
Inputs and outputs in CSP: a model and a testing theory

ANA CAVALCANTI, University of York, UK

ROBERT M. HIERONS, University of Sheffield, UK

SIDNEY NOGUEIRA, Universidade Federal Rural de Pernambuco, Brazil

This paper addresses refinement and testing based on CSPmodels, when we distinguish input and output events. In a testing experiment,

the tester (or the environment) controls the inputs, and the system under test controls the outputs. The standard models and refinement

relations of CSP, however, do not differentiate inputs and outputs and are not, therefore, entirely suitable for testing. Here, we

consider an alphabet of events partitioned into inputs and outputs, and present a novel refusal-testing model for CSP with a notion of

input-output refusal-traces refinement. We compare that with the ioco relation often used in testing, and find that it is more widely

applicable and stronger. This means that mistakes found using traditional ioco testing do indicate mistakes in the development. Finally,

we provide a CSP testing theory that takes into account inputs and outputs. With our theory, it becomes feasible to develop techniques

and tools for automatic generation of realistic and sound tests from CSP models. Our work reconciles the normally disparate areas of

refinement and (formal) testing by identifying how ioco testing can be used to inform refinement-based results, and vice-versa.

CCS Concepts: • Software and its engineering� Formal methods; Software testing and debugging; • Computing method-
ologies� Concurrent computing methodologies;

Additional Key Words and Phrases: Exhaustive test set, process algebra, refinement, refusal-testing model

ACM Reference Format:
ANA CAVALCANTI, ROBERT M. HIERONS, and SIDNEY NOGUEIRA. 2020. Inputs and outputs in CSP: a model and a testing theory.

ACM Trans. Comput. Logic 1, 1 (March 2020), 54 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

As a process algebra, CSP [34] is a well established notation, with robust semantics and tools. It has been in use for

more than twenty years and the availability of a powerful model checker has ensured that CSP is of interest both in

academia and industry [17]. In the public domain, we have reports of applications in hardware and e-commerce [1, 20].

In addition, CSP has been combined with a number of data modelling languages to define notations that cope with

state-rich reactive systems [14, 16, 27, 32, 36]. Model-based testing, on the other hand, is not a traditional area of

application for CSP. Yet, when a CSP model is available, the possibility of using it for testing is attractive. In fact, CSP

has a testing theory [7], and, more recently, its use as part of testing techniques has been explored [9, 24, 30, 35].

A difficulty is that CSP models do not distinguish between input and outputs: they are all synchronisations. In testing,

however, there is an asymmetry: the system under test (SUT) controls outputs, while the tester controls inputs.

Authors’ addresses: ANA CAVALCANTI University of York, UK, ana.cavalcanti@york.ac.uk; ROBERT M. HIERONS University of Sheffield, UK, r.hierons@

sheffield.ac.uk; SIDNEY NOGUEIRAUniversidade Federal Rural de Pernambuco, Brazil, sidney.ufrpe@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 ANA CAVALCANTI, ROBERT M. HIERONS, and SIDNEY NOGUEIRA

In the software testing community, there has been much interest in input-output transition systems (IOTSs) [38] and

the ioco implementation relation [3, 25, 42, 43]. In this context, observations are traces that include inputs, outputs, and

quiescence, a state in which all enabled events are inputs and it is not possible to take an internal transition. Quiescence

is the only type of refusal observed. Implementations must be input enabled, that is, accept any input at any time.

In [12], we follow a suggestion in [33] to define a stable-failures model for CSP, where refusals are observed at the

end of traces, parametrised by sets of input and output events. Using the resulting input-output stable-failures model,

we define input-output failures refinement and show that it is, in general, incomparable to ioco, and when specifications

and implementations are input enabled, ioco is stronger. In addition, we adapt the CSP testing theory to input-output

failures refinement, and show that some tests in the exhaustive test set for failures refinement become unnecessary.

Although these results give clear guidance on the impact of a differentiated treatment of inputs and outputs on

testing based on CSP, they are unsatisfactory in at least one important respect. Input-output failures refinement is not

comparable to ioco (even when refinement is restricted to input-enabled implementations). The wide acceptance of

ioco means that a conformance relation that is at least as strong as ioco is more useful for testing.

In this paper, we consider the stable-refusal testing model (RT) [31], instead of the stable-failures model, to study

inputs and outputs in CSP. In RT , observations of an execution are recorded in traces including events and refusal

sets, that is, sets of events in which the process refuses to engage. A trace of RT alternates events and refusals, with a

refusal at the start and the end. RT is richer than the stable-failures model, which only records refusals at the end of

sequences of events, and than the IOTS model, which only records quiescence, which is a particular form of refusal.

In the presence of inputs and outputs, we define for CSP that a state is stable if it is stable according to the refusal-

testingmodel, and no output is enabled. These are quiescent states, but we can observe the inputs that are enabled: models

and implementations need not be input enabled. This notion of stability is the basis of the input-output failures model

of [12]. Here, we adopt it to define an input-output refusal-testing model for CSP. We formalise the notion of (refusal)

traces in this model and its healthiness conditions, and calculate definitions for the CSP operators.

Others have investigated refusals for inputs [3, 6, 21]. In these lines of work, however, refusals can be observed in

states from which an output is possible. The traditional explanation regarding the observation of a refusal set X is that,

if the tester offers only events of X , we observe a refusal if the SUT deadlocks. Usually a tester does not block outputs

from the SUT, and so the SUT does not deadlock if an output is available. So, we do not consider a state to be stable if

an output is possible (since the SUT can change state), and do not allow the observation of refusals in such states.

The testing theory of CSP identifies (typically infinite) test sets that are sufficient and necessary to establish (traces

or failures) refinement with respect to a given CSP specification. To take advantage of the knowledge about inputs

and outputs, here we adapt that theory for input-output refusal-traces refinement. We identify a test set for a given

specification and prove that it is exhaustive for input-output refusal-traces refinement. A novel notion of test uses a

version of Roscoe’s prioritise operator [34] to ensure that a testing experiment can observe a refusal and continue.

We make the following contributions. First, we give a full account of the RT model, based on the account of

healthiness conditions in [34] and definition of operators in [29], but revisited to handle divergence and termination.

Our treatment is compatible with the recent proposal in [34], but has a uniform treatment of refusal traces and includes

the definition of CSP operators. We prove that all operator definitions satisfy the healthiness conditions of the model.

Secondly, based on that, we define an input-output refusal-traces model for CSP and an associated notion of

refinement; we give healthiness conditions and calculate operator definitions. Crucially, we prove that input-output

refusal-traces refinement is stronger than ioco, equivalent for input-enabled processes, and more general, since it does

not require implementations to be input enabled. So, a non-conformance identified when testing against a specification

Manuscript submitted to ACM

Inputs and outputs in CSP: a model and a testing theory 3

using ioco indicates that the implementation does not refine the specification. Lastly, because input-output refusal-traces

refinement is more general, we have also defined a testing theory for this conformance relation.

Refinement is a conformance relation suitable for development, and ioco is suitable for the restricted observability of

testing. Here, we have, for the first time, identified how ioco-based testing can be used to shed light on refinement

proof, and how design by refinement may influence testing. It makes no sense for developers and testers to use totally

unrelated notions of conformance. Our work reconciles these verification approaches.

In addition, the generality of our new conformance relation, input-output refusal-traces refinement, which does

not require input enabledness, simplifies modelling. Many systems are not input-enabled. For example, web interfaces

often have options that are deliberately disabled; for instance, the options in an online banking system might depend

on the account type. Many robotic systems are also not input-enabled and this is, again, deliberate. For instance,

it is very common for such systems to have different modes of operation, and switch between them to respond to

different environment scenarios, when different sets of sensors can be used. We can certainly model a system that is

not input-enabled using input-enabled IOTS by adding transitions that ignore irrelevant inputs. This is not, however,

what developers do. They do not implement inputs that are not needed, and doing so may raise issues of efficiency,

usability, or even safety. Our results again reconcile the developer and tester views.

With this, we enable practical use of CSP in testing. As already illustrated for the standard CSP theory [8, 15], based

on our theory for testing for input-output refusal-traces refinement, it is possible to automate the generation of sound

tests. In this case, however, the tests consider inputs and outputs as required in practical approaches.

Next, we present CSP and IOLTS. In Section 3, we revisit the RT model, and in Section 4, present our new CSP

model with inputs and outputs, and its refinement notion. Section 5 discusses the relationship between input-output

refusal-traces refinement and ioco. Testing is addressed in Section 6. We conclude in Section 7, where we also discuss

related and future work. Appendix A presents definitions of some non-standard operators used here. Appendix B

presents proofs for key results that we discuss. A complete set of proofs for all lemmas and theorems is in [10].

2 CSP AND IOLTS

Here, we describe the two notations used in our work: CSP in Section 2.1, and IOLTS and IOTS in Section 2.2.

2.1 CSP

Systems and their components are modelled in CSP using processes. They interact with their environment and each

other synchronously via atomic and instantaneous events. In any given model, Σ is the set of all declared events.

A process that is ready to synchronise with the environment on an event a can be written using the prefixing operator

→ as follows a → P . This process, after engaging on a, when the environment is ready, behaves like the process P .

Basic processes include div, STOP , and SKIP , which diverge, deadlock, and terminate immediately. A special event ✓

marks termination, and cannot be explicitly used in process definitions. Σ✓ includes✓ as well as all declared events.

Another core operator is external choice (2), which offers to the environment the possibility of choosing between

processes, via an interaction on events that are initially available. We provide an example next.

Example 2.1. We present below a process that offers the environment a choice.

a → STOP 2 b → (a → c → STOP 2 d → c → STOP)

The environment exercises its choice by interacting on either a or b. If it offers a, then this process deadlocks (STOP)
Manuscript submitted to ACM

4 ANA CAVALCANTI, ROBERT M. HIERONS, and SIDNEY NOGUEIRA

and the behaviour of b → (a → c → STOP 2 d → c → STOP) is no longer possible. Equally, if it synchronises on b,

the behaviour is then that of a → c → STOP 2 d → c → STOP , so a choice based on a and d is offered. 2

Another form of choice is internal (⊓), where the environment has no control.

Example 2.2. We present below a process that makes an internal choice.

a → STOP ⊓ b → (a → c → STOP 2 d → c → STOP)

In this case, irrespective of what the environment offers, the process makes its own choice and proceeds. So, even if the

environment is ready to synchonise only on a, the process may choose to offer b, and then we have a deadlock. 2

Processes can be combined in sequence P ; Q, where, as usual, the behaviour is that of P , until it terminates, when

Q takes over. There are several forms of parallelism. In a generalised parallelism P |[Z]| Q, the processes P and Q

must agree on the events in the set Z , and are free to engage on events not in Z independently. As shown in [33], the

generalised parallel operator can be used to express other forms of parallelism by using appropriate values for the

synchronisation set of events Z . For example, interleaving is the behaviour exhibited when Z is the empty set.

For abstraction, a process can have its events hidden (\) or renamed ([[R]]) as illustrated next.

Example 2.3. Below we apply the hiding operator to the process of Example 2.1 to hide occurrences of c.

(a → STOP 2 b → (a → c → STOP 2 d → c → STOP)) \ {c}

After the environment interacts with this process on b and then either a or d, there is a deadlock. The inevitable event c

becomes internal, and so happens without the need for agreement of the environment, which cannot observe it. 2

In a renaming, we provide a total relation R that associates old and new names of events, and✓ to itself, only.

Example 2.4. We use the relation R that associates a with a itself and c; b and d with themselves; and c with d.

(a → b → STOP) [[R]] = a → b → STOP 2 c → b → STOP

Since a is mapped to both itself and c, the prefixing on a becomes an external choice that offers both a and c.

(c → b → STOP 2 d → d → STOP) [[R]] = d → (b → STOP ⊓ d → STOP)

Now, since both events c and d offered in the choice are associated with d, the choice becomes a prefixing on d. After

that event, however, we now have an internal choice to define the behaviour afterwards. Effectively, the renaming takes

away the choice from the environment by identifying the events offered in choice. 2

The simplest semantic model of CSP is the traces model: traces[[P]] is the set of the sequences of events in which P can

engage. This simple model is intuitive, but restricted. It cannot, for example, distinguish external and internal choice.

For instance, the processes in Examples 2.1 and 2.2 have the same traces: {⟨⟩, ⟨a⟩, ⟨b⟩, ⟨b, a⟩, ⟨b, d⟩, ⟨b, a, c⟩, ⟨b, d, c⟩}.
The richer stable-failures model records the failures failures[[P]] of a process P : pairs formed by a trace that does not

lead to a divergent state and a set of events, called a refusal, that P may refuse. A failure (t, Y) is a record of a failed

experiment: having engaged in the trace t, and been offered by the environment the events in Y , then P can deadlock.

The definition of a failure depends on the set Σ of events in scope. If, for the process in Example 2.1, Σ is {a, b, c, d},
we have the failure (⟨⟩, {c, d}). This means that, before any events take place, in an environment that offers just c and d,

the process deadlocks: {c, d} is a refusal, after the empty trace. Of course, if the environment offers just some of these

events, the process also deadlocks. So, {c}, {d}, and ∅ are also refusals after the empty trace.

Manuscript submitted to ACM

Inputs and outputs in CSP: a model and a testing theory 5

For the internal choice in Example 2.2, we in addition have failures (⟨⟩, {a}) and (⟨⟩, {b}). In this case, if the

environment offers, for example, just a, the internal choice may be resolved in favour of the process that offers just b.

As explained, the standard models of CSP do not distinguish between input and output events: every interaction

is just a synchronisation. As a syntactic abbreviation, we can write, for example, a prefixing in?x → P to describe a

process that takes an input x through a channel in. This is, however, just a shorthand for an external choice over events

in.v, for every value v of the type of in. An event in.v is composed, but, like any other event, requires synchronisation.

We can also write out!v for a composed event out .v. It is used to indicate that out .v is meant to be an output of a

value v through a channel out. Again, in the standard semantic models, out .v is just like any other event.

