A Refinement Strategy for the Compilation of Classes, Inheritance, and Dynamic Binding

Adolfo Duran1, Ana Cavalcanti1 and Augusto Sampaio2

1 Computing Laboratory / University of Kent at Canterbury
United Kingdom CT2 7NF
\texttt{\{aad2,A.L.C.Cavalcanti\}@ukc.ac.uk}

2 Centro de Informática / Universidade Federal de Pernambuco
Po Box 7851 50740-540 Recife PE Brazil
\texttt{acas@cin.ufpe.br}

Abstract. This paper presents a refinement strategy for the compilation of a subset of Java that includes classes, inheritance, dynamic binding, visibility control, and recursion. We tackle the problem of compiler correctness by reducing the task of compilation to that of program refinement. More specifically, refinement laws are used as compilation rules to reduce the source program to a normal form that models an interpreter running the target code. The compilation process is formalized within a single and uniform semantic framework, where translations or comparisons between semantics are avoided. Each compilation rule can be proved correct with respect to the algebraic laws of the language.

Keywords: transformation; object-orientation; compiler correctness.

1 Introduction

The demand for correctness of computer programs has increased due to their use in applications where failure could result in unacceptable losses. Correct compilers address the translation of source programs into a target language, with a guarantee that the semantics is preserved. Several approaches have been suggested; the majority focus on procedural languages \cite{11, 13, 16}.

Even though object-oriented programming has become very popular in recent years, most applications are developed using informal methods. Approaches to compiler correctness covering object-oriented features are rare in the literature. Recently, there have been works based on verification, focused on the translation between Java programs and the Java Virtual Machine (JVM) \cite{3, 15}.

Here, we describe an algebraic approach to construct a provably correct compiler for an object-oriented language called ROOL (for Refinement Object-oriented Language), which is based on a subset of sequential Java. This language includes classes, inheritance, dynamic binding, recursion, type casts and tests,
and class-based visibility. It also includes specification constructors like those of Morgan’s refinement calculus [12]. Our language was devised as a means to study refinement of object-oriented programs in general, not only compilation. Its weakest precondition and its algebraic semantics have been studied in [4, 2]. In [5], it is used to formalise refactoring as a refinement activity.

Our approach to compilation is inspired on that first described in [9], and further developed for imperative programs in [14]. Its main advantage is the characterisation of the compilation process within a uniform framework, where translations are avoided. Compilation is identified with the reduction of a source program, written in an executable subset of the language, to a normal form.

Our language was devised as a means to study refinement of object-oriented programs in general, not only compilation. Its weakest precondition and its algebraic semantics have been studied in [4, 2]. In [5], it is used to formalise refactoring as a refinement activity.

Our approach to compilation is inspired on that first described in [9], and further developed for imperative programs in [14]. Its main advantage is the characterisation of the compilation process within a uniform framework, where translations are avoided. Compilation is identified with the reduction of a source program, written in an executable subset of the language, to a normal form.

Our normal form is an interpreter-like program which emulates the behavior of the target machine. From this interpreter we capture the sequence of generated instructions. We define a ROOL Virtual Machine (RVM) as our target. It is based on the Java Virtual Machine (JVM) [10].

The purpose of this paper is to provide a description of the compilation process, and provide an example. We first presented our approach in [7]; there, however, we do not consider classes, inheritance, recursive method calls, and dynamic binding. In this paper, we consider the compilation of all these constructs; the rules that justify in detail all our reduction steps can be found in [8]. We also present an improved normal form, which provides the same functionality as that in [7], but is more amenable to proof.

The remainder of this paper is structured as follows. In Section 2 we describe ROOL and introduce our case study. In Section 3, we describe the target machine and our normal form. In Section 4, we describe and illustrate the compilation phases and the transformations they impose on our example. Finally, in Section 5, we outline our conclusions and discuss related and future work.

2 ROOL

A program in ROOL consists of a sequence cds of Java-like class declarations followed by a main command c, which may contain objects of classes declared in cds. A class declaration has the following form.

```plaintext
class $N_1$ extends $N_2$
  {pri $x_1 : T_1 ;$}*$\{prot $x_2 : T_2 ;$}*$\{pub $x_3 : T_3 ;$}*$  //attributes
  {meth $m \triangleright (pds \bullet c)$ end}*$  //methods
  {new $\triangleleft (pds \bullet c)$ end}*$  //Initialiser
end
```

A class declaration introduces a class name N_1. The clause `extends` determines the immediate superclass of N_1; if it is omitted, the built-in empty class `object` is regarded as the superclass. A class can be recursive in that attributes and method parameters of a class L can have type L. Attributes are declared with visibility modifiers similar to those of Java: `pri`, `prot`, and `pub` are used for private, protected, and public attributes.
The clauses **meth** declare methods, which are regarded as public. Methods are seen as parameterised commands in the style of Back [1]; the declaration **pds** of the parameters of a method is separated from its body by the symbol ‘•’. The declaration of a parameter \(x \) of type \(T \) can take the form \(\text{val } x : T \), \(\text{res } x : T \), or \(\text{vres } x : T \), corresponding to the traditional conventions of parameter passing known as call-by-copy: call-by-value, call-by-result, and call-by-value-result. The **new** clause declares initialisers: methods that are called after creating an object of the class.

In Figure 1, we give an example of an executable program in ROOL that will be used to illustrate our compilation strategy. It simulates a mechanism to keep track of a robot’s path. The robot starts in the position \((0, 0)\). Every time it moves, a step of length \(l \) is taken towards north, south, east, or west. The outcome of this program is the total length of the route described by the robot.

```rool
class Step
  pri dir, len : int;
  meth setDirection = (val d : Int; • self.dir := d) end
  meth setLength = (val l : Int; • self.len := l) end
  meth getLength = (res l : Int; • l := self.len) end
end

new = (val d, l : Int • self.setDirection(d); self.setLength(l))
```

```rool
meth setDirection = (val d : Int; • self := d) end
meth setLength = (val l : Int; • self := l) end
meth getLength = (res l : Int; • l := self) end
```

```rool
class Path extends Step
  pri previous : Path;
  meth addStep = (val d, l : Int •
    self.previous := self; self.setDirection(d); self.setLength(l);
  ) end
  meth getLength = (res l : Int •
    var aux : Int
    if (self.previous <> null) -> self.previous.getLength(aux)
    [] (self.previous = null) -> aux := 0
    fi;
    super.getLength(l); l := l + aux;
  ) end
new = (val d, l : Int •
  self.setDirection(d); self.setLength(l); self.previous := null)
```

```rool
var p : Path •
  p := new Path(north, l1); p.addStep(north, l1); p.addStep(east, l2);
p.addStep(south, l3); p.addStep(west, l4); p.getLength(out);
```

Fig. 1. ROOL program for keeping tracking of a robot’s path

Two classes are declared in our example, **Step** and **Path**. The first one has two integer attributes: \(dir \) and \(len \), corresponding to the direction and length of
a step. Values for these attributes are established by the methods `setDirection` and `setLength`, whereas the length of a step is given by the method `getLength`.

