is
designed to compare the contents of two directories every thirty minutes so a fixed
connection would be necessary. Accessing the software over the Internet would
obviously involve greater delays than if it were running locally from a user’s
computer.

The advantage of implementing a client-side solution is that a one-off installation
would provide permanent access to the software. There would be no need for an
Internet connection when a web author wished to create text-only pages. A client-side
approach would also afford greater speed and security. All processes would occur
locally on the web author’s computer enabling operations to be performed quickly.
No information or commands would be sent over the Internet so there could be no
interference from viruses or hackers. The only disadvantage to a client-side approach
is that the software would need to be installed on each computer that a web author
used.

Chapter Four -

 - 32 -

 Implementation

In view of the strengths and weaknesses of each approach I decided to opt for a client-
based solution.

4.2 Implementing the parallel directory structure tool
Both the text-only converter and the maintenance tool required a directory structure to
be in place before they could operate. For this reason I chose to implement the
parallel directory structure tool first. I created a web page and placed an input button
with value “Create Parallel Directory Structure” in the centre of the page. When the
user clicked this button a parent directory named “webfiles” was created in the root of
the current drive. The user was not given a choice as to where this directory was
created due to the programming complexity and the time constraints involved. Two
subdirectories named “textandimages” and “textonly” were then created within the
“webfiles” directory. A message then informed the user that the operation was
complete and that the directory structure was in place.

4.3 Implementing the text-only converter
With the directory structure in place I could proceed with the remaining two
programs. However, as I began to implement the text-only converting tool, I realised
that CGI (Common Gateway Interface) would be required. CGI is a process that
passes information between a web browser and a web server. I had hoped that the
user would be able to click a browse button from a web-based menu and select the file
to be converted from a browse window. I planned that the file name would then be
passed to the converting program. Unfortunately, CGI was required at this point to
pass the file name to the converting tool. Using CGI would have involved a web
server, which is exactly what I had chosen to avoid for the reasons discussed in
section 4.1.

I was now forced to look for an alternative to the web-based system that I had
envisaged implementing. The problem was how to capture the file name of the web
page that was to be converted to text-only format. As Perl offers an input interface of
its own I decided to make use of it. The line of code “$file=<STDIN>” prompted the
user for a file name via an MS-DOS command window and stored it in the variable
named “file”. This new method forwent the web-based system in favour of a simpler
approach. As a result, the cosmetic appearance of the interface was sacrificed for the
sake of functionality.

However, there were advantages to the new approach; first, the MS-DOS command
window is solely text-based. Therefore, any blind web authors using screen readers to
use the tools should not encounter any problems, as there are no graphics. The web-
based approach had graphical items such as input buttons, which some screen readers
may not have been able to translate. Second, the command window only supports

Chapter Four -

 - 33 -

 Implementation

keyboard input and not mouse input. This meant that the user did not have to switch
between inputs allowing for quicker interaction with the program.

4.4 Redesigning the user interface
Now that I had digressed from the proposed web-based approach I had to re-evaluate
the situation. I was presenting two tools via two different interfaces, which I thought
might create a sense of disjointedness. Therefore, in order to keep a sense of
uniformity I concluded that I should implement all three of the proposed tools using
the MS-DOS command window as an interface. In discarding the web-based
approach I was losing some usability of the tool. For example, the user now had to
type in the file name whereas before they could select it from a browse window. This
meant that the user would have to know the exact name of the file in order to type it
into the system. However, as previously mentioned, the simplicity of the new system
afforded greater accessibility to blind users.

Employing the command window interface meant that the programs would now be
accessed by the user in a different way. With the web-based approach the user would
have accessed the tools by clicking on hyperlinks in a web page. However, with the
command window approach the user was faced with two choices: use a Perl engine to
run the tool scripts or run an executable version of the tools. If the user wanted to run
the scripts directly then they would need to install a Perl engine on their computer. A
Perl engine can interpret Perl scripts and can therefore execute them, which Microsoft
Windows cannot. The advantage of this method is that the programs operate slightly
quicker as they are run directly from the source code. The drawback of using the Perl
engine is that the user must take the time to install the Perl software first. The
alternative method is to use the executable version of the scripts, which I created
using Perl2Exe [Perl2Exe]. Perl2Exe is a free utility that converts Perl scripts to
executable files. The Perl script for the parallel directory structure tool was named
“mkdir.pl” and “mkdir.exe” was the executable version. The text-only converting
tool comprised “parse.pl” and “parse.exe”; the maintenance tool comprised
“demon.pl” and “demon.exe”. The advantage of an executable file is that it can be
run by a simple double-click upon the desktop icon representing it (although it can
also be run from a command line). The disadvantage is that the tools will run slightly
slower as the Perl scripts are being accessed indirectly via the executable files.

4.5 Implementing the text-only converter (continued)
Now that I had adopted a new approach I recommenced the implementation of the
converting tool. Once the user had entered the name of the web file to be converted
the program then looked in the “textandimages” subdirectory for that file. If the file
was found it was opened for reading and a new file of the same name was created in
the “textonly” directory. If the file could not be found then a message was displayed
to inform the user accordingly.

Chapter Four -

 - 34 -

 Implementation

The next part of the program scanned each line of HTML in the web page for certain
tags. By taking chunks of each line one to eleven characters at a time the program
could match them against the tags in question. Eleven was the number of characters
in the largest of the tags, </FRAMESET>, including the non-alphanumeric characters.
For example, a chunk of five characters might be taken and matched against the
<MAP> tag. If the five characters of the code were different then the program would
move on one letter and try again. If a match was found then the appropriate action
would be taken, which could be to eliminate the whole line of code or just the tag
itself.

HTML is not case sensitive so <map> has exactly the same meaning as <MAP>. To
account for the possible case differences the converting tool translated all the HTML
code in a given file to uppercase before it commenced matching. Perl has an in-built
operator, “tr”, that does the case translation automatically. For example, the Perl
code: “$word=~tr/a-z/A-Z/;” would translate the contents of the variable “word” into
uppercase.

The program copied each line of HTML into the new file unless one of the specific
tags was located. As outlined in Chapter three, these tags were , <MAP>,
</MAP>, <AREA>, <SCRIPT>, </SCRIPT>, <FRAMESET>, </FRAMESET>,
<NOSCRIPT> and </NOSCRIPT>. When the converting program located these tags
they were dealt with accordingly, some being completely expunged and some being
edited.

The following is an example of an tag:

In the case above, no part of the tag would be copied into the new text-only file as
there is no ALT tag present. If an tag had an ALT tag such as the one below
then the program would deal with this differently.

The converting tool would extract the ALT tag from the above line of code. This is
because all images should be replaced by their ALT tags, as concluded in section 3.7.
So, from the above line of code, “picture” would be the only part copied into the new
text-only file.

A problem I encountered whilst parsing tags was how to identify the end of
an ALT tag. ALT tags are often enclosed by quotation marks in which case the end of
the ALT tag can easily be identified by the second mark. However, quotation marks
are not compulsory and if they are not used then another method must be employed to

Chapter Four -

 - 35 -

 Implementation

distinguish the end of an ALT tag. To combat this problem I discovered that there is a
finite set of possibilities that can follow an ALT tag. If an ALT tag is not followed by
an “>” then it is followed by either “WIDTH”, “HEIGHT”, “BORDER”, “ALIGN”,
“USEMAP” or “ISMAP”. The converting tool therefore copies a line of code from
“ALT” until one of these possibilities occur, at which point copying is suspended
once again.