The input output-failures model of CSP is defined in terms of the stable-failures model. As mentioned, in general

terms, it takes the view that, if an output is possible, the state is not stable and a refusal cannot be observed. In

Example 2.1, if we take that a, for instance, is an output, we have no input-output failures for the empty trace ⟨⟩.
The canonic semantics of CSP is the failures-divergences model, which also records the divergences of a process: the

set of its traces that can lead to divergent behaviour. This embeds the view that, when there is a possibility of divergence,

the behaviour of the process is arbitrary. So, its traces and failures are enriched to record that, after a possible divergence,

any events may take place or be refused. For a divergence-free process, this semantics boils down to its stable failures.

Distinctively, CSP is suitable for refinement. Each model defines a refinement relation; we have, for example, P ⊑T Q,

P ⊑F Q, and P ⊑FD TQ, for traces, failures, and failures-divergence refinement. In each case, refinement holds when the

behaviour of the (implementation) process Q is a subset of that of (the specification) P . For instance, traces refinement

P ⊑T Q requires traces[[Q]] ⊆ traces[[P]]. This approach is used to define input-output failures refinement ⊑IOF [12].

As mentioned, one of our goals is to study the relationship between refinement and ioco, which we discuss next.

2.2 IOLTS and IOTS

An input-output labelled transition system (IOLTS) M is a labelled transition system in which the set of events is

partitioned into inputs and outputs [40]. An IOLTS is thus a tuple (I ,O,Q, q0, h) in which I is the set of input events,

O is the set of output events, Q is the set of states, q0 ∈ Q is the initial state, and h is the transition relation of type

Q × (I ∪ O ∪ {𝜏}) × Q, in which the extra event 𝜏 represents a silent (internal) event. I and O are required to be disjoint.

A tuple (q1, e, q2) ∈ h is called a transition. If e ∈ I ∪ O, then the transition (q1, e, q2) denotes that M can move from

the state q1 to the state q2 via the event e. If M has a transition (q1, 𝜏, q2), then M can move from q1 to q2 without any

event being observed. Typically, the name of an input starts with ‘?’ and that of an output starts with ‘!’.

From a testing perspective, the IOLTS approach has the advantage (over labelled transition systems) of distinguishing

between inputs and outputs. As said, this is important since inputs and outputs play different roles in testing. There has

thus been significant interest in testing from an IOLTS [5, 37–42]. It is typically assumed that the tester provides inputs,

the implementation produces outputs, the tester cannot block outputs, and the implementation cannot block inputs.

During testing, a tester observes inputs and outputs and is normally also allowed to observe quiescence: in a state

where the SUT cannot produce an output or change state without first receiving an input. Quiescence is usually

represented by 𝛿 , where 𝛿 ∉ I ∪ O ∪ {𝜏}. A state q1 is quiescent if, for all e ∈ I ∪ O ∪ {𝜏} and q2 ∈ Q, we have that

(q1, e, q2) ∈ h implies that e ∈ I . Quiescence is the only type of refusal that the tester is allowed to observe and in

practice quiescence is observed through the use of a timeout. There is a test hypothesis stating that if a given time t𝛿
passes without output being observed then the implementation must be quiescent. Observations made in testing are

sequences of events in I ∪ O ∪ {𝛿} and these are called suspension traces.

Manuscript submitted to ACM

6 ANA CAVALCANTI, ROBERT M. HIERONS, and SIDNEY NOGUEIRA

To define the set of suspension traces of an IOLTSM = (I ,O,Q, q0, h), we can first extendM to a modelM𝛿 by adding

self-loops denoting quiescence, and then consider the paths throughM𝛿 . To deviseM𝛿 , it is sufficient to add a transition

(q, 𝛿, q) for each quiescent state q of M . We then say that 𝜎 ∈ (I ∪ O ∪ {𝛿})∗ is a suspension trace of M if there is some

sequence ⟨(q0, e1, q1), (q1, e2, q2), . . . , (qn−1, en, qn)⟩ of consecutive transitions of M such that 𝜎 is the sequence formed

from ⟨e1, . . . , en⟩ by removing all instances of 𝜏 . We write L(M) for the set of suspension traces of IOLTS M .

The observation of quiescence makes it possible to distinguish between some IOLTSs that have the same set of traces.

Example 2.5. We consider IOLTSs M1 and M2 defined as follows. After an input ?i, M1 moves to a state from which it

produces an output !o and deadlocks, while, after ?i, M2 either moves to a state q1 in which it deadlocks or moves to a

state q2 from which it produces !o and then deadlocks. M1 and M2 have the same set of traces; this is {⟨⟩, ⟨?i⟩, ⟨?i, !o⟩}.
However, ⟨?i, 𝛿⟩ is a suspension trace of M2, but not of M1. 2

An IOLTS M = (I ,O,Q, q0, h) is said to be input enabled if, for all q1 ∈ Q and ?i ∈ I , there exists some q′
1
and q2 in Q

such that (q′
1
, ?i, q2) ∈ h, and q′

1
can be reached from q1 via transitions with event 𝜏 . In particular, q1 can be reached

from q1 itself. Much of the work on testing from an IOLTS assumes that the implementation is input-enabled. If an

IOLTS is input-enabled then it is an input-output transition system (IOTS) [40].

The testing process is thus seen as testing an implementation that behaves like an unknown IOTS N that has the

same input and output sets as the specification IOLTS M . It is usual to assume that these processes are divergence free

since, in testing, we cannot distinguish between divergence and deadlock.

Most approaches to testing from an IOLTS use the ioco conformance relation [38–40] or a variant of it. The ioco

relation requires that, if a suspension trace 𝜎 of the specificationM occurs in testing the implementation, and is followed

by an event e that is either an output or quiescence, then the specification must be able to perform 𝜎 followed by e.

The definition of ioco uses two pieces of notation. First, given an IOLTSM and suspension trace 𝜎 we defineM after 𝜎

as the IOLTS whose suspension traces are those that can be produced by M after 𝜎 has been observed. Thus, 𝜎1 is a

suspension trace of M after 𝜎 if, and only if, 𝜎 ⌢ 𝜎1 is a suspension trace of M . The other piece of notation is Out (M),
which denotes the set of observations from O ∪ {𝛿} that M can initially perform. Thus, e ∈ O ∪ {𝛿} is in Out (M) if, and
only if, ⟨e⟩ is a suspension trace of M . We then obtain the following definition of ioco [40].

Definition 2.6. Given an IOLTS M and an IOTS N with the same sets of inputs and outputs, we have that N conforms

to M under ioco if, and only if, for all 𝜎 ∈ L(M) we have that Out (N after 𝜎) ⊆ Out (M after 𝜎).

Thus, an implementation N fails according to ioco if, after a trace 𝜎 of the specification M , N produces an observation

o (that is, an output or quiescence) that is not allowed by M . In contrast, if the tester applies an input ?i after the

observation of a suspension trace 𝜎 and 𝜎 ⌢ ⟨?i⟩ is not a suspension trace of M , then N is allowed to do anything.

Example 2.7. We consider again M1 and M2 of Example 2.5. It is straightforward to see that every suspension trace

of M1 is also a suspension trace of M2, and so M1 conforms to M2 under ioco. In contrast, if we consider the suspension

trace 𝜎 = ⟨?i⟩, we find that M2 can be quiescent after 𝜎 , but M1 cannot. Thus, M2 does not conform to M1 under ioco. 2

Suspension-trace inclusion is a sufficient, but not necessary condition for ioco to hold.

In comparing refinement and ioco, we consider the suspension traces of a process, which we derive from its refusal

traces. These are considered and defined in the next few sections.

Manuscript submitted to ACM

Inputs and outputs in CSP: a model and a testing theory 7

3 THE RT MODEL: HEALTHINESS CONDITIONS, CSP OPERATORS, AND REFINEMENT

As already indicated, the basis of our work is the RT model, which we adapt in the next section to differentiate input

and output events. Here, we revisit that model to formalise its traces and healthiness conditions, the refusal-traces

semantics of CSP processes, and refusal-traces refinement.

In RT , processes are modelled by sets of refusal traces, which record iterative experiments that proceed as follows in

each step. The environment offers a set X of events, and X is recorded in the refusal trace if a deadlock is observed; in

that case, the environment offers an event e ∉ X , and e is recorded in the trace if it occurs. In a refusal trace, ◦, read null,
records a situation where a refusal set has not been observed: ◦ is the least information that an experiment provides.

(We note that, in the literature, • is normally used, instead of ◦, for the null refusal. Here, in definitions we use the

mathematical notation of Z [45]. So, we avoid use of • for the null refusal, because it is used as a separator in Z. In

proofs, here and in [10], we capitalise on the use of a precise notation by resorting to the laws of Z.)

If a deadlock is observed after the environment offers a set X of events, a deadlock is also observed if any subset of X

is offered instead. In particular, if the environment offers the empty set ∅ of events, we can expect a deadlock. We have

to note, however, that if the process is unstable, due to divergence or available internal choices, for example, then we

cannot observe a refusal set. So, the only record that we can make is ◦. Not even ∅ can be recorded in the trace.

In his account of RT , Roscoe [34] defines the following two forms of refusal traces: ⟨X0, e1,X1, . . . , en,Xn⟩ and
⟨X0, e1,X1, . . . , en, ◦,✓⟩, where the ei are events and each Xi is either a standard refusal set or ◦. In these traces, none of

the ei can be the special event✓, which is also not included in any refusal set Xi .

Roscoe points out alternatives regarding the treatment of termination [34, pg. 260]. We can include a refusal set after

the final✓; here any set of events is refused. We can also allow any set of events (that does not include✓) to be refused

before termination, and thus for refusal sets to be observed immediately before✓.

Roscoe says that these choices are relatively arbitrary and a matter of taste. Recording a refusal set after the ✓ event

has the advantage that all refusal traces are of the same form: they alternate between events and refusal sets (or ◦)
and begin and end with refusal sets. This approach to termination had been partially adopted already in [29], where a

complete treatment of a refusal testing model, including the definition of the CSP operators, is presented in detail. The

model in [29], however, does not cater for divergence (div), and instead treats the most nondeterministic process (that

is, CHAOS, the process that can terminate, deadlock, accept, or refuse any event at all points) as divergent. Some

fundamental properties of processes, like P ; SKIP = P , for instance, do not hold for the model in [29].

As usual for IOLTS, we assume that both specifications and systems are divergence free. (In specifications, divergence

is regarded as a mistake, and, as mentioned, when testing an SUT, divergence cannot be distinguished from deadlock,

and so they are identified.) Even so, it is important to have a semantic model compatible with the standard models of

CSP; this facilitates the understanding of our results in the context of those models as well as the preservation of laws

and properties. In the stable-failures model of CSP, the divergent process div is modelled by the empty set of failures.

Here, we define a refusal-testing model that is similar to that of [29], but follows the treatment of termination and

divergence in [34]. We define refusal traces in Section 3.1, consider healthiness conditions in Section 3.2, revisit the

definitions of the CSP operators in [29] in Section 3.3, and study refusal-traces refinement in Section 3.4.

3.1 Refusal traces

We adopt the definition below for the set RTrace of refusal traces, which corresponds directly to a similar notion in [29].

The symbol == is used in Z abbreviations, to define sets, for instance, as shown below. In CSP, as already illustrated, we

Manuscript submitted to ACM

8 ANA CAVALCANTI, ROBERT M. HIERONS, and SIDNEY NOGUEIRA

use = to define processes. Finally, later on, we use =̂ when we introduce a new concept, like refinement, for example.

In those cases, we use the Z mathematical notation in the definitions, but we do not use Z to introduce (relational)

operators. (This would require a deep embedding of CSP in Z, which we avoid for readability.)

We note that, in Z, quantifications are written ∀ x : T | P (x) • Q(x) and ∃ x : T | P (x) • Q(x) to mean ‘for all x of

type T , P (x) implies Q(x)’, and ‘there exists x of type T such that P (x) and Q(x)’. As usual, we can quantify over more

than one variable, and the constraint P (x) can be omitted if it is just true. Operators available in the Z mathematical

toolkit and new operators used in Definition 3.1 are explained afterwards.

In contrast to [29], where the notion of traces is discussed informally, in Definition 3.1 we formalise traces as

sequences of elements of a free type Obs of observations with constructors event, ◦, and refusal. We consider ◦ as a
special refusal set, and define Refusal as a subset of Obs containing just ◦ and elements constructed using refusal.

Definition 3.1 (Set RTrace of refusal traces).

RTrace == {𝜙 : seqObs | odd #𝜙 ∧ (1)
ran({i : 1 . . #𝜙 | odd i} ↿ 𝜙) ⊆ Refusal ∧ (2)
ran({i : 1 . . #𝜙 | even i} ↿ 𝜙) ⊆ ran event ∧ (3)
∀ i : 1 . . #𝜙 − 2 | odd i • 𝜙 (i + 1) ∉RT 𝜙 i (4)

}

where Obs ::= event⟨⟨Σ✓⟩⟩ |◦| refusal⟨⟨P Σ✓⟩⟩ and Refusal == {◦} ∪ ran refusal.

RTrace includes the sequences of observations whose size is an odd number (restriction (1) in Definition 3.1), because a

refusal trace includes events and refusals in alternation (restrictions (2) and (3)), but starts and finishes with a refusal.

Because of (1), the empty sequence is not a refusal trace; this is in accordance with the intuition that at least ◦ can

always be recorded. Finally, (4) establishes that we cannot observe an event e immediately after a refusal that contains e.

The definitions of odd and even are as expected. These operators and others used here are defined in Appendix A.

The sequence operator I ↿ s defines a sequence formed by the elements of s in the positions contained in the set I of

indices, in the order in which they appear in s. The function range operator is written ran in Z; it is here applied to a

sequence, which is modelled in Z as a function from indices to elements. So, we use ran to specify the set of elements

of the sequence. The subscripted operator ∉RT is a version of ∉ for elements of Obs. It is defined in terms of the ∈RT
operator (in Appendix A). Obviously, e ∉RT X if, and only if, ¬ (e ∈RT X), and e ∉RT ◦ for every e.

Example 3.2. We sketch below the set of refusal traces of the following process EC.

EC = inA?x → STOP 2 inB?x → (inA?x → outA!1 → STOP 2 outB!1 → outA!1 → STOP)

For conciseness, in examples, we omit the application of the constructors of Obs, and write ⟨ ◦, a, ∅⟩ instead of

⟨ ◦, event a, refusal ∅⟩, for instance. Additionally, in characterising below the refusal traces, if the value x communicated

in an event c.x does not matter, we write c?x. For example, ⟨{|outA, outB,✓|}, inA?x, {|inA, inB, outA, outB,✓|}⟩ represents
a collection of refusal traces: one for each of the possible values of x in inA.x. Since the sets of traces are typically

infinite, we cannot list all elements and normally, but not always, avoid inclusion of prefixes of traces already listed.