The class `Path` extends `Step`, introducing the attribute `previous` to hold the preceding steps that outline the robot’s path; `Path` is a recursive class. The method `addStep` introduces step to the path; it first assigns the current path (self) to `previous`, and then invokes the two methods `setDirection` and `setLength` to record the current step. The length of a path is given by the method `getLength`, a redefinition of the method with same name declared in `Step`. This is a recursive method in which each invocation visits a step in the path; it transverses the list of steps accumulating the length. The sequence of nested invocations ends when the first step is reached: the value of `previous` is `null`. To get the length of the current step, we use a method call `super.getLength` to guarantee that the method declared in `Step`, which is `Path`’s superclass, is invoked.

A method call `le.m` is as a parameterised command; `m` refers to the method associated with the object that is the current value of the expression `le`. In addition to method calls, the main command, the body of methods, and initialisers are defined using imperative constructs similar to those of Morgan’s refinement calculus [12]. They are described in the following grammar.

\[
c \in \text{Com} ::= \text{le} := e \mid x : \{\text{pre}, \text{post}\} \mid c_1; c_2 \mid \text{pc}(e) \mid \text{if} [b_i \rightarrow c_i, \text{fi}] \mid \text{rec } X \bullet c \text{ end} \mid \text{var } x : T \bullet c \text{ end} \mid \text{avar } x : T \bullet c \text{ end}
\]

Left-expressions `le` are those that can appear as target of assignments and method calls, and as result and value-result arguments. An assignment has the form `le := e`, where `e` is an arbitrary expression; the semantics is of copy rather than reference. The specification statement `x : \{\text{pre}, \text{post}\}` describes a program that, when executed in a state that satisfies the precondition `pre`, terminates in a state that satisfies the postcondition `post`, modifying only variables in `x`.

A parameterized command can have the form `val x : T \bullet c`, `res x : T \bullet c`, or `vres x : T \bullet c`. The alternation is composed by a collection of guarded command `b_i \rightarrow c_i`, as in Dijkstra’s language[6]. The block `rec X \bullet c \text{ end}` introduces a recursive command named `X` with body `c`; occurrences of `X` in `c` are recursive calls. The difference between the two kinds of variable blocks is the way in which the variables are initialised; in a `var` block, the initial value is arbitrary, whereas in a `avar` block, it is angelically chosen. The variables introduced in a `avar` block are angelic variables, also known as logical constants. ROOL does not include a `while` statement, but it can be defined in the standard way using recursion.

The following grammar describes the ROOL expressions, which are mainly those normally found in an object-oriented language.
\[
e \in \text{Exp} ::= \text{self} \mid \text{super} \mid \text{null} \\
| \text{new } N \mid x \mid f(e) \mid \text{e is } L \mid (N) \mid e.x \mid (e; x : e)
\]

The reference \text{self} corresponds to \textit{this} of Java. The expression \text{new } N creates an object of class \text{L}. A type test allows to check the dynamic type of an object, like the \text{instanceof} in Java. An update expression \((e_1; x : e_2)\) denotes a fresh object copied from \(e_1\), but with attribute \(x\) mapped to a copy of \(e_2\).

3 Target Machine

In our approach to compilation, the behavior of the target machine is given by an interpreter written in ROOL itself. Each executable command is translated to a sequence of bytecode instructions encoded as ROOL commands. The ROOL interpreter models a cyclic mechanism which executes one instruction at a time.

The interpreter represents the target machine components using the variables \(PC\) (program counter), \(S\) (the operand stack), \(F\) (the frame stack), \(M\) (store for variables), \(Cls\) (symbol table for the classes declared in the source program), and \(CP\) (constant pool). The execution of an instruction changes these components, updating the machine state. The \(PC\) register contains the address of the bytecode instruction currently being executed. Because the virtual machine has no registers for storing temporary values, everything must be pushed onto the operand stack \(S\) before it can be used in a calculation. The frame stack \(F\) is composed by objects of a class \text{FrameInfo} that hold the state of methods invocation. When a method is invoked, a new frame is placed on the top of the frame stack; when the method completes, the frame is discarded.

The observable data space of our virtual machine is a store for variables \(M\): the concrete counterpart of the variables of the source program. It is a map from the address of the variables to their values; the model is a sequence of objects. Each method invocation frame possesses a store for variables, which records the values of the variables visible during the invocation.

The component \(Cls\) is a symbol table holding the essential information about the class declarations in the source program; it is represented by a sequence of objects of the class \text{ClassInfo}. Each of them has the following attributes: \text{name}, which records the class name; \text{super}, the superclass name; \text{subcls}, the sequence of immediate subclasses names; \text{mtds}, the sequence of methods (objects of a class of \text{MethodInfo}) declared in the class; and \text{attrib}, the sequence of attributes (objects of a class of \text{AttribInfo}) declared in the class. An object of \text{MethodInfo} holds the following attributes: \text{name}, which records the method name; and \text{descriptor}, the list of the type and mechanism used to pass each of the parameters. Attributes are recorded using objects of class \text{AttribInfo}; their attributes are also \text{name} and \text{descriptor}; the latter contains the type and visibility of the attribute.

The constant pool is an heterogeneous list of references to classes, attributes, methods, and constants; these references are entries obtained through an index.
Entries are objects of four different classes. A class entry is an object of a class `CpEntryClass`, which contains only a class name; from that class we can obtain the corresponding object of `ClassInfo` in `Cls`. An attribute entry contains an object of `CpEntryAttrib`, which holds not only an attribute name and the class where the attribute is defined. A method entry holds an object of `CpEntryMtd` containing the name of the class where the method is defined, and the method name. Finally, an entry containing an integer constant is an object of a class `DataInfoInt`; integer values are encapsulated in objects.