In order to expel image maps from the web page the <MAP> and </MAP> tags had to
be removed; this was done by matching five characters at a time to the term
“<MAP>”. Once a match was found the program stopped copying to the new file and
started to look for the </MAP> tag, which signified the end of the image map code.
By taking six characters at a time, the extra one being for the “/”, and matching them
against the term “</MAP>” the task could be completed. Once the </MAP> tag was
found the converting tool would begin to copy the subsequent code. This process
eliminated the <MAP> and </MAP> tags as well as the code within them.

Although image maps themselves were to be expelled, they were to be replaced by
their hyperlinks. An image map’s hyperlink resides in the <AREA> tag. The
<AREA> tag is found within the <MAP> and </MAP> tags; it defines each area of an
image map. Any <AREA> tags are automatically omitted as the code between the
<MAP> and </MAP> tags is not copied to the new file anyway. However, the
<AREA> tags contain an essential piece of information, namely the URLs to which
the image map links. Below is an example of an <AREA> tag:

<AREA shape=rect coords="0,0,50,83" HREF="sport.html" ALT="Sport News">

One of the aims of the converting tool was to replace image maps with their
corresponding hyperlinks. The beginning of the hyperlink is signified by “HREF=”,
so “sport.html” should be extracted from the above tag and copied into the new file.
However, “HREF” is not solely used within image maps, it can be used elsewhere in
web pages. For this reason it was necessary to set a flag to a value of one when the
program encountered an <AREA> tag. In this way it could be decided whether an
HREF tag was to be copied or not. If the AREA flag was set to zero then the HREF
tag was not to be copied but if the flag was set to one then the HREF tag should be
copied. Just copying the HREF tag to the new web file did not suffice however, as a
complete hyperlink is created by the following code:

Image Map Link

Therefore the additional code was added to the new web file by the converting tool
itself. The following code represents a simple image map:

<MAP name="abc">

Chapter Four -

 - 36 -

 Implementation

<AREA shape="rect" coords="10,15,74,93" HREF="news.html" alt=news></MAP>

The text-only converter would translate the image map code to:

 “image map”
Image Map Link

As can be seen, the , <MAP>, <AREA> and </MAP> tags have been
expunged leaving only the image map’s ALT tag and the image map hyperlink.

The <SCRIPT>, </SCRIPT>, <FRAMESET> and </FRAMESET> tags were
removed in a similar way to the <MAP> and </MAP> tags. Each term was matched
to a similar number of characters and the copying process was either suspended or
resumed when a match was found. The converting tool would stop copying when the
<SCRIPT> tag occurred and resume copying when the </SCRIPT> tag occurred.
This process ensured that both the tags themselves and the code within them were
expunged from the new text-only web file.

The <NOSCRIPT> and </NOSCRIPT> tags were handled slightly differently from
the other tags because the code within them was to be copied to the new file. To
achieve this the program would stop copying when either of the tags were found, then
jump to the “>” character and resume copying. In this way only the tags themselves
were omitted from the new text-only web file and not the HTML code within them.

4.6 Redesigning the parallel directory structure tool
Due to the fact that I had discarded the web-based approach, it was now necessary to
redesign the parallel directory structure tool. I had previously implemented the tool
via a web page but now I had to present it via the MS-DOS command window. This
action only warranted a slight adjustment since it was the interface to the program that
required amending and not the program itself. The source code of the parallel
directory tool was simply converted to executable format and accessed via a double-
click on its icon rather than via a web page. Typing “mkdir.exe” at the command line
could also run the tool.

4.7 Implementing the maintenance tool
The third and final part of the implementation was the maintenance tool. The purpose
of the maintenance program was to ensure that once created, the text-only web pages
did not fall into a state of disrepair. Also, the program was designed to check for new
web pages, which might require converting to text-only format.

In order to compare the contents of the two directories storing the web pages, a
matching algorithm was required. I began by reading the filenames from the directory

Chapter Four -

 - 37 -

 Implementation

“textandimages” into one array and the filenames from the directory “textonly” into
another array. By doing this I created two numbered lists of filenames, which could
be easily compared using a while loop. The matching algorithm I used looked at the
name of the first file from the “textandimages” directory and then compared it with all
the filenames in the “textonly” directory. If a text-only version of the web file was
found then the program looked at the last-modification dates of the two files.

Perl has a useful in-built function called “stat”, which returns an array of information
for any given file. The ninth element of this array gives the number of seconds after a
given date that a file has been modified; these seconds are known as epoch seconds.
Therefore, if a file has been modified more recently than another it will be represented
by a higher number of epoch seconds. The text-only version of a web page was
deemed to be up-to-date if it was the most recently updated file, or to be precise: if the
number of epoch seconds was greater for that file. If this were the case, the algorithm
skipped to the next file in the “textandimages” array and looked for its text-only
equivalent. Otherwise, the program informed the user that the text-only version of the
file required updating. The user was then asked whether they would like to update the
file or not. If the response was positive then the maintenance tool passed the filename
to the converting tool to do the updating. If the response was negative then the
program moved on to the next file in the array. This process was repeated every thirty
minutes to check for recently modified web pages.

If the web file was found not to have a text-only equivalent then the user was asked
whether they wished to create one. If the reply was affirmative then the filename was
passed to the converting tool and a text-only version was created. If the user did not
want to create a text-only version then the program skipped to the next file in the
array. The matching algorithm repeated this process for each file that had been read
into the array from the “textandimages” directory. This process was repeated every
thirty minutes to ensure that recently created web pages also had text-only
equivalents.

The two directories used by the maintenance tool should not contain anything other
than HTML files. If, for example, image files were stored in the “textandimages”
directory, they would also be processed by the matching algorithm. This would result
in the user being asked if they want to convert the image files to text-only format.
The “textandimages” label refers to web pages that comprise text and images rather
than text files and image files. To avoid this situation the web author could store any
non-HTML files in separate directories.

4.8 Constraints
The two main constraints that I found myself limited by during implementation were
time and my knowledge of Perl. Due to the fact that I was learning Perl whilst I was
writing the scripts for the tools I could not devote all my time to just programming.

Chapter Four -

 - 38 -

 Implementation

My inchoate knowledge of Perl sometimes meant that I was forced to take the long
way round a problem where a quicker solution might have been available. It is almost
certain that problems I thought insoluble could in fact have been unravelled by
methods I was simply unaware of. Due to the time limit I was unable to implement
fully the user interface design I had hoped to create. I would have preferred a more
pleasing-to-the-eye interface than the command window approach adopted. However,
I did not have unlimited time and so compromises sometimes had to be made.

4.9 Summary
The three tools that were implemented were designed to aid the creation and
maintenance of text-only web pages. It was hoped that web authors could employ
these tools to provide a greater number of accessible web pages to the blind Internet
population. The tools could be used to both create new text-only web pages and to
keep existing pages up-to-date. In order to measure the success of the software an
evaluation process was designed. The next chapter will look at the design and results
of the software evaluation.

Chapter Five -

 - 39 -

 Evaluation

5 Evaluation
The evaluation process was an essential part in the development of the tools. By
evaluating the three tools it would become clear as to whether they had accomplished
their objectives or whether further work was required. In order to assess the
effectiveness of the software it was necessary to develop a method of appraisal.