Manuscript submitted to ACM

Inputs and outputs in CSP: a model and a testing theory 9

The notion of prefix for refusal traces is made precise in the sequel.

{ ⟨{|outA, outB,✓|}, inA?x, {|inA, inB, outA, outB,✓|}⟩,
⟨{|outA, outB,✓|}, inB?x, {|inB, outA, outB?y : y ≠ 1,✓|}⟩, . . . ,
⟨{|outA, outB,✓|}, inB?x, {|inB, outA, outB?y : y ≠ 1,✓|}, inA?x, {|inA, inB, outA?y : y ≠ 1, outB,✓|}⟩,
⟨ {|outA, outB,✓|}, inB?x, {|inB, outA, outB?y : y ≠ 1,✓|},
inA?x, {|inA, inB, outA?y : y ≠ 1, outB,✓|}, outA.1, {|inA, inB, outA, outB,✓|}⟩, . . . ,

⟨ {|outA, outB,✓|}, inB?x, {|inB, outA, outB?y : y ≠ 1,✓|},
outB.1, {|inA, inB, outA?y : y ≠ 1, outB,✓|}, outA.1, {|inA, inB, outA, outB,✓|}⟩, . . .}

In spite of our convention, inputs and outputs are not distinguished in the traces. 2

Above, we omit refusal traces of EC that we can infer to be included in the set from those already listed. For instance, be-

cause of ⟨{|outA, outB,✓|}, inA?x, {|inA, inB, outA, outB,✓|}⟩, we know that ⟨{|outA, outB,✓|}, inA?x, ∅⟩ and ⟨ ◦, inA?x, ◦ ⟩
are in the set of traces of EC. The healthiness condition that justifies this inference, and a few others, are studied next.

3.2 Healthiness conditions

As said, in RT , a process is represented by a set RT of refusal traces. Not all such sets, however, characterise a

process: [29] and [34] propose healthiness conditions that these sets must satisfy. We consider both proposals, and

adopt the simpler conditions in [34], plus extra conditions to cater for termination and to rule out the empty set.

According to [29], a set RT of refusal traces represents a CSP process if, and only if, it satisfies the healthiness

conditions in Table 1. There, and in the sequel, we use a variable 𝜙 to represent sequences of observations, 𝜌 to represent

sequences of observations in RTrace, X to represent elements of Refusal, Y to represent sets of observations in ran event,

and e to represent an observation in ran event. In examples, we use a, b, c, and so on, as particular events of a process

or arbitrary elements of Σ. We use subscripts when we need more variables: 𝜙1, 𝜙2, and so on, for example.

MRT0 indicates that the lack of information represented by ◦ can be recorded for every process. This ensures that

the empty set of refusal traces is not healthy.MRT1 is a related condition that states that if the empty set of refusals

refusal ∅ is observed, then ◦ can as well. This ensures that, if a process is stable, and so some observation of a refusal

can be made, at least the empty set, then the null refusal, which is always possible, is also recorded.

MRT2 is related to the treatment of divergence and not considered here. The model in [29] is divergence strict: when

divergence is observed, every behaviour becomes possible. Our treatment of divergence is different.

MRT3 is a refusal-trace version of the prefix-closure condition of the traces model. In RT we cannot just use sequence

prefix because a refusal trace that finishes with an event is not well formed.MRT3 therefore considers refusal traces

that finish with a pair ⟨e,X⟩, and requires the sequence 𝜌 leading up to it to be included in the set of traces. We note

that 𝜌 cannot possibly be empty, because every refusal trace starts with a refusal.

MRT4 is a refusal-trace version of the subset-closure condition of the failures model. The ⊆RT operator is subset

inclusion for refusals different from ◦. We note that inclusion of ◦ refusals is ensured byMRT0 andMRT1. Here, we

ensure that if a process is recorded to deadlock when the environment offers events in a set X1, then it is also recorded

to deadlock when potentially fewer events in a subset X2 are offered.

Finally,MRT5 is the refusal-trace version of the condition that states that an event that is not accepted is refused;

∪RT is union for refusal sets. For convenience, ∪RT applies to an element of Refusal and a set of elements in ran event.

So,MRT5 states that if a set X of events is refused, and no trace records that, after X , an event e can take place, then

the refusal obtained by adding e to X is recorded as well. The observation of a refusal after e is unconstrained: just ◦.
Manuscript submitted to ACM

10 ANA CAVALCANTI, ROBERT M. HIERONS, and SIDNEY NOGUEIRA

Table 1. RT model (Mukaran): healthiness conditions

MRT0 ⟨ ◦ ⟩ ∈ RT
MRT1 𝜙1

⌢ ⟨refusal ∅⟩ ⌢ 𝜙2 ∈ RT ⇒ 𝜙1
⌢ ⟨ ◦ ⟩ ⌢ 𝜙2 ∈ RT

MRT2 𝜙 ⌢ ⟨ ◦ ⟩ ∈ RT ⇒ 𝜙 ⌢ ⟨refusal ∅⟩ ∈ RT
MRT3 𝜌 ⌢ ⟨e,X⟩ ∈ RT ⇒ 𝜌 ∈ RT
MRT4 𝜙1

⌢ ⟨X1⟩ ⌢ 𝜙2 ∈ RT ∧ X2 ⊆RT X1 ⇒ 𝜙1
⌢ ⟨X2⟩ ⌢ 𝜙2 ∈ RT

MRT5 X ∈ ran refusal ∧ 𝜙1
⌢ ⟨X⟩ ⌢ 𝜙2 ∈ RT ∧ 𝜙1

⌢ ⟨X , e, ◦ ⟩ ∉ RT ⇒ 𝜙1
⌢ ⟨X ∪RT {e}⟩ ⌢ 𝜙2 ∈ RT

Table 2. RT model (Roscoe): healthiness conditions

RT1 𝜌2 ∈ RT ∧ 𝜌1 ≤RT 𝜌2 ⇒ 𝜌1 ∈ RT
RT2 𝜙1

⌢ ⟨X⟩ ⌢ 𝜙2 ∈ RT ∧ X ≠ ◦∧ (∀ e : Y • 𝜙1 ⌢ ⟨X , e, ◦ ⟩ ∉ RT) ⇒ 𝜙1
⌢ ⟨X ∪RT Y ⟩ ⌢ 𝜙2 ∈ RT

The set of healthiness conditions in [34] is presented in Table 2. RT1 establishes a sort of prefix-closure. The operator

𝜌1 ≤RT 𝜌2, formalised below, defines prefixing for refusal traces 𝜌1 and 𝜌2.

≤RT : seq Observation ↔ seq Observation

∀ 𝜌1, 𝜌2 : seq Observation • 𝜌1 ≤RT 𝜌2 ⇔
𝜌1 ∈ RTrace ∧ 𝜌2 ∈ RTrace ∧ #𝜌1 ≤ #𝜌2 ∧
∀ i : 1 . . #𝜌1 • (odd i ⇒ 𝜌1 i =◦∨ 𝜌1 i ⊆RT 𝜌2 i) ∧ (even i ⇒ 𝜌1 i = 𝜌2 i)

Informally, 𝜌1 corresponds to an initial subsequence of 𝜌2, but its refusal sets are subsets of those in 𝜌2 or ◦. For instance,
⟨ ◦ ⟩, ⟨ ◦, a, ∅⟩ and ⟨{b}, a, {a}⟩ are prefixes of ⟨{b}, a, {a, b}⟩. Above, we require that the size of 𝜌1 is at most that of 𝜌2.

Moreover, for all elements of 𝜌1, if it is a refusal (that is, it is in an odd position), then it is either ◦ or a subset of the
refusal in 𝜌2 in the same position. If it is an event (in an even position), then it must be the same event in 𝜌2. RT2 states

that sets of events that are not accepted must be refused.

In comparing Tables 1 and 2, we have the following results.

Theorem 3.3. If RT is RT1-healthy, then it satisfies all ofMRT1,MRT3 andMRT4.

Proof.

MRT1.

𝜙1
⌢ ⟨refusal ∅⟩ ⌢ 𝜙2 ∈ RT

= 𝜙1
⌢ ⟨refusal ∅⟩ ⌢ 𝜙2 ∈ RT ∧ 𝜙1

⌢ ⟨ ◦ ⟩ ⌢ 𝜙2 ≤RT 𝜙1
⌢ ⟨refusal ∅⟩ ⌢ 𝜙2 [definition of ≤RT]

⇒ 𝜙1
⌢ ⟨ ◦ ⟩ ⌢ 𝜙2 ∈ RT [RT1]

MRT3.

𝜌 ⌢ ⟨e,X⟩ ∈ RT

= 𝜌 ⌢ ⟨e,X⟩ ∈ RT ∧ 𝜌 ≤RT 𝜌 ⌢ ⟨e,X⟩ [definition of ≤RT]

⇒ 𝜌 ∈ RT [RT1]

Manuscript submitted to ACM

Inputs and outputs in CSP: a model and a testing theory 11

MRT4.

𝜙1
⌢ ⟨X1⟩ ⌢ 𝜙2 ∈ RT ∧ X2 ⊆RT X1

⇒ 𝜙1
⌢ ⟨X1⟩ ⌢ 𝜙2 ∈ RT ∧ 𝜙1

⌢ ⟨X2⟩ ⌢ 𝜙2 ≤RT 𝜙1
⌢ ⟨X1⟩ ⌢ 𝜙2 [definition of ≤RT]

⇒ 𝜙1
⌢ ⟨X2⟩ ⌢ 𝜙2 ∈ RT [RT1]

□

Theorem 3.4. If RT satisfies all of MRT0,MRT1, MRT3 and MRT4, then it is RT1-healthy.

Proof. By induction on 𝜌1.

Case ⟨ ◦ ⟩. ⟨ ◦ ⟩ ∈ RT by MRT0

Case ⟨X1⟩, with X1 ≠ ◦.

𝜌2 ∈ RT ∧ ⟨X1⟩ ≤RT 𝜌2

⇒ ∃X2 : Refusal; 𝜙2 : seq Obs • 𝜌2 = ⟨X2⟩ ⌢ 𝜙2 ∧ ⟨X2⟩ ⌢ 𝜙2 ∈ RT ∧ X1 ⊆RT X2 [property of ≤RT]

⇒ ⟨X1⟩ ⌢ 𝜙2 ∈ RT [MRT4]

⇒ ⟨X1⟩ ∈ RT [[10, Lemma C.1]]

Case 𝜌1 ⌢ ⟨e1, ◦ ⟩.

𝜌2 ∈ RT ∧ 𝜌1
⌢ ⟨e1, ◦ ⟩ ≤RT 𝜌2

⇒ ∃ 𝜌3 : RTrace; X3 : Refusal; 𝜙3 : seq Obs •
𝜌2 = 𝜌3

⌢ ⟨e1,X3⟩ ⌢ 𝜙3 ∧ 𝜌3
⌢ ⟨e1,X3⟩ ⌢ 𝜙3 ∈ RT ∧ 𝜌1 ≤RT 𝜌3 ∧ #𝜌1 = #𝜌3

[property of ≤RT]

⇒ ∃X3 : Refusal • 𝜌1
⌢ ⟨e1,X3⟩ ⌢ 𝜙3 ∈ RT [[10, Lemma C.2]]

⇒ 𝜌1
⌢ ⟨e1, refusal ∅⟩ ⌢ 𝜙3 ∈ RT [MRT4]

⇒ 𝜌1
⌢ ⟨e1, ◦ ⟩ ⌢ 𝜙3 ∈ RT [MRT1]

⇒ 𝜌1
⌢ ⟨e1, ◦ ⟩ ∈ RT [[10, Lemma C.1]]

Case 𝜌1 ⌢ ⟨e1,X1⟩, with X1 ≠ ◦.

𝜌2 ∈ RT ∧ 𝜌1
⌢ ⟨e1,X1⟩ ≤RT 𝜌2

⇒ ∃ 𝜌3 : RTrace; X3 : Refusal; 𝜙3 : seq Obs •
𝜌2 = 𝜌3

⌢ ⟨e1,X3⟩ ⌢ 𝜙3 ∧ 𝜌3
⌢ ⟨e1,X3⟩ ⌢ 𝜙3 ∈ RT ∧ 𝜌1 ≤RT 𝜌3 ∧ #𝜌1 = #𝜌3 ∧ X1 ⊆RT X3

[property of ≤RT]

⇒ ∃X3 : Refusal • 𝜌1
⌢ ⟨e1,X3⟩ ⌢ 𝜙3 ∈ RT ∧ X1 ⊆RT X3 [[10, Lemma C.2]]

⇒ 𝜌1
⌢ ⟨e1,X1⟩ ⌢ 𝜙3 ∈ RT [MRT4]

⇒ 𝜌1
⌢ ⟨e1,X1⟩ ∈ RT [[10, Lemma C.1]]

□

Manuscript submitted to ACM

12 ANA CAVALCANTI, ROBERT M. HIERONS, and SIDNEY NOGUEIRA

Theorem 3.5. If RT is RT1-healthy, then it satisfies RT2 if, and only if, it satisfiesMRT5.

Proof. First, we prove thatMRT5 holds if RT2 holds.

X ∈ ran refusal ∧ 𝜙1
⌢ ⟨X⟩ ⌢ 𝜙2 ∈ RT ∧ 𝜙1

⌢ ⟨X , e, ◦ ⟩ ∉ RT

⇒ 𝜙1
⌢ ⟨X⟩ ⌢ 𝜙2 ∈ RT ∧ X ≠ ◦∧ 𝜙1

⌢ ⟨X , e, ◦ ⟩ ∉ RT [definition of Refusal]

⇒ 𝜙1
⌢ ⟨X ∪RT {e}⟩ ⌢ 𝜙2 ∈ RT [RT2 with {e} for Y]

We now prove that RT2 holds ifMRT5 holds, by induction on the cardinality of Y .

Base case: #Y = 0.