3.1 Normal Form

Our normal form is an interpreter-like program modelling a cyclic mechanism that executes one instruction at a time. Every cycle fetches the next instruction to be executed and simulates its effect on the internal data structures of the interpreter. Figure 2 shows the ROOL interpreter; as a ROOL program, the normal form consists of a sequence of class declarations (`cdsRVM`) followed by a main command named `I`. The class declarations define the classes mentioned in the description of `RVM` components. The main command describes the behavior of our target machine executing a compiled program: an iterated execution of a sequence of bytecodes represented by the set of guarded commands `GCS`.

The main command `I` is a `var` block declaration that introduces three local variables, `PC`, `S`, and `F`: the program counter, the operand stack and the frame stack. The first two commands in the variable block are assignments to create a new operand stack and a new frame stack.

```
cdsRVM • var PC, S, F : Int, Stack, FrameStack •
  S := new Stack; F := new FrameStack;
  PC := s;
  while PC ≥ s ∧ PC < f → if GCS fi end
end
```

Fig. 2. The ROOL Interpreter (`cdsRVM • I`)

The variable `PC` is used for scheduling the selection and sequencing of instructions. The abbreviation `GCS` depicts the stored program as a set of guarded commands of the form `(PC = k) → q`, where `q` is a machine instruction that is executed when `PC` is `k`. The initial value of `PC` is the address `s` of the first instruction to be executed; the final address is `f`. The `while` statement is executed until `PC` reaches a value beyond the interval determined by `s` and `f`. The body of the while tests the `PC` value and selects the instruction to be executed. All instructions modify `PC`. The set of guarded commands is an abstract representation of the target code. The design of a compiler in our approach is actually an abstract design of a code generator.
For convenience, we define some abbreviations.

Definition 1 (Abbreviations for the interpreter)

\[
\begin{align*}
\text{Init} & \quad \text{def} \quad S := \text{new} \ \text{Stack}; \ F := \text{new} \ \text{FrameStack}; \\
v : [s, GCS, f] & \quad \text{def} \quad PC := s; \\
\text{while} \ PC \geq s \wedge PC < f & \quad \text{if} \ GCS \ \text{fi end}
\end{align*}
\]

where \(v \) is the list \(PC, S, F \).

Together, \(\text{Init} \) and \(v : [s, GCS, f] \) compose the body of variable block in the main command.

3.2 Machine Instructions

In this section, we give some examples of how the instructions of our virtual machine are defined. We assume that \(n \) stands for an address in \(M \), and \(k \) for an address in the sequence of bytecodes.

Definition 2 (Instructions definition)

\[
\begin{align*}
\text{load}(n) & \quad \text{def} \quad S := (M[n]) \wedge S; \ PC := PC + 2 \\
\text{bop} & \quad \text{def} \quad S := \langle \text{head}(\text{tail}(S)) \ \text{bop} \ \text{head}(S) \rangle \wedge \text{tail}(\text{tail}(S)); \ PC := PC + 1 \\
\text{goto}(k) & \quad \text{def} \quad PC := k \\
\text{new}(j) & \quad \text{def} \quad \text{var} \ a : \ \text{ObjectInfo} \quad \bullet \\
& \quad o := \text{newObjectInfo}; \ o.\text{create}(Cls, CP, j); \\
& \quad S := (o) \wedge S; ; \ PC := PC + 2 \\
\end{align*}
\]

Pushing a local variable onto the operand stack is done by the instruction \(\text{load} \), and involves moving a value from the store of variable \(M \) to the operand stack \(S \). To deal with operators, we group them so that \(\text{bop} \) stand for binary operators. The instruction \(\text{goto} \) always branches: the integer argument \(k \) is assigned to \(PC \). The instruction \(\text{new} \) builds an object of class \(\text{ObjectInfo} \) to hold the representation of an object whose type is indicated by the argument \(j \). This is an index to a class entry in the constant pool. The call \(o.\text{create}(Cls, CP, j) \) traverses \(Cls \), the representation of the source program class hierarchy, determining and recording in \(o \) the attributes of the class indicated by \(j \), and of its superclasses. The resulting object \(o \) is pushed into the operand stack \(S \).

4 Strategy for Compilation

In this section we give an overview of our reduction strategy for compilation. There are five phases: class pre-compilation, redirection of method calls, simplification of expressions, data refinement, and control elimination. Class pre-compilation records the structure of the classes in the source program and introduces the class \(L \), which includes just one method, \(\text{lookUp} \), to resolve dynamic
binding, if necessary. Redirection of method call rewrites each method call to a call to `lookUp`. Simplification of expressions eliminates nested expressions in assignments and guards. In the data refinement phase, the abstract space of the source program is substituted by the the concrete space of the target machine.

The purpose of control elimination is to reduce the nested control structure of the source program to the single flat iteration of the normal form. The idea is to progressively change the structure of the source program to get to the normal form.

The compilation process is justified by reduction theorems; for each phase, a theorem asserts the expected outcome and a main theorem links the intermediate steps and establishes the outcome for the entire process. Since the reduction theorems are proved from the basic laws of ROOL, they corroborate the correctness of the compilation process. We anticipate the main theorem.

Theorem 1 (Compilation Process) Let $cds \bullet c$ be an executable source program. Given the symbol tables Φ and Ψ, then there are s, GCS, and f such that

$$
\Phi(cds \bullet c) \subseteq cdsvm \bullet I.
$$

The symbol \subseteq represents the refinement relation; this theorem guarantees that the normal form embeds a correct implementation of the source program. Its constructive proof characterises the compilation process, discussed in the sequel.

Since the source program operates on a data space different from that of the normal form, it does not make sense to compare them directly. A function Φ performs the necessary change of data representation. The symbol table Ψ maps the variables declared in the source program to addresses in the store M, in such a way that $M[x]$ holds the value of x. Similarly, Φ is a symbol table that maps the elements declared in the source program to indexes in CP. From these indexes, the objects representing the classes, methods, or attributes can be obtained from Cls; the constants are represented by objects in CP. These tables are used to build the function Φ; it uses Ψ and Φ to replace the abstract space of the source program by the concrete state of the target machine.

Before we describe our compilation strategy, we explicit the following restrictions, which we assume to hold for the source programs; there is no name clashing for attributes in the set of class declarations cds; name clashing for methods are allowed only in the case of redefinitions; and all references to an attribute have the form `self.a`. These conditions are necessary to ensure the applicability of the compilation rules and the convergence of the overall process. They do not impose any important semantic restrictions, and can be satisfied with simple syntactic changes to an arbitrary source program. We further discuss the roles of these conditions during the detailed description of the reduction steps for compilation.