5.1 Design of evaluation
The tools to be evaluated had three purposes:

• To create a parallel directory structure
• To convert a web page to text-only format
• To ensure the text-only web pages were kept up-to-date

Therefore, the evaluation process had to test these objectives and then measure the
success of the tools from the results. The first task was to test whether the parallel
directory structure was created correctly. This could be achieved quite simply by
running the “mkdir.exe” file from a command line or by double-clicking on the
“mkdir.exe” desktop icon. Once the program had been executed I could then use
Windows Explorer to verify that the parallel directory structure was in place.

The second task to be evaluated was more complex and required a more rigorous
testing procedure. A number of web pages were required for the converting tool to
translate into text-only format. These web pages could either be selected from the
Web or written by myself. The main requirement of the web pages was that they
should contain at least some of the elements identified in Chapter three as being
obstacles to blind people, namely: frames, image maps, images and scripts. Once
these web pages were decided upon the converting tool could process them. The
resulting set of text-only web pages could then be accessed using the same
combination of browsers and screen readers as in Chapter three. The three browser
solutions used were:

• The BrookesTalk specialist browser
• A Lynx viewer with the JAWS screen reader
• Microsoft Internet Explorer with the JAWS screen reader

These three methods could be used to view the text-only web pages and thus gauge
their accessibility. The audio output from each browser or screen reader would then
be noted so that it could be compared with the output produced from the standard web
pages. In this way it could be seen how much of a difference the text-only format
would make for a blind person.

Chapter Five -

 - 40 -

 Evaluation

The first website I decided to use was the one I developed during the analysis stage.
The results of how this page was interpreted by the three browser solutions had
already been discovered in Chapter three. I could therefore compare these results
with those of the text-only pages created by the converting tool. However, as the
development web page was designed with the tools in mind it would not be sufficient
to end the testing procedure here. A more realistic testing environment would be the
Web where the tools would, I hope, be used in future. For this reason I chose two
further websites for testing: the University of York and the University of Manchester.
This might seem like a narrow cross-section but the three websites contained a
mixture of the elements that I wished to test. Therefore the test sample was thought to
be sufficient to evaluate the text-only converting tool.

The web page that I developed in Chapter three contained frames, images, JavaScript
and an image map. These are the four items that were identified as hindering web
page accessibility for blind people. The University of York homepage contained both
images and an image map. The University of Manchester home page contained
images with and without ALT tags as well as JavaScript. The tools I created were
designed to work purely with the four elements of HTML code mentioned.
Therefore, I tried to evaluate the tools using web pages that only contained these four
aspects of HTML. Web pages written using other languages such as Extensible
Markup Language (XML) or Active Server Pages (ASP) were deliberately avoided.
It should be noted that the University of York does provide a text-only alternative to
its website; its standard pages were used to highlight the obstacles within web pages
that blind users encounter.

The three combinations of browser and screen reader were to be used in two ways to
exploit their inherent differences. BrookesTalk and Internet Explorer do not alter the
graphical representation of web pages as Lynx does. Internet Explorer simply
displays web pages in their original form, without any rendering towards improving
ease-of-use for blind people. BrookesTalk aspires to improve accessibility by
extracting information from a web page and presenting it in an accessible format. For
example, links from a web page will be grouped together and presented in the links
menu at the top of the browser. However, as discovered in Chapter three,
BrookesTalk does not offer access to image maps or ALT tags. Therefore it was
hoped that web pages, which were previously inaccessible to some degree via
BrookesTalk and Internet Explorer, would be rendered more accessible by the
converting tool.

The purpose of the Lynx viewer is to render a text-only format of a web page, which
is the same objective of the converting tool. Therefore, once the three websites had
been converted to text-only by the tool they should be similar to those accessed
through the Lynx viewer. The standard web pages and the text-only pages were not
expected to differ much when viewed through Lynx. To be precise, the text-only web

Chapter Five -

 - 41 -

 Evaluation

pages viewed with BrookesTalk or Internet Explorer should be similar to the standard
pages viewed with Lynx.

In addition to this method of evaluation the online validator Bobby (discussed in
section 2.5.4) could have been used. However, this validator is designed to improve
the overall accessibility of web pages and is not purely focussed upon blind people.
Bobby aims to improve the use of colour, promote correct use of tables, enforce the
use of ALT tags and more; these are all design issues that web authors themselves
should be attending to. The tools I developed were not intended to tackle these design
issues; they were intended to automate the removal of HTML code causing
inaccessibility for blind people. Whilst Bobby could be used to evaluate the new text-
only web pages it would be more suited to analysing those pages designed for
universal access.

Bobby produces an online report that highlights each line of code that fails to meet a
W3C web accessibility standard. For example, Bobby returned over 200 instances of
sub-standard code in the University of Manchester web page. The report demands
quite a substantial amount of alterations to the website, all at a different level of
importance. These alterations could be of minor importance or of major significance.
If an important obstacle was removed from the page then the report might only return
199 instances. However, this reduction would not acknowledge the importance of
that one alteration. If the alteration had made only a slight difference to accessibility
then this would still have the same effect with the report now citing 199 instances.
For this reason, the report produced by Bobby was not suitable for evaluating the web
authoring tools.

The next program to evaluate was the maintenance tool, whose task it was to ensure
that there was a text-only equivalent of each web page. The maintenance tool
compared the contents of two directories and informed the web author when a text-
only web page required creating or updating. To test that this tool functioned
correctly it would be necessary to have a parallel directory structure in place. By
populating the “textandimages” directory with some standard web pages I could begin
to see the tool in action. The user should be prompted by the tool to create text-only
versions of the standard web pages. If the standard web pages were then modified the
tool should prompt the user to update their text-only equivalents. If the user then
decides not to update the text-only files, for whatever reason, the maintenance tool
should ask the user again thirty minutes later.

The final part of the evaluation was to evaluate the tools using the W3C’s Web
Accessibility Initiative guidelines on authoring tool design [WAI tools]. This
document has a number of checkpoints with different priorities that authoring tool
designers should attempt to satisfy. The W3C deem the following checkpoints to be
essential when designing an authoring tool:

Chapter Five -

 - 42 -

 Evaluation

• Ensure that the author can produce accessible content in the markup language
supported by the tool.

• Ensure that the tool preserves all accessibility information during authoring,

transformations, and conversions.

• Ensure that the tool automatically generates valid markup.

• Do not automatically generate equivalent alternatives.

• Document all features that promote the production of accessible content.

• Allow the author to change the presentation within editing views without
affecting the document markup.

.
• Allow the author to edit all properties of each element and object in an

accessible fashion.

These checkpoints were planned to be used to further evaluate the text-only converter
tool.

A more comprehensive evaluation process would have involved the participation of a
number of blind people. However, due to time constraints it was not viable to recruit
a sample of blind people to test the text-only web pages for accessibility.

5.2 Results
The evaluation method discussed in section 5.1 was applied to the three software
tools. The following three sections review the results of each tool.

5.2.1 Parallel directory structure tool
I ran the parallel directory structure tool by double-clicking on its desktop icon. The
program performed as expected and created the structure of one parent directory and
two child directories.