𝜙1
⌢ ⟨X⟩ ⌢ 𝜙2 ∈ RT ∧ X ≠ ◦∧ ∀ e : ∅ • 𝜙1 ⌢ ⟨X , e, ◦ ⟩ ∉ RT

⇒ 𝜙1
⌢ ⟨X⟩ ⌢ 𝜙2 ∈ RT [predicate calculus]

= 𝜙1
⌢ ⟨X ∪RT ∅⟩ ⌢ 𝜙2 ∈ RT [property of ∪RT]

Inductive case: #Y > 0. The induction hypothesis is

𝜙1
⌢ ⟨X⟩ ⌢ 𝜙2 ∈ RT ∧ X ≠ ◦∧ ∀ e1 : Y • 𝜙1 ⌢ ⟨X , e1, ◦ ⟩ ∉ RT ⇒ 𝜙1

⌢ ⟨X ∪RT Y ⟩ ⌢ 𝜙2 ∈ RT

We now prove that the result for Y ∪ {e2}.

𝜙1
⌢ ⟨X⟩ ⌢ 𝜙2 ∈ RT ∧ X ≠ ◦∧ ∀ e1 : Y ∪ {e2} • 𝜙1 ⌢ ⟨X , e1, ◦ ⟩ ∉ RT

= 𝜙1
⌢ ⟨X⟩ ⌢ 𝜙2 ∈ RT ∧ X ∈ ran refusal ∧ ∀ e1 : Y ∪ {e2} • 𝜙1 ⌢ ⟨X , e1, ◦ ⟩ ∉ RT [X ≠ ◦]

= 𝜙1
⌢ ⟨X⟩ ⌢ 𝜙2 ∈ RT ∧ X ∈ ran refusal ∧ ∀ e1 : Y • 𝜙1 ⌢ ⟨X , e1, ◦ ⟩ ∉ RT ∧

𝜙1
⌢ ⟨X⟩ ⌢ 𝜙2 ∈ RT ∧ X ∈ ran refusal ∧ 𝜙1

⌢ ⟨X , e2, ◦ ⟩ ∉ RT [property of sets and predicate calculus]

⇒ 𝜙1
⌢ ⟨X ∪RT Y ⟩ ⌢ 𝜙2 ∈ RT ∧ 𝜙1

⌢ ⟨X⟩ ⌢ 𝜙2 ∈ RT ∧ X ∈ ran refusal ∧ 𝜙1
⌢ ⟨X , e2, ◦ ⟩ ∉ RT

[induction hypothesis]

⇒ 𝜙1
⌢ ⟨X ∪RT Y ⟩ ⌢ 𝜙2 ∈ RT ∧ 𝜙1

⌢ ⟨X⟩ ⌢ 𝜙2 ∈ RT ∧ X ∈ ran refusal ∧ 𝜙1
⌢ ⟨X ∪RT Y , e2, ◦ ⟩ ∉ RT

[by RT1 and 𝜙1 ⌢ ⟨X , e2, ◦ ⟩ ≤RT 𝜙1
⌢ ⟨X ∪RT Y , e2, ◦ ⟩]

⇒ 𝜙1
⌢ ⟨(X ∪RT Y) ∪RT {e2}⟩ ⌢ 𝜙2 ∈ RT [MRT5]

⇒ 𝜙1
⌢ ⟨X ∪RT (Y ∪RT {e2})⟩ ⌢ 𝜙2 ∈ RT [property of ∪RT]

□

With these results, we conclude that RT1 and RT2 can be adopted, instead of,MRT1,MRT3,MRT4 andMRT5. We need

MRT0 to ensure that the empty set of observations is not a proper model for a process. As said, we disregardMRT2

because it is used by [29] to deal with divergence, and we do not adopt the notion of divergence proposed there, but that

in the standard stable-failures model of CSP. In particular, we define div as the process that has the single trace ⟨ ◦ ⟩.
Manuscript submitted to ACM

Inputs and outputs in CSP: a model and a testing theory 13

Table 3. RT model: healthiness conditions - termination

RT3 𝜌 ⌢ ⟨e,X⟩ ∈ RT ⇒ event (✓) ∉ ran 𝜌

RT4 𝜙 ⌢ ⟨X1, event (✓),X2⟩ ∈ RT ⇒ X1 =◦∧ 𝜙 ⌢ ⟨ ◦, event (✓), refusal(Σ✓)⟩ ∈ RT

Table 4. rtraces model of CSP processes

Process P rtraces[[P]]
div {⟨ ◦ ⟩}
STOP { X : Refusal • ⟨X⟩ }
SKIP {⟨ ◦ ⟩} ∪ {X : Refusal • ⟨ ◦, event (✓),X⟩}
a → P {X : Refusal | event (a) ∉RT X • ⟨X⟩} ∪

{X : Refusal; 𝜌 : rtraces[[P]] | event (a) ∉RT X • ⟨X , event (a)⟩ ⌢ 𝜌 }
P ⊓ Q rtraces[[P]] ∪ rtraces[[Q]]
P 2 Q {𝜌 : rtraces[[P]] ∪ rtraces[[Q]] | ⟨𝜌 1⟩ ∈ rtraces[[P]] ∩ rtraces[[Q]]}
P ; Q {𝜌 : rtraces[[P]] | event (✓) ∉ ran 𝜌} ∪

{𝜙 : seq Obs; 𝜌 : RTrace | 𝜙 ⌢ ⟨ ◦, event (✓), ◦ ⟩ ∈ rtraces[[P]] ∧ 𝜌 ∈ rtraces[[Q]] • 𝜙 ⌢ 𝜌}
P |[Z]| Q ⋃{𝜌1 : rtraces[[P]]; 𝜌2 : rtraces[[Q]] • (𝜌1 |[Z]|RT 𝜌2)}
P \ Z ⋃((| rtraces[[P]] |) \RT Z)
P [[R]] {𝜌1 : RTrace | ∃ 𝜌2 : rtraces[[P]] • 𝜌1 RRT 𝜌2}

In addition, since RTrace imposes no restrictions on the use of the ✓ event, we also adopt the healthiness conditions

in Table 3. With RT3, we establish that the termination event ✓ always appears as the last event in the refusal traces of

RT , if at all. With RT4, we establish that if the event✓ does appear, then no set of events is observed beforehand as a

refusal, since termination introduces instability. Moreover, after the ✓, the whole set of events, and, therefore, because

of RT1, any of its subsets, can be refused. This means that, after termination, we have a stable state.

In summary, all our refusal traces have the same shape (a sequence of observations that alternate between events

and refusals and that start and end with a refusal). The healthiness conditions RT3 and RT4, however, establish that ✓

can only occur as a last event, that it occurs in an unstable state, and that after termination, every refusal is possible.

The healthiness conditions that we adopt areMRT0 and RT1 to RT4.

3.3 Operators

For a process P , we write rtraces[[P]] for its set of refusal traces. This is always a subset of RTrace that satisfies the
healthiness conditionsMRT0 and RT1 to RT4 presented in the previous section. This is irrespective of the particular

process P under consideration. In what follows, we define rtraces[[P]] for all constructs of CSP presented in Section 2.1.

In [10, Appendix D], we prove that, indeed, those definitions characterise healthy sets of traces.

Table 4 defines rtraces[[P]] for every process P . Most of them are just a recast of those in [29], but we provide new

definitions for SKIP , parallel composition, hiding, and renaming. Below, we explain the definitions for every construct.

The only new Z operator used in sequence indexing: 𝜌 1 is the first element of the refusal trace 𝜌 .

Core operators. The model for div is {⟨ ◦ ⟩} as discussed previously. This is the top of the refusal-traces refinement

relation ⊑RT defined in the next section (as well as of the stable-failures refinement relation). The bottom of ⊑RT is

Manuscript submitted to ACM

14 ANA CAVALCANTI, ROBERT M. HIERONS, and SIDNEY NOGUEIRA

CHAOS, the process that can nodeterministically choose to terminate, deadlock, accept, or reject any of the events in Σ.

CHAOS = SKIP ⊓ STOP ⊓ (⊓ a : Σ → CHAOS)

Recursion is handled as usual: as the least fixed point with respect to subset inclusion. We can define a special operator

𝜇 X • F (X) to define a recursive process in terms of a function F from processes to processes, where references to

the local process variable X stands for a recursive call. A straightforward generalisation for functions from vectors of

processes to vectors of processes can also be used to deal with mutual recursion. As usual in CSP, however, recursion is

defined by direct reference to process names in equations, like, for example, in P = a → P .

For STOP , we have the set of singleton refusal traces ⟨X⟩ with arbitrary values for X : any event can be refused, as

expected. The traces for a prefixing a → P record initially arbitrary refusals that do not include the event a. Longer

traces, of size greater than 1, also record a, and then observations from P . These definitions are very similar to those in

the standard models of CSP for the same operators. Likewise, nondeterministic choice is modelled by set union.

The model for external choice is the set of refusal traces that belong to either process in the choice, and whose first

refusal set can be observed in both processes. This is a remarkably simple definition for a very subtle form of choice.

Termination. As mentioned, our treatment of termination follows [34]. Despite, we adopt a definition for a sequential

composition P ; Q in [29]. There are two; we adopt that used in proofs. The traces of P ; Q include, first of all, the traces

𝜌 of P that are not terminating, that is, those for which event (✓) ∉ ran 𝜌 . In addition, we have traces obtained from

terminating traces 𝜙 ⌢ ⟨ ◦, event (✓), ◦ ⟩ of P by concatenating to 𝜙 a trace of Q. (The definition in [29] explicitly states

that ✓ is not allowed in the middle of a trace. We do not need this restriction, since rtraces[[P]] is RT4 healthy.) Below,
we explain why we reject the approach in [29], present that in [34], and then explain our semantics for SKIP .

The refusal traces of SKIP are defined as follows in [29].

rtraces[[SKIP]] = {X : Refusal | event (✓) ∉RT X • ⟨X⟩} ∪ {X1,X2 : Refusal | event (✓) ∉RT X1 • ⟨X1, event (✓),X2⟩}

Before communicating the event✓, the behaviour of SKIP is to refuse any event different from✓. After termination,

it refuses any event. We can, for example, calculate the model of P1 = a → STOP 2 SKIP for Σ✓ = {a,✓} as shown
below. We calculate, first, the model for a → STOP . We recall that we often omit traces included due to prefix closure.

rtraces[[a → STOP]]

= {X : Refusal | event (a) ∉RT X • ⟨X⟩} ∪ {X : Refusal; 𝜌 : rtraces[[STOP]] | event (a) ∉RT X • ⟨X , event (a)⟩ ⌢ 𝜌 }

[definition of prefixing]

= {⟨ ◦ ⟩, ⟨∅⟩, ⟨{✓}⟩} ∪ {X : Refusal; 𝜌 : {⟨{a,✓}⟩, ⟨{a}⟩, ⟨{✓}⟩, ⟨∅⟩, ⟨ ◦ ⟩} | event (a) ∉RT X • ⟨X , event (a)⟩ ⌢ 𝜌 }

[Σ = {a} and definition of rtraces[[STOP]]]

= {⟨ ◦ ⟩, ⟨∅⟩, ⟨{✓}⟩} ∪ {⟨{✓}, a, {a,✓}⟩, ⟨∅, a, {a,✓}⟩, ⟨ ◦, a, {a,✓}⟩, ⟨{✓}, a, {a}⟩, ⟨{✓}, a, {✓}⟩, . . .}

= {⟨ ◦ ⟩, ⟨∅⟩, ⟨{✓}⟩, ⟨{✓}, a, {a,✓}⟩, ⟨∅, a, {a,✓}⟩, ⟨ ◦, a, {a,✓}⟩, ⟨{✓}, a, {a}⟩, ⟨{✓}, a, {✓}⟩, . . .}

Using the above result, we can calculate the semantics of P1 as follows.

rtraces[[P1]] = rtraces[[a → STOP 2 SKIP]] [definition of P1]

= {𝜌 : rtraces[[a → STOP]] ∪ rtraces[[SKIP]] | ⟨𝜌 1⟩ ∈ rtraces[[a → STOP]] ∩ rtraces[[SKIP]]} [definition of 2]

Manuscript submitted to ACM

Inputs and outputs in CSP: a model and a testing theory 15

= {𝜌 : {⟨ ◦ ⟩, ⟨∅⟩, ⟨{✓}⟩, ⟨{✓}, a, {a,✓}⟩, . . . , ⟨{a}⟩, ⟨{a},✓, {a,✓}⟩, . . .} |
⟨𝜌 1⟩ ∈ {⟨ ◦ ⟩, ⟨∅⟩, ⟨{✓}⟩, ⟨{✓}, a, {a,✓}⟩, . . .} ∩ {⟨ ◦ ⟩, ⟨∅⟩, ⟨{a}⟩, ⟨{a},✓, {a,✓}⟩, . . .}

}

[above result, and definition of rtraces[[SKIP]] in [29]]

= {𝜌 : {⟨ ◦ ⟩, ⟨∅⟩, ⟨{✓}⟩, ⟨{✓}, a, {a,✓}⟩, ⟨{a}⟩, ⟨{a},✓, {a,✓}⟩, . . .} | ⟨𝜌 1⟩ ∈ {⟨ ◦ ⟩, ⟨∅⟩}}

= {⟨∅⟩, ⟨∅,✓, {a,✓}⟩, ⟨∅, a, {a,✓}⟩, . . .}

The trace ⟨∅, a, {a,✓}⟩ indicates that the environment of P1 can observe stability before the communication of a, and,

hence, can make a choice between the event a and termination. It is expected, however, that a terminating process and,

in particular, SKIP is unstable, since that process may internally decide to terminate, and nothing can prevent a process

from terminating. So, the fact that SKIP is composed in an external choice should not mean that the environment is

able to prevent that process from terminating by choosing an event offered in the choice. The external choice with SKIP

should itself be unstable, since it can be resolved by the termination of SKIP .