4.1 Class Pre-compilation

The outcome of this phase is summarised by the theorem below. It establishes that the compilation rules applied in this phase are sufficient to end up with...
a program in a form where all method declarations of the source program are
copied to the lookUp method of a new class L.

Theorem 2 (Class Pre-compilation) Let $cds \bullet c$ be an executable source pro-
gram, then there is a program $cds_{RVM}, L \bullet c$ such that

$$\notimes(cds \bullet c) \sqsubseteq cds_{RVM}, L, cds' \bullet c'$$

where the main command c' differs from c only by trivial casts; cds' has the
same structure of cds, but all the attributes are public; and the class L has only
a declaration of a method lookUp.

The function \notimes initialises Φ, Cls, and CP. The rather lengthy definition of \notimes is
by induction on sequences of class declarations, and on the structure of classes.
It can be found in [8].

In order to define lookUp, we need to copy all method bodies declared in cds.
The idea is to transform all method calls to a unique pattern, where the invoked
method is always lookUp. Once lookUp is invoked, the method body associated
with the original method call should be selected, and then executed. As a consequence of such transformations, the method declarations in cds become
useless and can be eliminated. Since the association of a method call with its
corresponding method body is affected by dynamic binding and by the use of
`super`, it is necessary to address the treatment of these issues.

This compilation phase comprise three steps; the first two change the visi-
bility of the attributes in cds, and introduce trivial cast. Both are necessary to
avoid syntactic errors that can be originated by the introduction of lookUp. The
last step in this phase deals with the lookUp creation.

Changing visibility of attributes. We need to guarantee that the body of the
methods do not contain references to private and protected attributes; otherwise,
an error can arise when we copy them to lookUp method. Therefore, we change
the declarations of the attributes to make them all public. Even though, this is
not a good idea from a software engineering point of view, this does not change
the behaviour of a complete program. To perform these transformations, we use
the laws presented in [2]. In our example, we change the declarations of `dir` and `len`
in Step, and `previous` in Path.

Introducing trivial casts. We introduce type casts to produce an uniform
program text in which all targets are cast with its static type. The purpose of
this step is to explicitly annotate in the program text the declared type of each
target. The casts have no effect.

The creation of the lookUp method is based on the data structures generated
by the function \notimes. Basically, lookUp consists of a sequence of two conditionals.
The first conditional treats the dynamic binding and the use of `super`, whereas
the second implements the method body selection. The general format of the
lookUp declaration is as follows.
meth lookUp \triangleq (vres S : Stack ☺
 var mtd : Int; a : Object; w : T; ☺
 S.Pop(mtd); S.Pop(a);
 conditional1; conditional2;
 S.Push(o);
) end

The formal parameter is the operand stack \(S \). When \(\text{lookUp} \) starts, it pops two values from \(S \): \(\text{mtd} \) and \(a \). The former indicates the method to be executed, and the latter, the target of the method call. When the dynamic binding is considered in the \(\text{conditional}_1 \), the value of \(\text{mtd} \) may be modified. The \(\text{conditional}_2 \) selects the method body denoted by \(\text{mtd} \); arguments are handled through variables declared in the list \(w \). The last command in pushes a copy of \(a \) back onto \(S \).

Associated with each method \(m \), we have three indexes, \(\iota \), \(\sigma \) and \(\delta \). The first, \(\iota_C.m \), identifies the declaration of the method \(m \) occurring in the class \(C \). In our robot example, we use the following values: \(\iota_{\text{Step.setDirection}} \mapsto 1 \), \(\iota_{\text{Step.setLength}} \mapsto 2 \), \(\iota_{\text{Step.getLength}} \mapsto 3 \), \(\iota_{\text{Path.addStep}} \mapsto 4 \), \(\iota_{\text{Path.getLength}} \mapsto 5 \), and \(\iota_{\text{Path.initialiser}} \mapsto 6 \). The initialiser declared in \(\text{Path} \) is treated like an ordinary method, and is denoted by \(6 \). There is no \(\iota \) index for the \text{setDirection} method of \(\text{Path} \), because this class does not include a declaration for this method.

The second index, \(\sigma_C.m \), is used to identify references to the method \(m \) of the class \(C \) in calls of the form \text{super}.\(m \), which do not require dynamic binding. If a declaration of a method \(m \) is shared (through inheritance) by two classes \(D \) and \(E \), then \(\sigma_D.m \) and \(\sigma_E.m \) have the same value. In our example, we chose the following values for this index: \(\sigma_{\text{Step.setDirection}} \mapsto 1 \), \(\sigma_{\text{Path.setDirection}} \mapsto 1 \), \(\sigma_{\text{Step.setLength}} \mapsto 2 \), \(\sigma_{\text{Path.setLength}} \mapsto 2 \), \(\sigma_{\text{Step.getLength}} \mapsto 3 \), \(\sigma_{\text{Path.getLength}} \mapsto 5 \), \(\sigma_{\text{Path.addStep}} \mapsto 4 \), \(\sigma_{\text{Path.initialiser}} \mapsto 6 \). It is important to observe that \(\sigma \) associates 1 to the declaration of the method \text{setDirection} in \text{Step}. Since \text{Path} inherits this method from \text{Step}, it is available in both classes, and so the values of \(\sigma_{\text{Step.setDirection}} \) and \(\sigma_{\text{Path.setDirection}} \) are both 1.

The last index, \(\delta.m \), identifies references to \(m \) in calls that may require dynamic binding; those of the form \text{le}.\(m \). When \(m \) has just one definition, the values of \(\delta_C.m \) and \(\delta_m \) are identical for all classes \(C \) in which \(m \) is available. Otherwise, \(\delta_m \) has a value that is not associated with any method declaration by \(\iota \), and, therefore, by \(\sigma \). In our example, the values chosen are as follows: \(\delta_{\text{Direction}} \mapsto 1 \), \(\delta_{\text{setLength}} \mapsto 2 \), \(\delta_{\text{setLength}} \mapsto 2 \), \(\delta_{\text{getLength}} \mapsto 0 \), \(\delta_{\text{getLength}} \mapsto 0 \), \(\delta_{\text{addStep}} \mapsto 4 \), \(\delta_{\text{initialiser}_{\text{Path}}} \mapsto 6 \). The method \text{getLength} is defined in \text{Step} and redefined in \text{Path}; for this reason, it is associated with 0, an index not used before. This indicates that calls to \text{getLength} require dynamic binding. For \text{setLength}, on the other hand, we use 2, which is the value of \(\sigma \) for \text{setLength} in \text{Step} and \text{Path}. This indicates that calls to \text{setLength} do not require dynamic binding.