5.2.2 Text-only converting tool
With the parallel directory structure in place the text-only converting tool could now
be tested. The three web pages being used for the evaluation were copied into the
“textandimages” directory in preparation for conversion. The first page to be tested
was the purpose-built web page. Figure 3a shows the web page as viewed with
BrookesTalk. As discovered in Chapter three, BrookesTalk did not convert the ALT
tag of the third image to speech output. Furthermore, BrookesTalk did not offer any
verbal representation of the image map. In brief, a blind user would be denied access
to all three images and the image map.

Chapter Five -

 - 43 -

 Evaluation

Figure 3a. Purpose-built web page as viewed with the BrookesTalk browser.

The web page was then converted to text-only format by using the converting tool.
The page was accessed again using BrookesTalk; figure 3b shows the resulting text-
only version. The images and image maps were removed by the converting tool and
replaced by their ALT texts. The first two images did not have ALT texts but the
third one did and this can be seen in figure 3b as “picture of Ludwig Van Beethoven”.
BrookesTalk did not offer a verbal representation of this image of Ludwig Van
Beethoven when the standard web page was accessed. However, once the text-only
converter had replaced the image with its ALT text, BrookesTalk converted the text to
speech. As a result, a blind user would now be aware of this previously inaccessible
information. Similarly, the image map was replaced by its ALT text and its four
hyperlinks. None of this information was available to the blind user when it was in
graphical form. However, the converting tool provided BrookesTalk with a textual
rendering of the image map, which it could translate to speech output.

Chapter Five -

 - 44 -

 Evaluation

Figure 3b. Text-only version of the purpose-built web page as viewed with the

BrookesTalk browser.

The same web page was viewed using Microsoft Internet Explorer to see if the
converting tool had a different effect with another browser. Internet Explorer
supports both frames and scripts so it was expected that the text-only pages would
provide an even greater benefit for the blind user than in the previous case. This
hypothesis was made because the tool would now be dealing with frames and scripts
in addition to images and image maps. The JAWS screen reader was used in
conjunction with Internet Explorer to convert the text into speech output.

As discovered in Chapter three, frames disrupted the order in which JAWS read out
the contents of the web page. The main body of text was split up by the screen reader
inserting text from the adjacent frame. The images were only verbally represented if
they had ALT tags and if the “Show pictures” option was deselected. JAWS
conveyed the content created by the JavaScript, as it was a simple text string. If the
JavaScript had created a multi-layer menu then JAWS would not have been able to
offer a speech representation. The links within the image map remained completely
inaccessible to the blind user, as JAWS could not produce a verbal equivalent to the
hyperlinks.

The converted text-only page improved the accessibility of the web page
considerably. The converting tool removed the frames section from the web page
thus enforcing the use of the no-frames version. This action resulted in the
information within the page being read aloud by JAWS in the intended order. The
images and image map were now removed and replaced by their ALT texts so that

Chapter Five -

 - 45 -

 Evaluation

they could be rendered into a verbal form. The links from the image map were also
displayed as text, which JAWS was able to convert to speech output. The converting
tool removed all <SCRIPT> tags leaving the <NOSCRIPT> section. This meant that
the JavaScript alternative was employed, which in this case was just a different line of
text to the one that the JavaScript created. Continuing the example of the multi-layer
menu, the JavaScript alternative might have comprised a simpler HTML-based menu.
In this situation the text-only converter would make a significant difference to the
accessibility of the page by providing access to the alternative menu.

The first test web page was accessed with the Lynx viewer to complete its evaluation.
Lynx replaced the images and image maps with their ALT tags (where present). Lynx
displayed the no-frames and no-script version of the page thereby producing simple
text output, which the JAWS screen reader could convert to speech. The Lynx
rendering of the standard graphical web page was almost identical to the text-only
conversion of the web page, as expected.

The second web page to be tested was the University of York’s home page. The
graphical version of the web page was opened in BrookesTalk to see how the different
elements were handled. The main image of the page had the ALT text, “Welcome to
the University of York” yet BrookesTalk did not read this aloud. The remainder of
the page consisted of three image maps each containing a menu. BrookesTalk offered
no verbal representation of these image maps, thus rendering the page almost
inaccessible to a blind user. Fortunately, the University of York offer a text-only
version of their website and this link was displayed and converted to speech output by
BrookesTalk. However, the thirteen menu options that composed the site map
remained inaccessible to the blind user.

The text-only conversion of the second test page substantially improved accessibility.
The main image of the page was now replaced by its ALT text and converted to
speech output by BrookesTalk. Furthermore, the hub of the page – the thirteen menu
options – was now represented by text hyperlinks. These menu options, which were
previously embedded within image maps, were extracted by the text-only converter to
provide a fully accessible web page.

The University of York web page was now accessed using Internet Explorer and
JAWS. A blind person using this combination of browser and screen reader would
have found the web page almost completely inaccessible. Once again, the only part of
the page that the blind user was presented with was a news link and a link to the text-
only version. Indeed, this might be all that a blind user would require of the page.
However, if a text-only version did not exist then the user would be left with one
news article to read and nothing further.

In contrast, the text-only version of the page created by the converting tool afforded
accessibility to all ALT texts and menu options. The JAWS screen reader was able to

Chapter Five -

 - 46 -

 Evaluation

convert the menu options into speech output, as they were now represented as
hyperlinks and not image maps. The text-only converting tool transformed a near-
inaccessible web page into a fully accessible web page.

The web page as seen through the Lynx viewer can be seen in figure 4a. The image
has been replaced by its ALT text, “Welcome to the University of York” and the three
image maps have been replaced by their ALT texts. The three image map ALT texts
are, “See link for text-only version”, “Right-menu panel” and “Navigation bar”. The
Lynx viewer does not emulate a Lynx browser perfectly; a Lynx browser would
represent all hyperlinks associated with an image map.

Figure 4a. York University home page as seen with the Lynx viewer.

The text-only version of the web page, as created by the converting tool, is shown in
figure 4b. All of the image map links have been extracted and displayed as text in a
similar way to that which a Lynx browser would have done. The evident problem
with having so many image map links is that the blind user would not be able to
distinguish one from another. To provide even greater accessibility to the web page it
would be better to represent the image map links with differing text. Either the ALT
tag or the URL of an image map link might provide a suitable text representation.

Chapter Five -

 - 47 -

 Evaluation

Figure 4b. York University home page after text-only conversion as seen with the

Lynx viewer.

The third and final website used in the evaluation was the home page of the
University of Manchester. This web page had a number of images, some of which did
not have ALT tags. Several of the images contained text and were menu options;
these can be seen on the left-hand side of the page in figure 5a beginning with
“Welcome”. JavaScript was also used in the page to operate the drop-down menu on
the right-hand side of the screen.

When viewed through the BrookesTalk browser this web page was only partly
accessible. The University of Manchester logo did not have an ALT tag so a blind
user would have been unaware of the image. BrookesTalk did not convert the eight
menu options on the left-hand side of the page to speech output. This prevented a
blind user from being able to explore a large part of the website. Nonetheless, the
body text in the centre of the page and the links to the right of the page were all
accessible.

The text-only conversion of the web page produced a more accessible format. The
eight menu options were replaced by their ALT tags and converted to speech output
by BrookesTalk. The images without ALT tags were removed, as they were not
conveying any information to the user, they were more for cosmetic appearance. The
drop-down menu remained inaccessible in both versions of the web page, as there was
no alternative to JavaScript provided by the web author.