Most importantly, the law P ; SKIP = P in [34], does not hold in this setting, as we show below using our example.

rtraces[[P1; SKIP]]

= {𝜌 : rtraces[[P1]] | event (✓) ∉ ran 𝜌} ∪
{𝜙 : seq Obs; 𝜌 : RTrace | 𝜙 ⌢ ⟨ ◦, event (✓), ◦ ⟩ ∈ rtraces[[P1]] ∧ 𝜌 ∈ rtraces[[SKIP]] • 𝜙 ⌢ 𝜌}

[definition of rtraces[[P ; Q]]]

= {⟨∅⟩, ⟨∅, a, {a,✓}⟩, . . .} ∪ {⟨{a}⟩, ⟨{a},✓, {a,✓}⟩, . . .} [definitions of rtraces[[P1]] and rtraces[[SKIP]]]

= {⟨∅⟩, ⟨∅, a, {a,✓}⟩, ⟨{a}⟩, ⟨{a},✓, {a,✓}⟩, . . .}

We observe that ⟨{a}⟩ belongs to rtraces[[P1; SKIP]], but not to rtraces[[P1]], so rtraces[[P1; SKIP]] ≠ rtraces[[P1]].
This problem arises whatever the definition for sequential composition from [29] is adopted. Since this is an essential

property of CSP processes, we need a different model that supports it.

The definition for SKIP proposed in [29], and reproduced and used above, is similar to that in the stable failures

model: before ✓, any event is refused. This is adequate in the context of stable failures, since they cannot record

instability. On the other hand, the model in [34] can record only the observation ◦ before ✓; after tick, any event is

refused. This captures the expected instability before termination. We show that, by adopting this alternative definition

for SKIP , which is depicted in Table 4, we have SKIP as a unit of sequential composition.

Theorem 3.6. P ; SKIP = P

A proof is in Appendix B. Finally, we note that our definition of SKIP is healthy (see [10, Appendix D]).

Parallelism. Instead of recasting the parallel composition operators in [29], namely synchronous and alphabetised

parallelism, and interleaving, we define the generalized parallel operator. As said, P |[Z]| Q is a composition of P and Q

in parallel, synchronising on the events in the set Z . Termination occurs when both P and Q terminate. This property of

distributed termination is not valid for the operators in [29], but is valid for those in [34]. For instance, SKIP ||| SKIP is

expected to behave like SKIP , but this does not hold for the interleave operator defined in [29] (see [10, Lemma C.11]).

Manuscript submitted to ACM

16 ANA CAVALCANTI, ROBERT M. HIERONS, and SIDNEY NOGUEIRA

|[Z]|RT : RTrace × RTrace → P(RTrace)

∀X1,X2 : Refusal; Y : P(ran event); e1, e2 : ran event; 𝜙 : seqObs; 𝜌1, 𝜌2 : RTrace |
Y = event (| Z |) ∧ event (✓) ∉ ran 𝜙 ∪ ran 𝜌1 ∪ ran 𝜌2 ∪ {e1, e2} •

𝜌1 |[Z]|RT 𝜌2 = 𝜌2 |[Z]|RT 𝜌1

(X1 =◦∨ X2 =◦) ⇒ ⟨X1⟩ |[Z]|RT ⟨X2⟩ = {⟨ ◦ ⟩}

(X1 ≠◦∧ X2 ≠◦) ⇒ ⟨X1⟩ |[Z]|RT ⟨X2⟩ =
{⟨ ◦ ⟩} ∪ {Z1, Z2, Z3 : P Σ✓ | Z1 = refusal∼ (X1) ∧ Z2 = refusal∼ (X2) ∧

Z1 \ (Z ∪ {✓}) = Z2 \ (Z ∪ {✓}) ∧ Z3 ⊆ Z1 ∪ Z2
• ⟨refusal(Z3)⟩

}

e1 ∈ Y ⇒ ⟨X1, e1⟩ ⌢ 𝜌1 |[Z]|RT ⟨X2⟩ = ∅

e1 ∉ Y ⇒ (⟨X1, e1⟩ ⌢ 𝜌1) |[Z]|RT ⟨X2⟩ =
{X3 : Refusal; 𝜌2 : RTrace | ⟨X3⟩ ∈ (⟨X1⟩ |[Z]|RT ⟨X2⟩) ∧ 𝜌2 ∈ (𝜌1 |[Z]|RT ⟨X2⟩) • ⟨X3, e1⟩ ⌢ 𝜌2}

e1 ∈ Y ⇒ ⟨X1, e1⟩ ⌢ 𝜌1 |[Z]|RT ⟨X2, e1⟩ ⌢ 𝜌2 =

{X3 : Refusal; 𝜌3 : RTrace | ⟨X3⟩ ∈ (⟨X1⟩ |[Z]|RT ⟨X2⟩) ∧ 𝜌3 ∈ (𝜌1 |[Z]|RT 𝜌2) • ⟨X3, e1⟩ ⌢ 𝜌3}

{e1, e2} ⊆ Y ∧ e1 ≠ e2 ⇒ ⟨X1, e1⟩ ⌢ 𝜌1 |[Z]|RT ⟨X2, e2⟩ ⌢ 𝜌2 = ∅

e1 ∈ Y ∧ e2 ∉ Y ⇒ ⟨X1, e1⟩ ⌢ 𝜌1 |[Z]|RT ⟨X2, e2⟩ ⌢ 𝜌2 =

{𝜌3, 𝜌4 : RTrace | 𝜌3 ∈ (⟨X1⟩ |[Z]|RT ⟨X2⟩) ∧ 𝜌4 ∈ (⟨X1, e1⟩ ⌢ 𝜌1 |[Z]|RT 𝜌2) • 𝜌3
⌢ ⟨e2⟩ ⌢ 𝜌4}

e1 ∉ Y ∧ e2 ∉ Y ⇒ ⟨X1, e1⟩ ⌢ 𝜌1 |[Z]|RT ⟨X2, e2⟩ ⌢ 𝜌2 =

{X3 : Refusal; 𝜌3 : RTrace | ⟨X3⟩ ∈ (⟨X1⟩ |[Z]|RT ⟨X2⟩) ∧ 𝜌3 ∈ (𝜌1 |[Z]|RT ⟨X2, e2⟩ ⌢ 𝜌2)
• ⟨X3, e1⟩ ⌢ 𝜌3

} ∪
{X3 : Refusal; 𝜌3 : RTrace | ⟨X3⟩ ∈ (⟨X1⟩ |[Z]|RT ⟨X2⟩) ∧ 𝜌3 ∈ (⟨X1, e1⟩ ⌢ 𝜌1 |[Z]|RT 𝜌2)
• ⟨X3, e2⟩ ⌢ 𝜌3

}

𝜙 ⌢ ⟨X1, event (✓),X2⟩ |[Z]|RT 𝜌2 =
⋃{X : Refusal • (𝜙 ⌢ ⟨X⟩ |[Z]|RT 𝜌2)}

𝜌1
⌢ ⟨event (✓),X1⟩ |[Z]|RT 𝜌2

⌢ ⟨event (✓),X2⟩ =
{𝜌3 : RTrace; X3 : Refusal | 𝜌3 ∈ 𝜌1 |[Z]|RT 𝜌2 • 𝜌3

⌢ ⟨event (✓),X3⟩}

Fig. 1. Parallel composition of traces

The model for P |[Z]| Q is obtained by composing the traces from P and Q according to the operator |[Z]|RT , defined
in Figure 1. Just like in the standard CSP semantics, this operator is used to define the set of refusal traces obtained by

the parallel composition of a pair of refusal traces 𝜌1 and 𝜌2 of the composed processes.

In defining 𝜌1 |[Z]|RT 𝜌2, first, we state that this operator is commutative. Proceeding, we consider the various forms

that the traces 𝜌1 and 𝜌2 can take. First, we consider traces ⟨X1⟩ and ⟨X2⟩. We define that if stability is not observed in

⟨X1⟩ and ⟨X2⟩, then it is not observed in the traces resulting from their composition. So, the only composed trace is

Manuscript submitted to ACM

Inputs and outputs in CSP: a model and a testing theory 17

⟨ ◦ ⟩. On the other hand, if both traces ⟨X1⟩ and ⟨X2⟩ record sets of events Z1 and Z2, then the refusal in the composed

trace is defined as in the standard failures model [34, page 239]. If Z1 and Z2 contain only events that either are not in

the synchronisation set and are refused by both processes or are in the synchronisation set and are refused by one

of the processes, then the refusal of the composed trace belongs to the powerset of Z1 ∪ Z2. For these purposes, ✓ is

regarded as part of the synchronisation set, to ensure distributed termination.

Corresponding to the synchronisation set Z of events from Σ, we consider a synchronisation set Y of observations in

the range of event, that is, Y = event (| Z |). If a trace ⟨X1, e1⟩ ⌢ 𝜌1 of P is composed with a trace ⟨X2⟩ of Q, where no
more events are available, but e1 is in Y , then the parallel composition deadlocks. In this case, there are no composed

traces. If, on the other hand, e1 is not in Y , then the composed traces include e1, preceded by the refusals X3 resulting

from the composition of ⟨X1⟩ with ⟨X2⟩, followed by the traces that arise from the composition of 𝜌1 with ⟨X2⟩. This
caters for the fact that if P can proceed independently on e1, it does, even if Q stops. The composed trace, however,

caters for the fact that Q is refusing X2 at all points: before and after e1.

Finally, we consider the composition of ⟨X1, e1⟩ ⌢ 𝜌1 and ⟨X2, e2⟩ ⌢ 𝜌2. If the events are the same and in the

synchronisation set, then it is carried over to the composed traces. If they are in the synchronisation set, but are different,

we have a deadlock, and so no composed traces. If one of them is not in the synchronisation set, then the corresponding

process can proceed. If neither of them is in the synchronisation set, then both processes can proceed. In this case, the

set of composed traces is the union of those that record that P proceeds with those that record that Q proceeds.

To handle termination, we consider a trace 𝜙 ⌢ ⟨X1, event (✓),X2⟩ composed with another trace 𝜌2 that does not

record a ✓. In this case, there is no agreement to terminate, and so the composed traces belong to the composition of

the prefix 𝜙 followed by an arbitrary refusal with 𝜌2. When two terminating traces are composed, then ✓ is present in

the composition, followed by an arbitrary refusal set. With our definition, we have distributed termination.

Theorem 3.7. SKIP |[Z]| SKIP = SKIP

A proof is in Appendix B. Finally, we note that our definition of parallelism is healthy (see [10, Appendix D]).

Hiding. Roughly speaking, the refusal traces of the process P \ Z are obtained from those of P by internalising (re-

moving) the events in Z . We note, however, that the hiding operator can introduce unstable and divergent behaviour.

In [29], the set of observations for P \ Z includes those of non-divergent behaviour (after the internalization of the

events in Z) and divergence observations due to hiding. If P has a trace that leads to arbitrarily long sequences of

hidden events (from Z), then P \ Z introduces a divergence after such a trace. In this case, arbitrary extensions of the

trace are allowed, to reflect the possibility of arbitrary behaviour upon divergence.

Here, as mentioned, we treat divergence in a different way, akin to that of the stable-failures model. So, we do not

enrich divergent traces with arbitrary extensions. Just like stable-failures, the model for P \ Z that we adopt, presented

in Table 4, does not record divergence arising from hiding. On the other hand, instability is recorded using ◦.
The model for P \ Z is obtained from that of P by considering the effect of hiding on each of its traces. For a trace

𝜌 , this is captured by the set of traces 𝜌 \RT Z defined below. The model for P \ Z is the distributed union of these

sets. For generality, useful in proofs, we define \RT for sequences of observations, and not just refusal traces. However,

hiding an event potentially has an effect on the refusal that precedes it, so we do not consider events in isolation.

The empty sequence ⟨⟩ and ⟨ ◦ ⟩ are unaffected by hiding. If instability, recorded by ◦, is observed, hiding does not
mask it. If we observe a refusal set Z1 that includes all the events of a set Z2 being hidden, then the hiding introduces

no instability. In this case, the refusal traces obtained from ⟨refusal(Z1)⟩ are those that record as refusal any subset of

Manuscript submitted to ACM

18 ANA CAVALCANTI, ROBERT M. HIERONS, and SIDNEY NOGUEIRA

Z1. Consequently, internal events from Z2, in particular, can be observed in refusals. This is the same view taken in the

stable-failures model of CSP, but different from that in [29], where hidden events are excluded from all observations,

including refusals. By recording internal events as refused, we ensure that the model of all processes is given in the

context of a single alphabet Σ✓: hiding introduces refusals, but does not change the alphabet of interest of a process.

This simplifies composition of process models necessary to define operators like parallelism, choice, and so on.

\RT : seqObs × P Σ✓ → P seqObs

∀Z, Z1, Z2 : P Σ✓; a : Σ✓; X : Refusal; 𝜙1, 𝜙2 : seqObs; 𝜌 : RTrace •
⟨ ⟩ \RT Z = ⟨ ⟩ ∧ ⟨ ◦ ⟩ \RT Z = {⟨ ◦ ⟩}
Z2 ⊆ Z1 ⇒ ⟨refusal(Z1)⟩ \RT Z2 = {Z : P Σ✓ | Z1 = Z ∪ Z2 • ⟨refusal(Z)⟩}
¬ (Z2 ⊆ Z1) ⇒ ⟨refusal(Z1)⟩ \RT Z2 = {⟨ ◦ ⟩}
a ∈ Z ⇒ ⟨X , event (a)⟩ \RT Z = { ⟨ ⟩ } ∧ (⟨X , event (a)⟩ ⌢ 𝜌) \RT Z = 𝜌 \RT Z

a ∉ Z ⇒ ⟨X , event (a)⟩ \RT Z = {𝜌 : ⟨X⟩ \RT Z • 𝜌 ⌢ ⟨event (a)⟩ }
a ∉ Z ⇒ (⟨X , event (a)⟩ ⌢ 𝜌) \RT Z = {𝜌1 : ⟨X⟩ \RT Z ; 𝜌2 : 𝜌 \RT Z • 𝜌1

⌢ ⟨event (a)⟩ ⌢ 𝜌2 }
(𝜙1 ⌢ ⟨X⟩ ⌢ 𝜙2) \RT Z = {𝜙3 : 𝜙1 \RT Z ; 𝜌 : ⟨X⟩ \RT Z ; 𝜙4 : 𝜙2 \RT Z • 𝜙3 ⌢ 𝜌 ⌢ 𝜙4}

If there are hidden events that are not refused, we have an unstable state. In this case, the only refusal trace that can

be obtained from ⟨refusal(Z1)⟩ is ⟨ ◦ ⟩. Finally, if an event a is hidden, both that event and its preceding refusal are

removed. Otherwise, its observation is unaffected by the hiding.