A function creates the \(\text{conditional}_1 \) based on the class hierarchy in \(C \)'s and the indexes above. Starting from the bottom of the hierarchy, for each redefined method \(m \), a nest of conditionals is created in which two guards are introduced for each class in which \(m \) is available. The outermost conditional addresses the
class C at the bottom of the hierarchy of classes where m is available. In this conditional, the first guard tests if C is the dynamic type of the object o. If so, the command associated with this guard is an assignment of $\sigma_{C,m}$ to the variable mtd. The other guard tests if C is not the dynamic type of the o. In this case, the command associated with this guard is a similar conditional, addressing the immediate superclass of C. For instance, in our example, the only redefined method is \textit{getLength}. We chose 0 as the value of $\delta_{\text{getLength}}$. When the \textit{conditional$_1$} is created, a test is introduced to check if the value in mtd is 0. In this case, the type of o is tested, and 3 or 5, corresponding to $\sigma_{\text{Step},\text{getLength}}$ and $\sigma_{\text{Path},\text{getLength}}$, is assigned to mtd to indicate which version has to be executed.

The resulting conditional is as follows.

\begin{verbatim}
if mtd = $\delta_{\text{getLength}}$ ->
 if o is Path -> mtd := $\Phi_{\text{Path},\text{getLength}}$
 []->(o is Path) -> if o is Step -> mtd := $\Phi_{\text{Step},\text{getLength}}$ fi
 fi
fi
\end{verbatim}

In summary, the first conditional tests the dynamic type of o. If C is the current type of o, an assignment of $\sigma_{C,m}$ to the variable mtd is done. The value of mtd is tested in \textit{conditional$_2$} to select the method body that has to be executed.

The creation of \textit{conditional$_2$} is based on the class hierarchy described in CIs. Each guard in the conditional tests the value in mtd to identify a method declaration. The general form of the conditional$_2$ is as follows.

\begin{verbatim}
if \{0 \leq i \leq k\}(mtd = i_{C,m}) -> In(i_{C,m},v);
 pc_{i_{C,m}}[o/self](w);
 Out(i_{C,m},r)
fi
\end{verbatim}

The notation $pc_{i_{C,m}}[o/self]$ expresses the substitution of o for every occurrence of self in the parameterised command $pc_{i_{C,m}}$; the body of the method declaration identified by $i_{C,m}$. It is applied to the list of variables w, which is formed from two other lists v and r. The input arguments are popped from S and stored in v, whereas the result arguments are placed in r. The function $In(i_{C,m},v)$ inspects the signature of m, and creates the list of commands that pop the input values from the operand stack S, initialising the list of variables v. Similarly, $Out(i_{C,m},r)$ creates the list of commands that push the result values on S.

In our example, the \textit{conditional$_2$} is formed by six guards, one for each method declaration in the source program. The value of mtd is used to select the parameterised command corresponding to the method body that has to be executed. For our example, the first guard in the \textit{conditional$_2$} is as follows.

\begin{verbatim}
if mtd = 1 -> S.Pop(x_1); (val d : Int; (Step)o.dir := d)(x_1)]
\end{verbatim}

It tests if the value in mtd is equal 1. If so, the body of the method \textit{setDirection} declared in \textit{Step} is executed.

4.2 Redirecting method calls

In this phase all method calls are redirected to \textit{lookUp}, so that the method declarations in \textit{cds'} become useless and can, therefore, be eliminated. The outcome
is summarised by the Theorem 3: the compilation rules applied in this phase are sufficient to end up with a program where all calls are to the lookUp method.

Theorem 3 (Redirection of method calls) Let \(\text{cds}_{RVM}, \text{cds}', L \triangleright c' \) be an executable program where all attributes in \(\text{cds}' \) are public, and the class \(L \) and its lookUp method are as above, then there is a program \(\text{cds}_{RVM}, \text{cds}'', L' \triangleright c'' \) such that \(\text{cds}_{RVM}, \text{cds}', L \triangleright c' \subseteq \text{cds}_{RVM}, L', \text{cds}'' \triangleright c'' \), where the main command \(c'' \) has the same functionality of \(c' \), but neither \(c'' \) nor lookUp refer to the methods declared in \(\text{cds}' \).

In order to transform each method call that appears in the program into a method call to lookUp, we need to simplify the targets. In calls \(\text{le.m(e)} \) and \(\text{super.m(e)} \), both \(\text{le} \) and \(\text{e} \) can have nested expressions. The idea is to reduce all possible method calls to a simpler form, suitable to be manipulated by the further phases. The laws used can be found in [7, 8] as usual.

We also use rules that rely on the type of parameter passing used to determine which arguments have to be pushed onto and popped from \(S \). To illustrate these transformations, we present the rule that addresses calls-by-result. It relies on the context in which it is applied. We use the notation \(\text{cds}_{RVM}, \text{cds}, N \triangleright c \sqsubseteq c' \) to mean that the refinement \(c \sqsubseteq c' \) holds in the context of the sequence of class declarations of \(\text{cds}_{RVM}, \text{cds} \). Furthermore, the command \(c \) is assumed to be inside \(N \), which denotes the main command or a class in \(\text{cds} \).

The following rules rely on the context in which they will be applied. We use the notation \(\text{cds}_{RVM}, \text{cds}, A \triangleright c \sqsubseteq c' \) to mean that the refinement \(c \sqsubseteq c' \) holds in the context of the sequence of class declarations of \(\text{cds}_{RVM}, \text{cds} \). Furthermore, the command \(c \) is assumed to be inside \(A \), which denotes the main command or a class in \(\text{cds} \).

Rule 1 (Result parameter)

\[
\text{cds}_{RVM}, \text{cds}'', L' \triangleright (C)\text{le.m(x)} \sqsubseteq \text{var o : Object; S : Stack; V : L } \\begin{align*}
S & := \text{new Stack}; V := \text{new L}; o := \text{le}; \\
S.\text{Push}(o); S.\text{Push}(\delta_{C.m}); V.\text{lookUp}(S); \\
S.\text{Pop}(o); S.\text{Pop}(x); le := o;
\end{align*}
\]

provided the definition of \(m \) in \(C \) has one result parameter.