Chapter Five -

 - 48 -

 Evaluation

Figure 5a shows the University of Manchester web page as displayed by Microsoft
Internet Explorer. The JAWS screen reader did not produce a very accurate verbal
representation of this web page. The main reason for this was that the web author had
used tables to layout the information. As highlighted in section 2.3, the W3C advise
against using tables for layout purposes as this causes problems for screen readers.
Instead of reading down the columns, JAWS read across the page thereby mixing text
strings to create nonsensical sentences. Also, JAWS did not convert the menu options
on the left-hand side of the page to speech output, so a blind user would have been
precluded access to a large part of the site once again.

Figure 5a. Manchester University home page as viewed with Internet Explorer.

The text-only conversion of the web page offered slightly improved accessibility.
The resulting page is shown in figure 5b. The menu options on the left-hand side of
the page were converted from images to their ALT texts, which JAWS subsequently
converted to speech output. However, the general layout of the document was not
altered due to the fact that the converting tool was not designed to handle tables.
With the tables still in place JAWS could still not render a sensible verbal
representation of the page.

Chapter Five -

 - 49 -

 Evaluation

Figure 5b. Manchester University home page after text-only conversion as viewed

with Internet Explorer.

The Lynx viewer produced a different representation of this web page compared with
the text-only conversion in figure 5b. Lynx is designed to handle tables and it
rearranged the page so that the information was displayed vertically. The first column
with the eight menu options was displayed first followed by the text in the centre of
the page followed by the long list of links from the right-hand side of the page. This
meant that JAWS could read the page one line at a time from left to right and still
make sense. Although the converting tool was not designed to accommodate tables it
is clearly an important issue, which might be considered in future work.

The drop-down menu remained inaccessible even through the Lynx viewer. The text-
only conversion of the web page could not improve the matter as there was no
<NOSCRIPT> tag to provide a substitute. If the web author had provided an
alternative to the menu then the text-only converter would have used it to make the
menu accessible to blind users. This was a good example of when an alternative to
JavaScript should be used to avoid putting blind people at a disadvantage.

5.2.3 Maintenance tool
The three web pages that were used to evaluate the converting tool were placed in the
“textandimages” directory in order to test the maintenance tool. Once these files were
in place the maintenance tool was designed to check whether they had a text-only
equivalent in the “textonly” directory.

Chapter Five -

 - 50 -

 Evaluation

The maintenance tool was launched by running the “demon.exe” file from the
command line. As expected, the tool informed the user that the file “altframe.html”
did not have a text-only equivalent (this was the purpose-built web page) and asked
whether one should be created. The program was requested to convert the file to text-
only and the corresponding file appeared in the “textonly” directory as planned. The
converting program then displayed a message to say that the file “york.html” did not
have a text-only equivalent. The maintenance tool was asked not to create a text-only
version of the University of York web page for the moment. The program then
moved on to the third file in the directory, “manchester.html” and prompted the user
for conversion. The program was asked to create a text-only format of the University
of Manchester web page and it did do so correctly.

There were now three web files in the “textandimages” directory but only two of them
had text-only equivalents. Therefore, after thirty minutes, the maintenance tool
prompted the user to convert “york.html” again. Thirty minutes was the time decided
in section 3.9.3 that would cause minimal disruption to the web author. This time the
file was converted to text-only and subsequently appeared in the corresponding
directory.

The next feature of the maintenance tool to test was whether it would warn the web
author when a text-only page was not kept up-to-date. In order to assess this aspect of
the program a slight adjustment was made to “altframe.html” in the “textandimages”
directory. Within thirty minutes a message appeared informing the user that the file
had been altered. The user was then asked whether they wished to update the text-
only equivalent of the web page. The program was requested not to update the text-
only version of the file at that moment. The maintenance tool prompted the user
again thirty minutes later and this time the program was asked to update the text-only
file.

5.3 Usability of the software
The final part of the evaluation was to measure the usability of the software itself.
The results hitherto have shown that the software tools function correctly but how
easy are they to use? To help answer this question the W3C’s Web Accessibility
Initiative guidelines were used. Figure 6 summarises the guidelines and looks at how
the web authoring tools performed in relation to them.

Chapter Five -

 - 51 -

 Evaluation

Guideline Passed? Comment
Ensure that the author can produce accessible
content in the markup language supported by
the tool.

 Tool should allow user to
include accessibility
information.

Ensure that the tool preserves all accessibility
information during authoring,
transformations, and conversions.

Proven by results.

Ensure that the tool automatically generates
valid markup.

Proven by results.

Do not automatically generate equivalent
alternatives.

Prompt user for ALT texts
for images.

Document all features that promote the
production of accessible content.

Provide a help system.

Allow the author to change the presentation
within editing views without affecting the
document markup.

First need to provide
graphical user interface.

Allow the author to edit all properties of each
element and object in an accessible fashion.

As above.

Figure 6. Usability of software in accordance with W3C’s WAI guidelines.

The results show that the three authoring tools did not pass all the criteria set by the
W3C. However, the software still has a lot of scope for expansion and would be able
to meet the full set of guidelines with more development. The first guideline requires
an authoring tool to allow the web author to include accessibility information when
adding an object. For example, if the user added a video clip to a web page then the
tool could allow the user to add an accompanying transcript. This guideline and the
final two guidelines could be met once a more sophisticated user interface design was
in place.

The converting tool has proved that it not only preserves the HTML code in web
pages but can also automatically generate it. The test results showed that some
HTML code was modified, such as images being replaced by their ALT tags. Also,
new HTML code was introduced in the instances where image maps were replaced by
hyperlinks represented by “Image map link”.

The text-only converter does not prompt the web author for ALT texts so the fourth
criterion was not satisfied. A modification to the program might cause image tags
without ALT texts to be brought to the web author’s attention. This would certainly
ensure greater accessibility for blind people and would add to the overall design of the
web page.

The software did not meet the fifth guideline, which suggested the provision of a help
system. The current set of tools is quite simple and easy to use so a help system was

Chapter Five -

 - 52 -

 Evaluation

not deemed necessary. However, a user manual or online help guide might be
required should the tools be further developed.

5.4 Summary

The evaluation procedure has shown both the parallel directory structure tool and the
maintenance tool to perform exactly as expected without error. The performance
measurement of the text-only converter tool was, however, more complex and more
subjective. Images were successfully replaced by their ALT texts and image maps
were replaced by their hyperlinks. It was recognised that the image maps would have
been more accurately represented by either their ALT tags or their URLs rather than
the text, “Image map link”. The converting tool some times relied upon the web
author to include certain tags such as the <NOSCRIPT> tag and the <NOFRAMES>
tag. This meant that in the absence of these tags the text-only equivalent could not
always improve accessibility without the intervention of a web author. Figure 7
summarises the results from the testing of the three web pages.

Browser Web format Frames Image Maps Images Scripts
Standard

BrookesTalk Text-only

Standard Internet
Explorer Text-only

Standard

Lynx
Text-only

Figure 7. HTML elements that hindered accessibility for blind users.

As the Lynx browser has a similar job to the converting tool the results were the same
for both the standard and text-only web pages. The results in Figure 7 show that the
converting tool greatly increased accessibility for users of BrookesTalk and Internet
Explorer. However, due to the absence of script alternatives the JavaScripts still
caused problems in the text-only web pages.