Example 3.8. The model of P \ {a}, where P is defined as P = a → P , is {⟨ ◦ ⟩}. This is different from its set of stable

failures, which is empty. For P = a → b → P , we have traces of arbitrary length that repeatedly record the refusal {a}
followed by the event b (and all their prefixes). For example, ⟨{b}, a, {a}, b, ◦ ⟩ \RT {a} is the set of traces containing
⟨{a}, b, ◦ ⟩ and ⟨∅, b, ◦ ⟩. From ⟨{b}, a, ◦, b, ◦ ⟩, we get ⟨ ◦, b, ◦ ⟩. 2

Renaming. The form of renaming considered in [29] is f (P), where f : Σ → Σ is a function that maps events to

events, for a finite Σ. This is a special case of the general form P [[R]], where R is a function; moreover, as we illustrate

below, the definition adopted is inaccurate in some cases.

The semantics for f (P) defined in [29] is as follows. It is obtained by renaming each component of the traces in

rtraces[[P]] according to f . Only the traces that after renaming are in RTrace are considered.

rtraces[[f (P)]] = {𝜌 : rtraces[[P]] | (∀ i : 1 . . #𝜌 − 1 | odd i • fobs (𝜌 (i + 1)) ∉RT fobs (𝜌 i)) • fRT (𝜌)}

The function fobs applies f to an observation, while fRT applies f to a refusal trace.

fobs : Obs → Obs

∀X : ran refusal; a : Σ •
fobs (event (✓)) = event (✓) ∧ fobs (event (a)) = event (f (a))
fobs (◦) =◦∧ fobs (X) = refusal({x : Σ | x ∈ refusal∼X ∧ x ≠ ✓ • f (x)} ∪ {✓ : refusal∼X })

As probably expected, fRT is just the mapping of fobs over a sequence.

Manuscript submitted to ACM

Inputs and outputs in CSP: a model and a testing theory 19

Below, we calculate rtraces[[f (a → STOP)]] to illustrate the model of the renaming operator, for f = {(a, b), (b, b)}
and Σ = {a, b}. First, we consider rtraces[[a → STOP]].

rtraces[[a → STOP]]

= {X : Refusal | event (a) ∉RT X • ⟨X⟩} ∪ {X : Refusal; 𝜌 : rtraces[[STOP]] | event (a) ∉RT X • ⟨X , event (a)⟩ ⌢ 𝜌 }

[definition of prefixing]

= {⟨ ◦ ⟩, ⟨{✓, b}⟩, . . .} ∪ {X : Refusal; 𝜌 : {⟨{a, b,✓}⟩, . . .} | event (a) ∉RT X • ⟨X , event (a)⟩ ⌢ 𝜌 }

[Σ = {a, b} and rtraces[[STOP]]]

= {⟨ ◦ ⟩, ⟨{✓, b}⟩, . . .} ∪ {⟨{✓, b}, a, {✓, a, b}⟩, . . .}

= {⟨ ◦ ⟩, ⟨{✓, b}⟩, . . . , ⟨{✓, b}, a, {✓, a, b}⟩, . . .}

Using this result, we obtain the following for the renaming.

rtraces[[f (a → STOP)]]

= {𝜌 : rtraces[[a → STOP]] | (∀ i : 1 . . #𝜌 − 1 | odd i • fobs (𝜌 (i + 1)) ∉RT fobs (𝜌 i)) • fRT (𝜌)}

= {𝜌 : {⟨ ◦ ⟩, ⟨{✓, b}⟩, ⟨{✓, b}, a, {✓, a, b}⟩, . . .} | (∀ i : 1 . . #𝜌 − 1 | odd i • fobs (𝜌 (i + 1)) ∉RT fobs (𝜌 i)) • fRT (𝜌)}

[definition of rtraces[[a → STOP]]]

= {⟨ ◦ ⟩, ⟨{✓, b}⟩, . . . , ⟨{✓}, b, {✓, b}⟩, . . .}

The behaviour described by f (a → STOP) records that b is both refused (in the trace ⟨{✓, b}⟩) and communicated (in

⟨{✓}, b, {✓, b}⟩). Moreover, the refusals observed after b do not include the refusal of b itself.

The model for renaming we propose (shown in Table 4) addresses these issues and considers P [[R]], for R : Σ ↔ Σ.

Our definition is based on the stable refusals model in [33]. As usual, the traces in rtraces[[P [[R]]]] are derived from

mappings in R: events belong to the direct mapping of events, and, refusals (or absence of stability) are those whose

inverse mapping are observations in P . Like in [33], we assume that R is total and associates ✓ only to ✓ itself. Events

that are not renamed are associated to themselves. The definition of Rref is as follows.

Rref : Refusal → Refusal

Rref (◦) =◦∧ ∀Z : P Σ✓ • Rref (refusal(Z)) = refusal({a1 : Σ✓ | ∃ a2 : Z • a1 R a2})

Rref associates a refusal of events with new names to a refusal of original events. The effect of renaming on a refusal

trace is captured by the relation between traces defined below.

RRT : RTrace ↔ RTrace

∀ 𝜌1, 𝜌2 : RTrace • 𝜌1 RRT 𝜌2 ⇔ #𝜌1 = #𝜌2 ∧
∀ i : 1 . . #𝜌1 • (even i ⇒ (𝜌2 i) R (𝜌1 i)) ∧ (odd i ⇒ 𝜌2 i = Rref (𝜌1 i))

We consider now how our definition characterises the semantics of the renaming above.

Manuscript submitted to ACM

20 ANA CAVALCANTI, ROBERT M. HIERONS, and SIDNEY NOGUEIRA

Example 3.9. We calculate rtraces[[(a → STOP) [[R]]]], for R = {(a, b), (b, b), (✓,✓)} with Σ = {a, b}.

rtraces[[(a → STOP) [[R]]]]

= {𝜌1 : RTrace |
∃ 𝜌2 : rtraces[[a → STOP]] • #𝜌1 = #𝜌2 ∧
∀ i : 1 . . #𝜌1 • (even i ⇒ (𝜌2 i) R (𝜌1 i)) ∧ (odd i ⇒ Rref (𝜌1 i) = 𝜌2 i)

}

[rtraces[[P [[R]]]]]

= {𝜌1 : RTrace |
∃ 𝜌2 : {⟨ ◦ ⟩, ⟨{✓, b}⟩, . . . , ⟨{✓, b}, a, {✓, a, b}⟩, . . .} • #𝜌1 = #𝜌2 ∧
∀ i : 1 . . #𝜌1 • (even i ⇒ (𝜌2 i) R (𝜌1 i)) ∧ (odd i ⇒ Rref (𝜌1 i) = 𝜌2 i)

}

[rtraces[[a → STOP]]]

= {𝜌1 : RTrace |
#𝜌1 = 1 ∧ 𝜌1 1 =◦∨ . . . ∨ #𝜌1 = 1 ∧ 𝜌1 1 = {a,✓} ∨ . . . ∨
#𝜌1 = 3 ∧ 𝜌1 1 = {a,✓} ∧ 𝜌1 2 = b ∧ 𝜌1 3 = {a, b,✓} ∨ . . .

}

[definition of Rref : Rref (◦) = ◦, Rref ({a,✓}) = {✓}, Rref ({a, b,✓}) = {a, b,✓}]

= {⟨ ◦ ⟩, ⟨{a,✓}⟩, . . . , ⟨{a,✓}, b, {a, b,✓}⟩, . . .} [predicate calculus]

Due to renaming, b happens whenever a does in a → STOP , thus, after renaming, b can not be refused initially. 2

Next, we consider inputs and outputs in the context of refusal traces.

3.4 Refinement

As usual for CSP models, refinement is defined by subset inclusion, and so, entails reduction of nondeterminism.

Definition 3.10 (Refusal-traces refinement). P ⊑RT Q =̂ rtraces[[Q]] ⊆ rtraces[[P]]

Unlike in the definition of failures refinement, it is not required that the traces of Q are all traces of P , that is,

traces[[Q]] ⊆ traces[[P]]. Failures refinement includes this requirement because not every trace of a process is involved

in a failure: if the trace leads to an unstable state, then no refusal can be observed.

Trace inclusion is not needed for refusal-traces refinement because, with the use of ◦, every trace of a process has a

corresponding refusal trace. In unstable states, a ◦ refusal is recorded. To establish this result we use a function trace(𝜌)
defined in [29] to map a refusal trace to a standard trace, and the function RTtoTraces(RT), which characterises the set

of standard traces corresponding to a set of refusal traces RT . New Z operators used are defined below.

Definition 3.11 (Trace projection). RTtoTraces(RT) = trace(| RT |) where

trace : RTrace → seq Σ✓

∀ 𝜌 : RTrace • trace(𝜌) = ({i : 1 . . #𝜌 | even i} ↿ 𝜌) o

9
event∼

The sequence {i : 1 . . #𝜌 | even i} ↿ 𝜌 is that obtained by extracting from 𝜌 the events. This is a function from indices

to elements constructed using event. By composing this function with event∼, we have a function from indices to

elements of Σ✓, that is, a sequence of elements from Σ✓. The operator R1 o

9
R2 is relational composition here applied to

two functions. We use f ∼ for the inverse of the function f . For the injective constructors f of a free type, f ∼ is also a

function. Finally, R (| S |) is the relational image of a set S through the relation R.
Manuscript submitted to ACM

Inputs and outputs in CSP: a model and a testing theory 21

The result that we need can be formalised as follows. As said in Section 2.1, traces[[P]] contains the sequences of
events in which P can engage. A definition of traces[[P]] for the process operators in Section 2.1 is in [34].

Theorem 3.12. traces[[P]] = RTtoTraces(rtraces[[P]])

Proof. Similar to that presented in [29, Theorem 2.19] for the failures model. □

With this, the following result can be established in a fairly direct way. We recall from Section 2.1 that traces refinement

P ⊑T Q is defined by subset inclusion just like refusal-traces refinement, as usual in CSP models.

Theorem 3.13. P ⊑RT Q ⇒ P ⊑T Q.

A proof for this theorem and others omitted in the sequel can be found in [10].

In a similar way, we can obtain the failures of a process from its refusal tests using a function RTtoFailures(RT)
defined below. This projection function is different from a corresponding function defined in [29], since we treat

divergence differently. For example, as already said, we define div as the process whose only trace is ⟨ ◦ ⟩.
The function failures used below defines the set of failures characterised by a refusal trace. No failure is characterised

by a refusal trace 𝜌 that leads to an unstable state, that is, whose last observation is ◦. Moreover, for a termination trace,

that is, a trace 𝜌2
⌢ ⟨event (✓),X⟩ whose last event is✓, we include failures for the trace of 𝜌2 to cover all refusal sets Z

that do not include ✓ and the failure whose trace includes the ✓ with the refusal defined by X . For a refusal trace that

leads to a stable state, we have a single failure characterised by its trace of events and its last refusal set, as expected.

The special treatment of termination is required because, in the stable-failures model, termination is, in some sense,

regarded as stable. In particular, SKIP , has stable failures of the form (⟨⟩, Z), for any set of events Z not including ✓.

This indicates that the terminating state is stable. In RT , however, as said, termination is unstable as stated in RT4.

Definition 3.14 (Failure projection). RTtoFailures(RT) = ⋃
failures(| RT |) where

failures : RTrace → P Failure

∀ 𝜌 : RTrace •
last 𝜌 =◦⇒ failures(𝜌) = ∅
last 𝜌 ≠◦⇒©­­­«

(∃ 𝜌2 : RTrace; X : Refusal • 𝜌 = 𝜌2
⌢ ⟨event (✓),X⟩) ⇒

failures(𝜌) = { (trace(𝜌), refusal∼ (X)) } ∪ {Z : P Σ • (trace(𝜌2), Z)}
¬ (∃ 𝜌2 : RTrace; X : Refusal • 𝜌 = 𝜌2

⌢ ⟨event (✓),X⟩) ⇒ failures(𝜌) = { (trace(𝜌), refusal∼ (last 𝜌)) }

ª®®®¬
and Failure is the set of pairs of the standard failures model.

There is, however, a correspondence between RT and the stable failures model characterised by the function

RTtoFailures as established below. As mentioned in Section 2.1, failures[[P]] contains the failures of P ; a definition of

this semantic function for all the process operators in Section 2.1 can be found in [34].

Theorem 3.15. failures[[P]] = RTtoFailures(rtraces[[P]])

With this theorem, we know that the failures, as well as the traces, embedded in our refusal-traces semantics is

compatible with the stable-failures semantics of CSP. Using these results, we establish a relationship between input-

output refusal-traces refinement and traces and failures refinement in Section 4.

Manuscript submitted to ACM

22 ANA CAVALCANTI, ROBERT M. HIERONS, and SIDNEY NOGUEIRA

4 INPUTS AND OUTPUTS IN THE RT MODEL

As previously explained, input-output failures involve observing refusal sets at the end of traces and ioco is concerned

only with quiescence, but at arbitrary points during a trace execution. As a result P ⊑IOF Q and Q ioco P are not

comparable, in general. Here, first, in Section 4.1, we extend the concepts behind input-output failures to the RT
model defined in the previous section, and in Section 4.2 define input-output refusal-traces refinement as an alternative

conformance relation to both ⊑IOF and ioco. Next, in Section 4.3 we define input-output refusal traces for the CSP

operators by calculation from the definitions in Section 3.3. Comparison with ioco is considered in Section 5.

4.1 Input-output refusal traces

To adapt RT to distinguish between inputs and outputs, we consider that a process is stable when it can engage only in

inputs, and do not allow refusal of outputs. This leads to the definition below of the set IOrtracesO [[P]] of input-output
refusal traces for a process P , where O is the subset of Σ of output events. The events in Σ \ O are the inputs.

Definition 4.1 (Input-output refusal traces). IOrtracesO [[P]] =̂ {𝜌 : RTrace | iotrace(𝜌) ∈ rtraces[[P]]}

In the definition above, we rely on a function iotrace that, given a refusal trace 𝜌 , characterises a corresponding refusal

trace iotrace(𝜌) that can justify 𝜌 as an input-output refusal trace. It is defined below.