For the compilation of a call-by-result, a variable block is introduced, declaring an object \(o \), the operand Stack \(S \), and a variable \(V \) of class \(L \). To avoid name clashing, \(o \) is required to be a fresh variable name, in other words, \(o \) can not occur in the call \((C)\text{le.m(x)} \). New objects are created to initialise \(S \) and \(V \), whereas \(o \) receives a copy of the object denoted by \(\text{le} \). Then, \(o \) and \(\delta_{C.m} \) are pushed onto \(S \). After the invocation of the lookUp method, the result value of the parameter is popped from \(S \) and assigned to \(x \); the resulting object is assigned to \(\text{le} \).

As an example, we consider the method call \(p.\text{getLength(out)} \) in the main command of the robot program. This method has a result parameter. The result
of applying Rule 1 is as follows.

```plaintext
var o : Object; S : Stack; V : L •
S := new Stack; V := new L;
o := p; S.Push(o);
S.Push(0); V.lookUp(S);
S.Pop(o); S.Pop(out); p := o;
end
```

The indication that dynamic binding must be performed is done by $S.Push(0)$, where 0 is the value of $\delta.mtd$. In $lookUp$, the value associated to mtd is modified, based on the type of o. In this case, o is an instance of the class $Path$, thus, 5 is the value that is assigned to mtd, indicating that the method body declared in $Path$ is the one that has to be executed. When $lookUp$ completes, the value of out is popped from S. Finally, the returning value of o is also popped from S, and assigned to p.

Applying compilation rules like that above introduces several variable blocks. To accomplish the result in Theorem ??, we need to apply laws that expand the scope of variable blocks. These laws are standard [8] and omitted here.

When $super$ appears as target in a method call, the check of dynamic binding is not necessary. Therefore, we use a slightly different version of the above rules. Instead of $\delta.m, \sigma(C.superc.m)$ is used. This modification prevents the value of mtd to be changed in $lookUp$, because $\sigma(C.superc.m)$ denotes an specific method body, the one declared as m and associated with the immediate superclass of C.

```plaintext
var p : Path o : Object; S : Stack; V : L •
p := new Path; S := new Stack; V := new L;
o := p; S.Push(k0); S.Push(north); S.Push(o);
S.Push(6); V.lookUp(S); S.Pop(o); p := o;
o := p; S.Push(k1); S.Push(north); S.Push(o);
S.Push(4); V.lookUp(S); S.Pop(o); p := o;
o := p; S.Push(k2); S.Push(east); S.Push(o);
S.Push(4); V.lookUp(S); S.Pop(o); p := o;
S.Pop(o); p := o; o := p; S.Pop(k3);
S.Pop(out);  S.Pop(o); S.Pop(out); p := o;
end
```

Fig. 3. Main command obtained after redirecting method calls

The method $getLength$ uses recursion to find the length of a robot’s path. The redirection of a recursive method call does not imply in any overhead. Any recursion is automatically embedded in recursive calls to $lookUp$. For instance, the recursive call $(Path)n.previous.getLength(aux)$ appears in $lookUp$, in the method
body related to the getLength method of Path, when we rewrite this method call, we obtain the following.

```plaintext
var o₁: Object; S : Stack; V : L •
S := new Stack; V := new L;
o₁ := o.previous; S.Push(o₁);
S.Push(0); V.lookUp(S); S.Pop(o₁);
S.Pop(out); o.previous := o₁;
end
```

Recursion arises because we use 0 again to identify the method to be called.

In order to eliminate a parameterised command, we use the standard definitions used in the literature. For each elimination of a parameterised command, a variable block is introduced. We can combine them using standard laws of ROOL. Here we omit these laws; see [8] for more details.

This phase should consider method calls in lookUp and in the main command. In Figure 3, we show the main command resulting from the compilation of our example. For each call in the main command, a variable block is introduced and further manipulated to expand its scope. The first call to lookUp has 6 as an argument, indicating that the body of the initialiser declared in Path has to be executed to give p its first value. Then, the next four lookUp invocations correspond to calls to addStep. Finally, the last one refers to a call to getLength.

4.3 Simplification of Expressions

This phase eliminates nested expressions that appear in assignments and guards. The expected outcome is stated by Theorem 4.

Theorem 4 (Simplification of Expressions) Let $cds_{RVM}, cds, L • c$ be an executable source program, then there is a program $cds_{RVM}, cds', L' • c'$ such that $cds_{RVM}, cds, L • c$ \sqsubseteq $cds_{RVM}, cds', L' • c'$ where each assignment in c', cds' and, L' operates through the operand stack, and each boolean expression is a variable.

Variables that represent the components of RVM, and the auxiliary variable V used to invoke lookUp are not affected by the transformations of this phase. Basically, the task of eliminating nested expressions in a source program involves rewriting assignments and boolean expressions in the L and in main command. The rules presented in [7, 8] can be used to accomplish the simplification of expressions. Since new variables are introduced, so that we apply extra laws to expand the scope of variable blocks.

In Figure 4, we show the result of applying these laws to the class L' of our example. The simplification of the conditionals required the introduction of 11 boolean variables. Every boolean expression is assigned to a boolean variable, and these variables replace the corresponding expression in the guards, so that, each guard now consists of a simple boolean variable. Each assignment is rewritten to operate exclusively through the operand stack S. Since the pair $(S.Pop(x), S.Push(x))$ is a simulation; $S.Pop(x); S.Push(x) \sqsubseteq$ skip, dispensable sequences of push and pops are eliminated.
class L

meth lookUp := (vres S : Stack •
 var x1, x2 : Int; mtd, aux : Int; o : Object
 b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11 : Boolean •
 S.Pop(mtd); S.Pop(o); S.Push(0); S.Push(mtd); S.Equal;
 S.Pop(b1); S.Push(o is Path); S.Pop(b2);
 S.Push(o is Path); S.Neg; S.Pop(b3);
 if b1 →
 if b2 → S.Load(5); S.Pop(mtd);
 [b3 → if o is Step → S.Load(3); S.Pop(mtd); fi
 fi
 S.Push(1); S.Pop(mtd); S.Equal; S.Pop(b4);
 S.Push(2); S.Pop(mtd); S.Equal; S.Pop(b5);
 S.Push(3); S.Pop(mtd); S.Equal; S.Pop(b6);
 S.Push(4); S.Pop(mtd); S.Equal; S.Pop(b7);
 S.Push(5); S.Pop(mtd); S.Equal; S.Pop(b8);
 S.Push(null); S.Pop(o.previous); S.NEqual; S.Pop(b9);
 S.Push(null); S.Pop(o.previous); S.Equal; S.Pop(b10);
 S.Push(6); S.Pop(mtd); S.Equal; S.Pop(b11);
 if b4 → S.Pop(o.dir) [b5 → S.Pop(o.len); [b6 → Push(o.len);
 [b7 → S.Pop(x1); S.Pop(x2); S.Pop(o); S.Pop(o.previous);
 S.Pop(o); S.Pop(x1); S.Pop(1); V.lookUp(S);
 S.Pop(x2); S.Pop(2); V.lookUp(S); S.Pop(o);
 [b8 → if b9 → S.Pop(o.previous); S.Pop(0);
 V.lookUp(S); S.Pop(o.previous); S.Pop(aux);
 [b10 → S.Pop(0); S.Pop(aux)
 fi
 S.Pop(o); S.Pop(3); V.lookUp(S);
 S.Pop(o); S.Pop(aux); S.Add
 [b11 → S.Pop(o); S.Pop(1); V.lookUp(S); S.Pop(x2); S.Pop(2);
 V.lookUp(S); S.Pop(o); S.Pop(null); S.Pop(o.previous)
 fi
 S.Pop(o);
) end