Chapter Six - Conclusion

 - 53 -

6 Conclusion
The testing of the three web authoring tools produced encouraging results, as can be
seen in Chapter five. The text-only converting tool was successful in eliminating
those elements of web pages that were identified as hindering accessibility. However,
it was found that there was a limit to how far the converting tool could improve
accessibility. Instead of endeavouring to adapt the tool to correct an ever-increasing
number of design faults, web authors should be looking to avoid these design flaws in
the first place. Alternative tags such as the <NOFRAMES> and the <NOSCRIPT>
tags are essential if blind web users are to gain access to the same information as
sighted users. The ALT tag is also crucial in order to convey graphical information to
the blind user.

6.1 Criticism
Despite the goals of the tools being achieved there were certain aspects that could be
improved upon. Although the converting tool rendered image maps accessible by
extracting their hyperlinks there was still room for improvement. The hyperlinks
were represented by the text “Image Map Link” and so did not give the blind user any
idea of what lay behind the link. A better solution might have been for the hyperlinks
to be represented by their ALT tags or by their URLs. This would offer some
differentiation between links rather than several occurrences of “Image Map Link”.

The converting tool did not attempt to give the text-only web pages any particular
layout. This could result in some pages appearing rather untidy, although a screen
reader would still be able to read them. However, as text-only pages are not only used
by blind people, the layout of the pages should have perhaps been taken into account.
The onus must lie with the web author to create a good first-time design so that web
pages still look neat after text-only conversion.

The maintenance tool did its job of checking every thirty minutes for text-only files
that required updating. However, the warning to the web author was displayed in a
command window, which would not always be maximised. Therefore, either the
command window should be always on top of other windows or a warning message
should be flashed up for the web author. The frequency that the tool checked for
updates was fixed at thirty minutes; depending upon the web author, this might have
been too short or too long a time delay. A better design might have enabled the web
author to decide upon the time delay him or herself.

The parallel directory structure tool could have been more flexible in its operation.
The user was not given a choice as to where the directory structure was set up. A
more user-friendly approach could have prompted the user to enter a directory
location in which they wished the structure to be placed.

Chapter Six - Conclusion

 - 54 -

6.2 Further work
Although the objectives set out in section 3.8 were met there remains a large scope for
further work. The text-only converting tool has tackled the issue of images, image
maps, frames and scripts in web pages but other obstacles remain. Tables and forms
are but two of the other barriers that hinder web accessibility for blind people.
Further work might look to expand upon the capabilities of the converting tool and
include these two further elements of HTML.

The converting tool was designed to eliminate certain elements of HTML code in
order to improve accessibility. A complementary approach could look at not only
eliminating problematic code but also inserting advantageous code. Code to be
introduced into a web page would be tags such as the ALT, <NOFRAMES> and
<NOSCRIPT> tags. This would remind web authors of good practice and thus
improve the design and accessibility of text-only web pages.

There are a plethora of web design guidelines and web authoring tools available on
the Web today. If web authors use these existing means to full effect then web page
accessibility should be on the rise. Unfortunately, the content of the Web is created
and maintained by a wide cross-section of people with varying abilities and
conformity cannot be guaranteed.

Chapter Seven -

 - 55 -

 References

7 References

[ADA, 1990] The Americans with Disabilities Act of 1990:
http://www.usdoj.gov/crt/ada/statute.html

[Beckett, 1997] D. Beckett, 30% Accessible - A Survey of The UK Wide Web, Sixth
International World Wide Web Conference Proceedings, 1997

[Betsie] Betsie Home Page:
http://www.bbc.co.uk/education/betsie/

[Bobby] Bobby Home Page:
http://www.cast.org/bobby/

[BrookesTalk] BrookesTalk Home Page:
http://www.brookes.ac.uk/schools/cms/research/speech/btalk.htm

[Chapman, 1988] E.K. Chapman, J.M. Stone, The Visually Handicapped Child in
your Classroom, Cassell Education Limited, 1988

[CHI, 1996] E. Bergman, A.D.N. Edwards, Universal Design: Everyone has Special
Needs, Computer-Human Interaction Conference Proceedings, 1996:
http://www.acm.org/sigchi/chi96/proceedings/panels/Bergmann/edb_txt.htm

[DDA, 1995] The Disability Discrimination Act 1995:
http://www.legislation.hmso.gov.uk/acts/acts1995/1995050.htm

[Disability Rights Commission, 2002] The Disability Rights Commission:
http://www.drc-gb.org/drc/RightsAndRequirements/Page132.asp

[Guardian, 2001] The Guardian Newspaper:
http://www.guardian.co.uk/internetnews/story/0,7369,521725,00.html

[iCan, 2000] Digital Divide and the New Economy:
http://www.ican.com/news/fullpage.cfm/articleid/63D65B3F-41AF-44A3-
A4E02D616B924F41/article.cfm

[Kemenade, 2000] H. V. Kemenade, Application of a methodology for the design of
non-visual tables, 3rd year project, Computer Science Department, University of York
2000

[Lynx] Lynx Viewer:
http://www.delorie.com/web/lynxview.html

http://www.usdoj.gov/crt/ada/statute.html
http://www.bbc.co.uk/education/betsie/
http://www.cast.org/bobby/
http://www.brookes.ac.uk/schools/cms/research/speech/btalk.htm
http://www.acm.org/sigchi/chi96/proceedings/panels/Bergmann/edb_txt.htm
http://www.legislation.hmso.gov.uk/acts/acts1995/1995050.htm
http://www.drc-gb.org/drc/RightsAndRequirements/Page132.asp
http://www.guardian.co.uk/internetnews/story/0,7369,521725,00.html
http://www.ican.com/news/fullpage.cfm/articleid/63D65B3F-41AF-44A3-A4E02D616B924F41/article.cfm
http://www.ican.com/news/fullpage.cfm/articleid/63D65B3F-41AF-44A3-A4E02D616B924F41/article.cfm
http://www.delorie.com/web/lynxview.html

Chapter Seven -

 - 56 -

 References

[MkDoc] MkDoc Web Authoring Tool:
http://mkdoc.com/

[Nielsen] J. Nielsen, Designing Web Usability, New Riders Publishing, 2000

[Nua, 2001] Nua Internet Surveys:
http://www.nua.ie/surveys/how_many_online/index.html

[Perl2Exe] Perl2Exe Script Converting Tool:
http://www.indigostar.com/perl2exe.htm

[RNIB, 2001] The Royal National Institute For the Blind:
http://www.rnib.org.uk/

[Section 508, 1998] Section 508 of the Rehabilitation Act of 1973:
http://www.access-board.gov/sec508/guide/act.htm

[SENDRA, 2001] The Special Educational Needs and Disability Act 2001:
http://www.hmso.gov.uk/acts/acts2001/20010010.htm

[Sun] Sun MicroSystems:
http://java.sun.com/

[TOM] Text-Only Maker Web Authoring Tool:
http://archive.ncsa.uiuc.edu/Indices/Outreach/IntroducingTOM.html

[WAI, 1999] Web Content Accessibility Guidelines 1.0:
http://www.w3.org/TR/WAI-WEBCONTENT/

[WAI tools] Checklist of Checkpoints for Authoring Tool Accessibility Guidelines
1.0:
http://www.w3.org/TR/ATAG10/atag10-chktable.html