Definition 4.2 (Input-output refusal traces). iotrace(𝜙) =̂ ioobs ◦ 𝜙

To simplify our notation, we leave an extra parameter O of iotrace implicit. Although not needed in Definition 4.1, iotrace

is defined for arbitrary sequences of observations 𝜙 , not only refusal traces, to facilitate proofs. To define iotrace(𝜙),
we compose a function on observations ioobs. (We note that a sequence is a function from indices to values.) The

composition is the sequence obtained by applying ioobs to all elements of 𝜙 .

The function ioobs preserves all observations, except refusals, to which it adds the outputs O. This is an implicit

parameter of both iotrace and ioobs. The formal definition of ioobs is presented below.

ioobs : Obs → Obs

ioobs(◦) = ◦∧ ioobs(event (a)) = event (a) ∧ ioobs(refusal(Z)) = refusal(Z ∪ O)

As a result of the above, iotrace(𝜌) records exactly the same events as in 𝜌 , and its refusals are either ◦, if that is what is
recorded in 𝜌 itself, or a superset of the refusal in 𝜌 that includes all outputs O. Accordingly, the set IOrtracesO [[P]]
includes the traces 𝜌 for which iotrace(𝜌) is in rtraces[[P]].

Example 4.3. We consider again the process EC given in Example 3.2. The events that represent communications

over the channels inA and inB are inputs, and those over outA and outB are outputs. Accordingly, the value of the

parameter O of IOrtraces used below is {|outA, outB|}. We recall that, in EC, we have inputs inA?x and inB?x in choice

and an input inA?x in choice with an output outB!1.

IOrtracesO [[EC]] = { ⟨{|outA, outB,✓|}, inA?x, {|inA, inB, outA, outB,✓|}⟩, . . . ,
⟨{|outA, outB,✓|}, inB?x, ◦, inA?x, ◦, outA.1, {|inA, inB, outA, outB,✓|}⟩, . . . ,
⟨{|outA, outB,✓|}, inB?x, ◦, outB.1, ◦, outA.1, {|inA, inB, outA, outB,✓|}⟩, . . . , }

We note that the only refusal that we can observe after inB?x or outB.1, and after an inA?x event after an inB?x, is ◦.
This is because, after each of them, an output is available. So, the states after these events are not stable. 2

Manuscript submitted to ACM

Inputs and outputs in CSP: a model and a testing theory 23

For every process P and set of output events O, the set IOrtracesO [[P]] satisfies the healthiness conditions of the RT
model, namelyMRT0 and RT1 to RT4. The proof of this result can be found in [10, Appendix E].

Sets IORT of input-output refusal traces that specify a process satisfy also the extra healthiness condition below.

RT5 𝜌 ∈ IORT ⇔ iotrace(𝜌) ∈ IORT

This ensures that, if there is an observation in IORT of a refusal different from ◦, then there is also a corresponding

observation where all outputs are refused. So, if a state is recorded as stable, then all outputs are refused.

The sets of input-output refusal traces defined by IOrtracesO [[P]] satisfy RT5.

Theorem 4.4. IOrtracesO [[P]] is RT5-healthy.

Proof.

𝜌 ∈ IOrtracesO [[P]]

= iotrace(𝜌) ∈ rtraces[[P]] [definition of IOrtracesO [[P]]]

= iotrace(iotrace(𝜌)) ∈ rtraces[[P]] [iotrace is idempotent]

= iotrace(𝜌) ∈ IOrtracesO [[P]] [definition of IOrtracesO [[P]]]

□

The subset IORTrace of RTrace captures that we cannot observe a refusal before an output.

Definition 4.5. IORTrace == {𝜌 : RTrace | ∀ i : 1 . . #𝜌 − 1 • odd i ∧ 𝜌 i ≠◦⇒ event∼ (𝜌 (i + 1)) ∉ O}

Interestingly, if the result of applying iotrace to a refusal trace 𝜌 is itself a refusal trace, then 𝜌 is in IORtrace.

Lemma 4.6. iotrace(𝜌) ∈ RTrace ⇒ 𝜌 ∈ IORTrace

As a direct consequence of this lemma, IOrtracesO [[P]] ⊆ IORTrace. We recall that all proofs omitted here are in [10].

4.2 Input-output refusal-traces refinement

We define a notion of input-output refusal-traces refinement in the expected way.

Definition 4.7 (Input-output refusal-traces refinement). P ⊑IORT Q =̂ IOrtracesO [[Q]] ⊆ IOrtracesO [[P]]

Example 4.8. We consider a process IC1 that can initially participate in an output out, but not in an input inp.

IC1 = out → inp → (out → STOP 2 inp → STOP) ⊓ out → (out → STOP 2 inp → inp → STOP)

The maximal traces of IC1 are ⟨out, inp, inp⟩, ⟨out, inp, out⟩, and ⟨out, out⟩. There are two ways in which IC1 produces

⟨out, inp, inp⟩. In one case, we obtain the maximal input-output refusal trace ⟨ ◦, out, {out,✓}, inp, ◦, inp, {out, inp,✓}⟩.
There is a ◦ before the last inp since this input is in an external choice with an output and so occurs in an unstable state.

In the second case, we obtain the maximal input-output refusal trace ⟨ ◦, out, ◦, inp, {out,✓}, inp, {out, inp,✓}⟩.
We now consider the trace t = ⟨out, inp⟩. The maximal input-output refusal traces of IC1 that have trace t are

⟨ ◦, out, {out,✓}, inp, ◦ ⟩ and ⟨ ◦, out, ◦, inp, {out,✓}⟩. We consider 𝜌 = ⟨ ◦, out, {out}, inp, {out}⟩ and the process IC2.

IC2 = out → inp → inp → STOP ⊓ out → (out → STOP 2 inp → (out → STOP 2 inp → STOP))

The processes IC1 and IC2 are both divergence free and have the same sets of traces and failures. However, 𝜌 is an

Manuscript submitted to ACM

24 ANA CAVALCANTI, ROBERT M. HIERONS, and SIDNEY NOGUEIRA

input-output refusal trace of IC2 but not of IC1. Thus, IC2 is not an input-output failures refinement of IC1. 2

It might appear that if a process Q is input-enabled then, for it to input-output refusal-trace refine another process P , Q

must avoid all states of P in which an input is not enabled. The example below shows that this is not the case.

Example 4.9. We consider a process P with inputs inp1 and inp2 defined as follows.

P = (inp1 → inp1 → CHAOS ⊓ inp1 → inp2 → CHAOS)) 2 inp2 → CHAOS

This is not input-enabled, because after inp1 happens, whatever the (nondeterministic) choice, either inp2 or inp1 is

refused. The following is a correct implementation.

Q = inp1 → (inp1 → CHAOS 2 inp1 → inp2 → CHAOS) 2 inp2 → CHAOS

This reduces nondeterministic choice. The corresponding IOTS is input-enabled, and does not avoid specification states

that are not input enabled. 2

Like for refusal-traces refinement, we again do not need to require traces inclusion, as established below by Lemma 4.10.

The omitted proofs of all lemmas presented here can be found in [10].

Lemma 4.10. P ⊑IORT Q ⇒ traces[[Q]] ⊆ traces[[P]].

We show below in Theorem 4.14 that the input-output refusal-traces refinement relation is stronger than input-output

failures refinement. First we recall the definition of IOfailuresO (P) for a process P defined originally in [12].

Definition 4.11. IOfailuresO (P) =̂ { (s,X) | (s,X ∪ O) ∈ failures[[P]]}

We first note that input-output refusal-traces refinement establishes input-output failures inclusion.

Lemma 4.12. P ⊑IORT Q ⇒ IOfailuresO (Q) ⊆ IOfailuresO (P).

We then recall the definition of input-output failure refinement ⊑IOF also from [12].

Definition 4.13. P ⊑IOF Q =̂ traces[[Q]] ⊆ traces[[P]] ∧ IOfailuresO (Q) ⊆ IOfailuresO (P)

As usual for failures models, we require subset inclusion of both failures and traces, because traces that lead to divergence

have no failures. With these definitions and results, proof of Theorem 4.14 is simple.

Theorem 4.14. P ⊑IORT Q ⇒ P ⊑IOF Q.

Proof. Direct from Lemmas 4.10 and 4.12, and the definition of ⊑IOF . □

The reverse is not true. For instance, for the processes IC1 and IC2 from Example 4.8, we have IC1 ⊑IOF IC2, but,

as observed, IC1 ⊑IORT IC2 does not hold. In summary, ⊑IORT is stronger than input-output failures refinement, for

arbitrary processes. Finally, refusal-traces refinement ensures input-output refusal-traces refinement.

Theorem 4.15. P ⊑RT Q ⇒ P ⊑IORT Q.

Proof.

P ⊑RT Q

= rtraces[[Q]] ⊆ rtraces[[P]] [definition of ⊑RT]

Manuscript submitted to ACM

Inputs and outputs in CSP: a model and a testing theory 25

⇒ {𝜌 : RTrace | iotrace(𝜌) ∈ rtraces[[Q]]} ⊆ {𝜌 : RTrace | iotrace(𝜌) ∈ rtraces[[P]]} [property of sets]

= P ⊑IORT Q [definition of ⊑IORT]

□

To conclude, if 𝜌 is in IOrtracesO [[P]], recording a refusal X , then X ≠ ◦ only if P is quiescent at the point of observation.

In this case, IOrtracesO [[P]] also contains an input-output refusal trace in which X is replaced by X ∪RT event (| O |).
This suggests that it is useful to consider the elements of IOrtracesO [[P]] in which all refusal sets are either ◦ or include
O. The function IOrtracesOM (RT) below characterises the subset of such traces for a given set of refusal traces RT .

Definition 4.16. Given a healthy set RT of refusal traces, IOrtracesOM (RT) =̂ {𝜌 : RTrace | iotrace(𝜌) ∈ RT • iotrace(𝜌)}.

Input-output refusal-traces refinement can be characterised using IOrtracesOM . Themodel characterised by IOrtracesO [[P]]
is more natural than that defined by IOrtracesOM (P), since IOrtracesO [[P]] records all experiments that can be carried out

in observing P . This ensures that refusals are subset-closed in the sense of RT1. For reasoning, however, IOrtracesOM (RT)
is useful because, when it is applied to a healthy set IORT of refusal traces, it keeps the traces in the range of iotrace.

Theorem 4.17. P ⊑IORT Q ⇔ IOrtracesOM (rtraces[[Q]]) ⊆ IOrtracesOM (rtraces[[P]])

Proof. Case (⇒).

P ⊑IORT Q

= IOrtracesO [[Q]] ⊆ IOrtracesO [[P]] [definition of ⊑IORT]

⇒ {𝜌 : RTrace | iotrace(𝜌) ∈ rtraces[[Q]]} ⊆ {𝜌 : RTrace | iotrace(𝜌) ∈ rtraces[[P]]}

[definition of IOrtracesO [[Q]]]

⇒ {𝜌 : RTrace | iotrace(𝜌) ∈ rtraces[[Q]] • iotrace(𝜌)} ⊆ {𝜌 : RTrace | iotrace(𝜌) ∈ rtraces[[P]] • iotrace(𝜌)}

[function application]

⇒ IOrtracesOM (rtraces[[Q]]) ⊆ IOrtracesOM (rtraces[[P]]) [definition of IOrtracesOM ()]

Case (⇐).

IOrtracesOM (rtraces[[Q]]) ⊆ IOrtracesOM (rtraces[[P]])

⇒ {𝜌 : RTrace | ∃ 𝜌1 : IOrtracesOM (rtraces[[Q]]) • 𝜌 ≤RT 𝜌1}
⊆ {𝜌 : RTrace | ∃ 𝜌1 : IOrtracesOM (rtraces[[P]]) • 𝜌 ≤RT 𝜌1}

[property of sets]

⇒ IOrtracesO [[Q]] ⊆ IOrtracesO [[P]] [[10, Lemma E.7]]

= P ⊑IORT Q [definition of ⊑IORT]

□

Below, we give an explicit characterisation of IOrtracesOM (IORT) proved correct in [10].

Lemma 4.18. IOrtracesOM (IORT) = {𝜌 : RTrace | iotrace(𝜌) ∈ IORT ∧ iotrace(𝜌) = 𝜌}

We use IOrtracesOM (IORT) extensively in calculating, based on Definition 4.1 and Table 4, an input-output refusal-trace

semantics for the CSP operators. This is the topic of the next section.

Manuscript submitted to ACM

26 ANA CAVALCANTI, ROBERT M. HIERONS, and SIDNEY NOGUEIRA

Table 5. IOrtraces model of CSP processes

Process P IOrtracesO [[P]]
div {⟨ ◦ ⟩}
STOP { X : Refusal • ⟨X⟩ }
SKIP {⟨ ◦ ⟩} ∪ {X : Refusal • ⟨ ◦, event (✓),X⟩}
a → P {X : Refusal | X =◦∨ event a ∉RT X ∧ a ∉ O • ⟨X⟩} ∪

{𝜌 : IOrtracesO [[P]]; X : Refusal | (X =◦∨ event a ∉RT X ∧ a ∉ O) • ⟨X , event a⟩ ⌢ 𝜌}
P ⊓ Q IOrtracesO [[P]] ∪ IOrtracesO [[Q]]
P 2 Q {𝜌 : IOrtracesO [[P]] ∪ IOrtracesO [[Q]] | ⟨𝜌 1⟩ ∈ IOrtracesO [[P]] ∩ IOrtracesO [[Q]]}
P ; Q {𝜌 : IOrtracesO [[P]] | event (✓) ∉ ran 𝜌} ∪

{𝜙 : seq Obs; 𝜌 : RTrace | 𝜙 ⌢ ⟨ ◦, event (✓), ◦ ⟩ ∈ IOrtracesO [[P]] ∧ 𝜌 ∈ IOrtracesO [[Q]] • 𝜙 ⌢ 𝜌}
P |[Z]| Q ⋃{𝜌1 : IOrtracesO [[P]]; 𝜌2 : IOrtracesO [[Q]] • (𝜌1 |[Z]|RT 𝜌2)}
P \ Z ⋃((| IOrtracesO [[P]] |) \RT Z)
P [[R]] {𝜌1 : RTrace | ∃ 𝜌2 : IOrtracesRref (O)P • 𝜌1 RRT 𝜌2}

4.3 Operators

Using Definition 4.1, we can calculate characterisations of input-output refusal traces for CSP processes in terms of

their refusal traces as defined in Table 4. A summary of the input-output refusal-traces definitions for each of the CSP

operators is provided in Table 5. The calculations are presented in [10, Appendix E].