end •

var S : Stack; V : L; p : Path; o : Object•
 p := new Path; S := new Stack; V := new L;
 S.Pop(p); S.Pop(o); S.Pop(l); S.Pop(north); S.Pop(o);
 S.Pop(6); V.lookUp(S); S.Pop(o); S.Pop(l); S.Pop(north); S.Pop(o);
 S.Pop(4); V.lookUp(S); S.Pop(o); S.Pop(l); S.Pop(east); S.Pop(o);
 S.Pop(4); V.lookUp(S); S.Pop(o); S.Pop(l); S.Pop(south); S.Pop(o);
 S.Pop(4); V.lookUp(S); S.Pop(o); S.Pop(l); S.Pop(west); S.Pop(o);
 S.Pop(4); V.lookUp(S); S.Pop(0); V.lookUp(S); S.Pop(o);
 S.Pop(o); S.Pop(out); S.Pop(o); S.Pop(p);
) end

Fig. 4. Program generated by the simplification of expressions phase.
4.4 Data Refinement

The data refinement phase replaces the abstract space of the source program with the concrete state of the target machine. This means that all references to variables, methods, attributes, and classes declared in the source program must be replaced with the corresponding ones in the target machine.

The following theorem summarizes the outcome of this phase of compilation.

Theorem 5 (Data Refinement) Consider a program of the form
\[
\text{cds}\text{RVM}, \text{cds}, L \bullet (\text{var } S, V, w : \text{Stack}; L, T \bullet r \text{ end}),
\]
where in \(r \) there are no local declarations, all assignments are through the operand stack, and all boolean conditions are boolean variables. Besides, the class \(L \) includes only a declaration of a method called lookUp, whose format is as follows
\[
\text{meth } \text{lookUp} \triangleq \ (\text{vres } S : \text{Stack} \bullet
\text{var } o : \text{Object}; \ V : L; \ x : T \bullet l \text{ end})
\]
where \(l \) satisfies the same restrictions as \(r \). Then, there are programs \(q \) and \(u \) such that
\[
\mathcal{P}(cds\text{RVM}, \text{cds}, L \bullet (\text{var } S, V, w : \text{Stack}; L, T \bullet r \text{ end})) \subseteq cds\text{RVM}, L' \bullet \text{var } S, V : \text{Stack}; L' \bullet q \text{ end}
\]
and the method lookUp declared in \(L' \) has the following form.
\[
\text{meth } \text{lookUp} \triangleq \ (\text{val } CP, Cls : \text{Seq Object}, \text{Seq ClassInfo}, \text{vres } S : \text{STACK} \bullet
\text{var } V : L'; \ M : \text{Memory} \bullet u \text{ end})
\]
where \(q \) and \(u \) preserve the control structure of \(r \) and \(l \), respectively, but operate mainly on the concrete space.

Only in the next phase, after introducing the stack of frames \(F \), we can eliminate the local variables \(A \) and \(M \), and join the code in the lookUp method with the code in the main command.

To carry out the change of data representation, we use the distributivity properties of the function \(\mathcal{P} \) presented in [7, 8]. It is a polymorphic function that applies to programs and commands, and distributes over the commands in the class declarations and main command, applying a function with the same name. The function \(\mathcal{P} \) does not affect the classes used to define our interpreter (\(cds\text{RVM} \)), the components of our target machine, and commands that have no reference to variables or classes affected by \(\mathcal{P} \).

For example, after simplification, objects are created by \(S.\text{Push(new C)} \), where the expression \text{new C} references a class \(C \) declared in the source program. The function \(\mathcal{P} \) eliminates this reference, introducing a method call whose parameter is an index in \(CP \) corresponding to \(C \). When applied to constructors that deal with control, like the conditional and iteration commands, \(\mathcal{P} \) distributes over the components of these commands. For illustration, Figure 5 presents the initial segment of the class \(L \). The classes and variables declared in the source program are eliminated. The program operates exclusively on the concrete space.
4.5 Control Elimination

In this phase, the nested control structure of the source program is reduced to a single flat iteration. The result is a program in the normal form described in Figure 2. The next theorem summarises the outcome of this phase of compilation.

Theorem 6 (Control Elimination) Consider a program \(\text{cds}_{RVM}, L \cdot q \), which operates mainly on the concrete space, with the method lookUp of \(L \) declared in the following form.

\[
\text{meth} \text{ lookUp } \triangleq \begin{cases} \text{val} & \text{Cls, CP : Seq ClassInfo, Seq Object; vres S : Stack} \\
S.\text{Store}(\Psi_{mid}); & S.\text{Store}(M[\Psi_1]); \\
S.\text{Load}(CP[\Phi_0]); & S.\text{Load}(M[\Psi_{mid}]); \\
S.\text{Equal}; & S.\text{Store}(M[\Psi_1]); \\
S.\text{Load}(M[\Psi_0]); & S.\text{Store}(M[\Psi_{mid}]); \\
S.\text{Instanceof}(\text{Cls, CP, Path}); & S.\text{Store}(M[\Psi_2]); \\
\text{if } & \text{if } M[\Psi_2] \rightarrow \\
\text{if } & S.\text{Load}(CP[\Phi_2]); \\
\text{if } o \text{ is Step } & S.\text{Store}(M[\Psi_{mid}]); \\
\text{fi} & \text{fi} \\
\text{fi} & \text{fi} \\
\end{cases}
\]

\[
\text{end} \ldots
\]