[W3C] Review of Lynx Viewer:
http://lists.w3.org/Archives/Public/w3c-wai-er-ig/2000Feb/0047.html

[W3C Validator] W3C Validator:
http://validator.w3.org/

http://mkdoc.com/
http://www.nua.ie/surveys/how_many_online/index.html
http://www.indigostar.com/perl2exe.htm
http://www.rnib.org.uk/
http://www.access-board.gov/sec508/guide/act.htm
http://www.hmso.gov.uk/acts/acts2001/20010010.htm
http://java.sun.com/
http://lunch.ncsa.uiuc.edu/tom/tom.html
http://www.w3.org/TR/WAI-WEBCONTENT/
http://www.w3.org/TR/ATAG10/atag10-chktable.html
http://lists.w3.org/Archives/Public/w3c-wai-er-ig/2000Feb/0047.html
http://validator.w3.org/

Chapter Eight - Bibliography

 - 57 -

8 Bibliography
The following are URLs and literature used by the author but not quoted:

T. Christiansen, R.L. Schwartz, Learning Perl, O’Reilly 1997

T. Christiansen, N. Torkington, Perl Cookbook, O’Reilly 1999

T. Christiansen, L. Wall, R.L. Schwartz, Programming Perl, O’Reilly 1996

A.D.N. Edwards, Speech Synthesis – Technology for Disabled People, Paul Chapman
Publishing Ltd, 1991

G. Gardiner, E. Lowe, Disability Legislation and Its Impact on Websites, Buchanan
Ingersoll Law Practice, 2001:
http://www.buchananingersoll.com/euro_law/articles/disabilityimpact.html

L. Harrison, J. Richards, J. Treviranus, Authoring Tool Support: "The Best Place to
Improve the Web”, Adaptive Technology Research Centre, University of Toronto,
2001:
http://www.utoronto.ca/atrc/rd/library/papers/richar_j.html

R. Hayward, WWW browsers for blind people, 3rd year project, Computer Science
Department, University of York 1997

P. Hoffman, Perl for Dummies, IDG Books, 1998

J.J. Lazzaro, Adaptive Technologies for Learning & Work Environments, American
Library Association, 2001

S. McManus, Tesco launches visionary website, 2001:
http://www.sean.co.uk/a/webdesign/accessibility.shtm

M. Sloan, Web Accessibility and the DDA, Journal of Information, Law and
Technology, 2001:
http://elj.warwick.ac.uk/jilt/01-2/sloan.html

S. Thompson, A comparison of two approaches to Web access for blind users, 3rd year
project, Computer Science Department, University of York 2000

G. Weber, Itd Technotes: Braille Displays, University of Stuttgart, 1994:
http://www.rit.edu/~easi/itd/itdv01n3/weber.html

http://www.buchananingersoll.com/euro_law/articles/disabilityimpact.html
http://www.utoronto.ca/atrc/rd/library/papers/richar_j.html
http://www.sean.co.uk/a/webdesign/accessibility.shtm
http://elj.warwick.ac.uk/jilt/01-2/sloan.html
http://www.rit.edu/~easi/itd/itdv01n3/weber.html

Chapter Eight - Bibliography

 - 58 -

P. Woodcock, Guidelines for ALT texts for auditory browsing, MSc project,
Computer Science Department, University of York 2001

The Comprehensive Perl Archive Network:
http://www.cpan.org

Freedom Scientific:
http://www.freedomscientific.com/

The Making Connections Unit:
http://www.mcu.org.uk/

The Royal National Institute for the Blind, First RNIB Web Access Award goes to
Tesco, 2001:
http://www.rnib.org.uk/whatsnew/pressrel/may2001/tesco.htm

The World Wide Web Consortium:
http://www.w3.org

http://www.cpan.org/
http://www.freedomscientific.com/
http://www.mcu.org.uk/
http://www.rnib.org.uk/whatsnew/pressrel/may2001/tesco.htm
http://www.w3.org/

Chapter Nine - Appendix

 - 59 -

Appendix

Source code for the web authoring tools

Chapter Nine - Appendix

 - 60 -

9 Appendix
This chapter comprises the source code of the three web authoring tools.

9.1 Parallel directory structure tool

Program Name: mkdir.pl
Author: Omid Afzalalghom
Date: December 2001

#Code begins here.

#Define variable to hold system message.

$message = "The parallel directory structure has been created \n" ;

#Define variables to hold directory names.

$dir1="webfiles";
$dir2="textandimages";
$dir3="textonly";

Moves to the root of the directory and creates the parallel directory structure.

chdir ("/");
mkdir ($dir1);
chdir ($dir1);
mkdir ($dir2);
chdir ("/");
chdir ($dir1);
mkdir ($dir3);
chdir ("/");

#Print message informing user of task completion.

&PrintMessage;

 sub PrintMessage {
 print $message ;

 exit 0 ;
 return 1 ;

 }

Chapter Nine - Appendix

 - 61 -

9.2 Text-only converting tool

Program Name: parse.pl
Author: Omid Afzalalghom
Date: December 2001

#Code begins here

print "Please type the name of the file that you would like to convert to text-only \n";

$file=<STDIN>; #keyboard input is stored in $file variable.

$dir= "\\webfiles\\textandimages\\";
chdir ("/");
chdir ($dir);

#Opens standard web page for reading.
open (HTML, $file) or die "The file could not be found. \n" ;

$dir2= "\\webfiles\\textonly\\";
chdir ("/");
chdir ($dir2);

#Opens new text-only web page to write to.
open (OUTPUT, ">$file");

#Defines variables used in parsing routine.
$string2='';
$link='';
$copy=1;
$imgcopy=1;
$mapalt='';

while (<HTML>){ #Reads original html file line by line.
 $string1=$_;
 $img = 0;

 $n= length $string1;

 for ($i=0; $i<=$n; $i++) #Reads one character at a time from html file.
 {

 $letter = substr $string1,$i,1;

 $char4 = substr $string1,$i,4;
 $char4=~tr/a-z/A-Z/;
 $char4end = substr $string1,$i,5;
 $char4end=~tr/a-z/A-Z/;

 $char5 = substr $string1,$i,5;

Chapter Nine - Appendix

 - 62 -

 $char5=~tr/a-z/A-Z/;
 $char5end = substr $string1,$i,6;
 $char5end=~tr/a-z/A-Z/;

 $char6 = substr $string1,$i,6;
 $char6=~tr/a-z/A-Z/;
 $char6end = substr $string1,$i,7;
 $char6end=~tr/a-z/A-Z/;

 $char7 = substr $string1,$i,7;
 $char7=~tr/a-z/A-Z/;
 $char7end = substr $string1,$i,9;
 $char7end=~tr/a-z/A-Z/;

 $char9 = substr $string1,$i,9;
 $char9=~tr/a-z/A-Z/;

 $char10 = substr $string1,$i,10;
 $char10=~tr/a-z/A-Z/;
 $char11end = substr $string1,$i,11;
 $char11end=~tr/a-z/A-Z/;

 if ($copy == 4) {$copy=1;}
 if ($copy == 5) {$copy=1;}
 if ($copy == 6) {$copy=1;}
 if ($copy == 7) {$copy=1;}
 if ($copy == 10) {$copy=1;}
 if ($copy == 11) {$copy=1;}

 if ($alt == 2) {$alt=1;}
 if ($img == 1) {$copy=1;}
 if ($href == 1) {$href=2;}
 if ($href == 3) {$href=4;}
 if ($href == 5) {$href=6;}
 if ($href == 7) {$href=8;}
 if (($href == 2) and ($letter ne '"')) {$href=1;}

 if (($letter eq '>') and ($imgcopy==0)) {$img=1; $imgcopy=1;}
 if ($char4 eq '<IMG') {$copy=0; $imgcopy=0;}
 elsif ($char4 eq '<MAP') {$copy=0;}
 elsif ($char4 eq 'ALT=') {$alt=2;}

 if ($char5end eq '</MAP>') {$copy=5;}
 if ($char5 eq 'WIDTH') {$alt=0;}
 elsif ($char5 eq 'ALIGN') {$alt=0;}
 elsif ($char5 eq 'ISMAP') {$alt=0;}
 if ($char6 eq 'BORDER') {$alt=0;}
 elsif ($char6 eq 'HEIGHT') {$alt=0;}
 elsif ($char6 eq 'USEMAP') {$alt=0;}

 if ($char5 eq '<AREA') {$copy=0; $area=1;}

Chapter Nine - Appendix

 - 63 -

 elsif (($char5 eq 'HREF=') and ($copy==0)) {$href=1;}
 elsif (($char5 eq '.HTML') and ($copy==0)) {$href=3;}
 if (($char4 eq '.HTM') and ($copy==0)) {$href=5;}
 if (($char4 eq '.COM') and ($copy==0)) {$href=7;}

 if ($letter eq '>') {$href=0;}
 if ($letter eq '>') {$alt=0;}

 if ($char7 eq '<SCRIPT') {$copy=0;}
 if ($char7end eq '</SCRIPT>') {$copy=7;}

 if ($char9 eq '<FRAMESET') {$copy=0;}
 if ($char11end eq '</FRAMESET>') {$copy=11;}

 if ($char10 eq '<NOSCRIPT>') {$copy=10;}
 if ($char11end eq '</NOSCRIPT>') {$copy=11;}

 if ($copy == 11) {$i = $i+12;}
 if ($copy == 10) {$i = $i+10;}
 if ($copy == 7) {$i = $i+8;}
 if ($copy == 6) {$i = $i+7;}
 if ($copy == 5) {$i = $i+6;}
 if ($copy == 4) {$i = $i+5;}

 if ($alt == 2) {$i = $i+3;}
 if ($copy == 1) {$string2=$string2.$letter;}
 if (($alt == 1) and ($imgcopy == 0)) {$string2=$string2.$letter;}
 if ($href == 5) {$i = $i+3};
 if ($href == 7) {$i = $i+3};
 if ($href == 3) {$i = $i+4};
 if ($href == 1) {$link=$link.$letter;}
 if ($href == 4) {$link= "
" . "<a ". $link . ".html" . ">" .
 "Image Map Link" . "" ;}
 if ($href == 6) {$link= "
" . "<a ". $link . ".htm" . ">" .
 "Image Map Link" . "" ;}
 if ($href == 8) {$link= "
" . "<a ". $link . ".com" . ">" .
 "Image Map Link" . "" ;}

 if (($href == 4) and ($area==1)) {$string2=$string2.$link;}
 if (($href == 6) and ($area==1)) {$string2=$string2.$link;}
 if (($href == 8) and ($area==1)) {$string2=$string2.$link;}
 if ($href == 4) {$link=''; $href=0; $area=0;}
 if ($href == 6) {$link=''; $href=0; $area=0;}
 if ($href == 8) {$link=''; $href=0; $area=0;}

 }
 }

 print OUTPUT "\n $string2 \n";

 close(HTML);
 close(OUTPUT);

Chapter Nine - Appendix

 - 64 -

9.3 Maintenance tool

Program Name: demon.pl
Author: Omid Afzalalghom
Date: December 2001

#Code begins here

while(1) {
 sleep(1800);

$dir1="\\webfiles\\textonly";
$dir2="\\webfiles\\textandimages";

chdir ("/");
opendir(TEXTONLY, $dir1);
@textnames=readdir(TEXTONLY); #Reads text-only filenames into array.

chdir("/");
chdir($dir2);
opendir(NORMAL, $dir2); #Reads standard filenames into array.
@imagenames=readdir(NORMAL);

$i=0;
$listpos=0;

#While all files have not been checked, search for text-only equivalent.
while($listpos<=$#imagenames){

$file=@imagenames[$listpos];
 while($i<=$#textnames){

 $tfile=@textnames[$i];
 last if $file=~/^\.\.?$/; #Ignore root and parent directories.
#If filenames match then compare dates.
 if($file eq $tfile){
 &date();$i=0; last}
 elsif(($file ne $tfile) and ($i==$#textnames)){
 print "$file requires converting \n";
 &convert(); #Convert file if no equivalent exist.
 if ($answer){
 &parser($file); $i=0; last}
 else{$i=0; last}
 }
 else{$i++}

}

 $listpos++;
}

}

Chapter Nine - Appendix

 - 65 -

sub date{

chdir ("/");
chdir ($dir2);

@filedata=stat($file);
$date=$filedata[9];

chdir ("/");
chdir ($dir1);

@textfiledata=stat($tfile);
$date2=$textfiledata[9];

if ($date>$date2)
 {&update();}

}

sub update{
 print "$file has been modified.\n";
 print "Do you wish to update the text-only version? \n";
 print "Press 'y' if you wish to convert or 'n' if you do not \n";
 $reply=<STDIN>;
 $reply= substr $reply,0,1;
 if ($reply eq "y"){&parser($file);}
 else {return 0;}
}

sub convert{
 print "Press 'y' if you wish to convert or 'n' if you do not \n";
 $answer=<STDIN>;
 $answer= substr $answer,0,1;
 if ($answer eq "y"){$answer = 1;}
 else{$answer = 0;}
 return ($answer)

	Introduction
	Visually impaired users and the growth of the Web
	Text-only web pages
	Project aims
	Parallel directory tool
	Converting tool
	Maintenance tool

	Background
	Economic advantage
	Legal requirements
	Current web design guidelines
	Java and HTML 4.01
	Interview with the YorkWeb author
	Existing web authoring tools
	TOM
	Betsie
	W3C HTML validation service
	Bobby
	MkDoc.com

	Screen readers and specialist browsers
	BrookesTalk
	Lynx
	JAWS for Windows

	Methodology
	Development of test web page
	Performance of BrookesTalk
	Performance of JAWS with Lynx
	Performance of JAWS with Internet Explorer
	Analysis
	Frames
	Image maps
	Images
	Scripts
	Proposed tools

	Summary of analysis
	Objectives of the tools
	Design
	Parallel directory structure tool
	Text-only converter
	Maintenance tool
	The user interface

	Implementation
	Options
	Implementing the parallel directory structure tool
	Implementing the text-only converter
	Redesigning the user interface
	Implementing the text-only converter (continued)
	Redesigning the parallel directory structure tool
	Implementing the maintenance tool
	Constraints
	Summary

	Evaluation
	Design of evaluation
	Results
	Parallel directory structure tool
	Text-only converting tool
	Maintenance tool

	Usability of the software
	Summary

	Conclusion
	Criticism
	Further work

	References
	Bibliography
	Appendix
	Parallel directory structure tool
	Text-only converting tool
	Maintenance tool