Fig. 5. Class \(L \) after the data refinement

To accomplish the goal established by this theorem, we apply to the commands in the main command and in the body of lookUp rules that can be found in \([7,8]\). Eventually, we produce a program \(v : [s + 1, GCS_m, i - 1] \) in lookUp, and \(v : [i + 1, GCS_c, f] \) in the main command. In the program below, we present the general form our example at this stage.

\[
\text{class } L \\
\text{meth} \text{ lookUp } \triangleq \begin{cases} \text{val} & \text{Cls, CP, mtd : Seq ClassInfo, Seq Object, Int; vres S : Stack} \\
& \text{var } A : N; M : \text{Seq object}; V := \text{new } N; v : [s + 1, GCS_c, i] \text{end} \\
\end{cases}
\]

\[
\text{end} \end{cases}
\]

\[
\cdot \text{var } A : N; S : \text{Stack} \\
\text{V} := \text{new } N; S := \text{new } S\text{tack}; v : [i + 1, GCS_c, f] \\
\text{end}
\]
To reduce this program to our normal form, we need to eliminate the class L. The only obstacle resides in the method calls to lookUp that may exist in GCS_m and GCS_c. Both correspond to conditionals, in which the guarded commands are closely related to the definition of the behaviour of the machine. To produce the desired normal form, it is necessary to join them. To achieve this goal we need to expand GCS_c using the guards presented in GCS_m. Using basic laws of ROOL, we can extend a conditional by introducing new guarded commands. This leads to a refinement, because the resulting program is more deterministic.

We modify the program above, to obtain the program in the normal form, as shown below. The first action is to deviate the execution flow to the address $i + 1$, where the instructions corresponding to the main command start. When a method invocation occurs, the execution flow is deviated to $s + 1$. Executing the instructions in GCS_m, the PC eventually reaches the address i. Then, the saved values of PC and M are popped from F, and the execution flow is deviated to just after the invocation. The program ends when PC gets the value f.

```latex
\text{class} L
\text{meth} \text{lookUp} = (\$
\text{val} \text{Cls, CP, mtd} : \text{Seq ClassInfo, Seq Object, Int, vres} S : \text{Stack} \bullet$
\text{var} A : N; M : \text{Seq object}; \bullet V := \text{new} N; \bullet v : [s + 1, GCS_c, i] end$
end$
\bullet \text{var} A : N; S : \text{Stack} \bullet$
\text{V} := \text{new} N; S := \text{new} Stack;
\text{v} : [s, (PC = s) \rightarrow PC := i + 1$
\quad \Box GCS_m$
\quad (PC = i) \rightarrow F.Pop(PC); F.Pop(M)$
\quad \Box GCS_c, f]\end$
\text{end}$
```

Using the next rule we can eliminate method calls to lookUp, and afterwards, we can eliminate the auxiliary class L.

\textbf{Rule 2} (Eliminating method calls)

\begin{align*}
\text{cds}_{RVM} L \mapsto \quad V.\text{lookUp}(\text{Cls, CP}, S) \rightarrow F.Pop(PC); F.Pop(M); PC := s + 1;
\end{align*}

This rule compiles a call to lookUp by pushing the value of the incremented PC and M onto F, and the assignment of the value $s + 1$ to PC. In this address, the code relative to lookUp is stored. When the frame stack F is introduced, we are able to eliminate all method calls, because F plays the same role of the implicit stack used when a method is called. Therefore, we can reduce the whole program to a flat iteration.

\subsection*{4.6 The Compilation Process}

Here, we sketch the proof to the Theorem 1. We want to transform $\overline{\overline{\overline{\text{c}}} \overline{\overline{\overline{\text{d}}}}\overline{\overline{\overline{\text{s}}}}\overline{\overline{\overline{\text{RVM}}}} \bullet \text{c}}$ into $\text{cds}_{RVM} \bullet I$. From Theorem 2 (Class Pre-compilation), we can transform
\(\Xi(cds \bullet c) \), and obtain \(cds_{RVM}, cds', N \bullet c. \) The Theorem 3 (Redirection of method calls) establishes that \(cds_{RVM}, cds', L \bullet c' \subseteq cds_{RVM}, L', cds'' \bullet p. \) Then Theorem 4 (Simplification of Expressions), states that we can obtain \(cds_{RVM}, cds'', L'' \bullet c''. \) Using monotonicity of \(\Xi \Phi \) and \(\Xi \), we conclude that \(\Xi \Phi(\Xi(cds \bullet c)) \subseteq \Xi \Phi(\Xi cds_{RVM}, cds'', L'' \bullet c'')). \) At this point, based on the Theorem 5 (Data Refinement), \(cds \) is eliminated and the outcome program operates over the concrete space. Finally, from Theorem 6 we achieve a program in our normal form, \(cds_{RVM} \bullet I. \)

5 Final Considerations

As an attempt to address the correct implementation of object-oriented programs, we have proposed a refinement strategy for the compilation of ROOL, a language which includes classes, inheritance, dynamic binding, and recursion. This language is sufficiently similar to Java to be used in meaningful case studies; this study represents significant advance on previous work. In [7], we detail the compilation rules for the phases of simplification of expressions, data refinement, and control elimination. Here, we focus on the overall strategy for the compilation, illustrating the whole process through a case study.

The classes declared in the source program have to be eliminated during the compilation process. In order to remove them, we developed a strategy based on the introduction of an auxiliary class \(L \) that allows us to eliminate the references methods of the source program. Inheritance is treated through the generation of a data structure \(CIs \) resembling the original class hierarchy. Dynamic binding is handled with the use of a function to construct a conditional to check the type of the target object at run time.

The main difference between our work and those in [3, 15] resides in the fact that their approach is based on verification, instead of on calculation. Recently, a case study in verified program compilation from imperative program to assembler code was presented in [16]. The compiled code is data refined by calculation. That case study, however, does not comprise object-oriented features.

In [2], a similar strategy for normal form reduction was adopted as a measure of completeness of the set of proposed laws for ROOL. Here, a similar set of laws, together with specific compilation rules, are used to carry out the design of a provably correct compiler. Obviously, due to the nature of our application, our normal form and our strategy need to be different.

Further work is needed towards the mechanization of this approach. Its algebraic nature makes the mechanization easier, allowing the use of a term rewrite system as a tool for specification, verification, and prototype implementation. We already have initial results in this direction.

6 Acknowledgments

Adolfo Duran is supported by UFBA (Universidade Federal da Bahia) and CAPES: grant BEX0786/02-0. The other authors are partially supported by
CNPq: grants 520763/98-0 and 472204/01-7 (Ana Cavalcanti), 521039/95-9 (Augusto Sampaio), and 680032/99-1.

References