For STOP , the set of input-output refusal traces includes all its refusal traces. Since STOP carries out no communica-

tions, it has no added instability due to possible outputs. It produces no outputs. The same applies to div and SKIP ; the

instability of divergence or termination is already present in the refusal-traces model for these operators.

For a prefixing a → P , we have a definition similar to that in the RT model. We need, however, to consider explicitly

◦ as a refusal. Even if a is an output, ◦ can be recorded, but, in that case, ◦ is the only refusal that can be recorded. We

observe that if out is an output event, then the semantics of out → P is as follows.

IOrtracesO [[out → P]] = {⟨ ◦ ⟩} ∪ {𝜌 : IOrtracesO [[P]] • ⟨ ◦, out⟩ ⌢ 𝜌}

So, as expected, no stable observation of refusal is possible before the output. The definitions of internal and external

choice, sequence, and hiding are in direct correspondence with those in RT . They are unsurprising in this context.

We have to restrict the use of the parallel operator P |[Z]| Q, where we might consider a composition where the

inputs and outputs of P and Q are different. If an event e is an input in P and Q, then it is an input in the parallelism;

there is no issue. If e is an output in P and Q, then it is an output in the parallelism. We then require that the output is

not in Z , so that we have a compositional semantics for P |[Z]| Q. The next example shows the need for this restriction.

Example 4.19. We consider P1 = out!1 → STOP ⊓ out!2 → STOP and P2 = out!1 → STOP 2 out!2 → STOP . If the

set of outputs is O = {|out |}, P1 and P2 have exactly the same input-output refusal traces. This is because, since their

initial states are unstable, all their refusal traces start with ◦. We cannot observe the differentiated behaviour of the

choices due to lack of stability. In a compositional semantics, we, therefore, expect that Q1 = out!1 → STOP |[{|out |}]| P1
and Q2 = out!1 → STOP |[{|out |}]| P2 also have the same input-output refusal traces. In Q1, however, we have a possible

stability, if P1 resolves the choice to out!2 → STOP and we have a deadlock. In this case, we have singleton input-output

refusal traces with all possible refusals. The same stability, however, is not possible for Q2. 2

Manuscript submitted to ACM

Inputs and outputs in CSP: a model and a testing theory 27

So, we define that in a well formed parallelism, Z does not include events e that are outputs in both processes as in the

example above. We also have difficulties if e is an input in P and an output in Q. In this case, e is an output in P |[Z]| Q,
if it is in Z . Compositional calculation of input-output refusal traces, however, is not possible, as now illustrated.

Example 4.20. We consider processes P1 = in!1 → STOP ⊓ out!2 → STOP and P2 = in!1 → STOP 2 out!2 → STOP .

If the set of outputs is O = {|in, out |}, P1 and P2 have exactly the same input-output refusal traces. We, therefore, expect

that Q1 = in?x → STOP |[{|in, out |}]| P1 and Q2 = in?x → STOP |[{|in, out |}]| P2 have the same traces. Here, in is an

input channel in in?x → STOP , but an output in P1 and P2. In Q1, we have a possible stability, if P1 resolves the choice

to out!2 → STOP and we have a deadlock. The same stability, however, is not possible for Q2. 2

The above two examples show that there are processes that have the same input-output refusal traces, but we can

distinguish if we allow parallel compositions in which there is synchronisation on events that are outputs in either

of them. This is because such a composition allows another process to block an output and, in doing so, make a state

that is unstable due to an output become stable. As a result, we cannot expect to have a compositional semantics for

parallelism in such situations. This is not a surprise since our semantics reflects the standard assumption in testing that

the environment does not block outputs (this is why a process is unstable before an output). Allowing outputs to be

blocked, through parallel composition, is incompatible with the aim to have a semantics that supports testing.

Finally, if e is an input in P and an output in Q, or vice-versa, and e is not in Z , then P |[Z]| Q is again not well

formed, since P and Q have conflicting control over e and P |[Z]| Q does not require them to synchronise.

In summary, well formedness of P |[Z]| Q requires that P and Q have the same inputs and outputs, and Z ∩ O = ∅.
Similar issues arise in the input-output failures semantics [11]. The calculation of IOrtracesO [[P |[Z]|Q]] is in Appendix B.

For renaming, like in [11], we also make an important assumption: outputs are renamed to outputs, and inputs to

inputs. This is an inevitable consequence of the distinction between inputs and outputs. With this, for a set of outputs O,

the set of outputs before renaming is Rref (O). The calculation of IOrtracesO [[P [[R]]]] is below. Since iotrace is applied
both to original traces and to a renamed traces, we make explicit the set of outputs considered in each application. This

is an implicit parameter of iotrace that can be inferred from the context in most cases, but here we avoid confusion.

Theorem 4.21.

IOrtracesO [[P [[R]]]] = {𝜌1 : RTrace | ∃ 𝜌2 : IOrtracesRref (O)P • 𝜌1 RRT 𝜌2}

Proof. We prove that IOrtracesOM (IOrtracesO [[P [[R]]]]) is equal to

IOrtracesOM ({𝜌1 : RTrace | ∃ 𝜌2 : IOrtracesRref (O)P • 𝜌1 RRT 𝜌2})

so that the result follows from [10, Theorem E.17].

IOrtracesOM (IOrtracesO [[P [[R]]]])

= {𝜌 : RTrace | iotraceO (𝜌) ∈ IOrtracesO [[P [[R]]]] ∧ iotraceO (𝜌) = 𝜌} [Lemma 4.18]

= {𝜌 : RTrace | iotraceO (iotraceO (𝜌)) ∈ rtraces[[P [[R]]]] ∧ iotraceO (𝜌) = 𝜌} [definition of IOrtracesO [[P [[R]]]]]

= {𝜌 : RTrace | iotraceO (𝜌) ∈ rtraces[[P [[R]]]] ∧ iotraceO (𝜌) = 𝜌} [idempotence of iotrace]

= {𝜌 : RTrace | ∃ 𝜌2 : rtraces[[P]] • iotraceO (𝜌) RRT 𝜌2 ∧ iotraceO (𝜌) = 𝜌} [definition of rtraces[[P [[R]]]]]
Manuscript submitted to ACM

28 ANA CAVALCANTI, ROBERT M. HIERONS, and SIDNEY NOGUEIRA

= {𝜌 : RTrace | ∃ 𝜌2 : rtraces[[P]] • iotraceO (𝜌) RRT 𝜌2 ∧ 𝜌2 = iotraceRref (O) (𝜌2) ∧ iotraceO (𝜌) = 𝜌}

[[10, Lemma E.22]]

= {𝜌 : RTrace | ∃ 𝜌2 : RTrace •
iotraceRref (O) (𝜌2) ∈ rtraces[[P]] ∧ iotraceO (𝜌) RRT 𝜌2 ∧ 𝜌2 = iotraceRref (O) (𝜌2) ∧ iotraceO (𝜌) = 𝜌

}

[predicate calculus]

= {𝜌 : RTrace | ∃ 𝜌2 : RTrace • iotraceRref (O) (𝜌2) ∈ rtraces[[P]] ∧ iotraceO (𝜌) RRT 𝜌2 ∧ iotraceO (𝜌) = 𝜌}

[[10, Lemma E.22]]

= {𝜌 : RTrace | ∃ 𝜌2 : IOrtracesRref (O) [[P]] • iotraceO (𝜌) RRT 𝜌2 ∧ iotraceO (𝜌) = 𝜌}

[definition of IOrtracesO [[P]]]

= {𝜌 : RTrace | iotraceO (𝜌) ∈ {𝜌1 : RTrace | ∃ 𝜌2 : IOrtracesRref (O) [[P]] • 𝜌1 RRT 𝜌2} ∧ iotraceO (𝜌) = 𝜌}

[property of set comprehension]

= IOrtracesOM ({𝜌1 : RTrace | ∃ 𝜌2 : IOrtracesRref (O) [[P]] • 𝜌1 RRT 𝜌2}) [Lemma 4.18]

□

In addition, IOrtracesO [[CHAOS]] characterises CHAOS as the process that can nondeterministically terminate, deadlock,

accept or reject any of the inputs, and produce any of the outputs. Its set of input-output refusal traces is the maximal set

of healthy input-output refusal traces. As for RT and ⊑RT , CHAOS is the bottom and div is the top of ⊑IORT . Recursion

is again defined using the least-fixed point with respect to ⊆.
Having completed our adaptation of RT to consider inputs and outputs, we next consider how its input-output

refusal-traces refinement relation compares to the standard ioco conformance relation.

5 INPUT-OUTPUT REFUSAL-TRACES REFINEMENT AND IOCO

In this section, we define a notion of suspension traces for CSP processes P using IOrtracesO [[P]]. This notion is the

basis of our characterisation of ioco in the context of CSP. With that, we can establish that ⊑IORT is a stronger relation

than ioco, and, therefore, useful for both development and testing.

Precisely, in this section we show that if P ⊑IORT Q, then Q conforms to P under ioco (Theorem 5.13). Moreover, we

show that there are processes P and Q related by ioco for which P ⊑IORT Q does not hold (Theorem 5.14). Together,

these results establish that ⊑IORT is strictly stronger than ioco for input-enabled implementations. We restrict here

attention to input-enabled implementations because ioco is only defined for such implementations.

As discussed earlier, ioco is defined in terms of suspension traces. So, to define it in the context of CSP, we need to

define a suspension-traces model for CSP. To that end, we first define below the set StraceO of valid suspension traces

for output events in O; we use the set Σ𝛿 = Σ ∪ {𝛿} including the special event 𝛿 to represent quiescence.

Definition 5.1.

StraceO == {𝜎 : seq Σ𝛿 | ∀ i : 1 . . #𝜎 − 1 • 𝜎 i = 𝛿 ⇒ 𝜎 (i + 1) ∉ O}

This set includes the sequences 𝜎 of events from Σ and 𝛿 , such that, a 𝛿 is never followed by an output. This is required

because, if we can observe stability, as recorded by 𝛿 , then an output cannot be possible.

Manuscript submitted to ACM

Inputs and outputs in CSP: a model and a testing theory 29

In standard definitions of suspension traces for an IOLTS Q, occurrences of 𝛿 are represented by adding self-loop

transitions labelled by 𝛿 . Thus, if 𝜎 = 𝜎1
⌢ ⟨𝛿⟩ ⌢ 𝜎2 is a trace of Q, then all traces of the form 𝜎1

⌢ 𝛿m ⌢ 𝜎2 are also

suspension traces of Q, where 𝛿m denotes a sequence ofm occurrences of 𝛿 , form ≥ 0. So, we can define an equivalence

relation on suspension traces by taking the transitive closure of the reflexive and symmetric relation ∼𝛿 below.

Definition 5.2.

∼𝛿 : StraceO ↔ StraceO

∀𝜎1, 𝜎2 : ST • 𝜎1 ∼𝛿 𝜎1 ∧ (𝜎1 ⌢ ⟨𝛿⟩ ⌢ 𝜎2) ∼𝛿 (𝜎1 ⌢ ⟨𝛿, 𝛿⟩ ⌢ 𝜎2) ∧ (𝜎1 ∼𝛿 𝜎2 ⇔ 𝜎2 ∼𝛿 𝜎1)

If 𝜎 is a suspension trace of a process P , then all traces equivalent to 𝜎 under the transitive closure (∼𝛿)∗ of ∼𝛿 are

also traces of P . This is established by the healthiness condition below of the model of sets ST of suspension traces.

ST1 𝜎1 ∈ ST ∧ 𝜎1 (∼𝛿)∗ 𝜎2 ⇒ 𝜎2 ∈ ST

We use [𝜎] to denote the equivalence class of a suspension trace 𝜎 according to (∼𝛿)∗. As a direct consequence of ST1,
a healthy set of suspension traces ST includes either a whole equivalence class [𝜎] of (∼𝛿)∗, or no element of it at all.

Lemma 5.3. ∀𝜎 : STrace • 𝜎 ∈ ST ⇔ [𝜎] ⊆ ST

The proof of this lemma and others omitted below are in Appendix B. It follows from the above that we have the

following property of suspension-trace inclusion. We write 𝜎1 in 𝜎2 when the sequence 𝜎1 occurs in the sequence 𝜎2.

Lemma 5.4. ST2 ⊆ ST1 ⇔ {𝜎 : ST2 | ¬ (⟨𝛿, 𝛿⟩ in 𝜎)} ⊆ ST1

In words, ST2 ⊆ ST1 if, and only if, for all 𝜎 ∈ ST2 such that 𝜎 does not have occurrences of ⟨𝛿, 𝛿⟩, we have 𝜎 ∈ ST1.

As a result, for the purposes of studying ioco, it is sufficient to consider only suspension traces in which there are no

consecutive occurrences of 𝛿 . So, we adopt the following healthiness condition, instead of ST1.

ST2 𝜎 ∈ ST ⇒ ¬ (⟨𝛿, 𝛿⟩) in 𝜎

Additional healthiness conditions for suspension traces have been given in [13]. In related work Willemse [44] studies

suspension automata, which are used to define the set of suspension traces of an IOLTS specification. That work

introduces the notion of a valid suspension automaton, which satisfies four given properties. These properties impose

conditions on the sets of suspension traces that can result from suspension automata. One property, for example, states

that it is not possible to follow the observation of quiescence with an output. There is thus potential to study the

notion of a valid suspension automaton to derive additional healthiness conditions. Here, ST2 is enough to study the

relationship between input-output refusal traces refinement and ioco and simplify proofs.

We define below st to characterises a suspension trace corresponding to a refusal trace ⟨X⟩ or ⟨X , event a⟩ ⌢ 𝜌 .

Definition 5.5.

st : RTrace → StraceO

∀X : Refusal; a : Σ✓; 𝜌 : RTrace • (st ⟨X⟩ = ⟨ ⟩ ∧ ¬ (refusal O ⊆RT X) ∨ st ⟨X⟩ = ⟨𝛿⟩ ∧ refusal O ⊆RT X) ∧
st (⟨X , event a⟩ ⌢ 𝜌) = st (⟨X⟩) ⌢ ⟨a⟩ ⌢ st (𝜌)

This function essentially removes all refusals X that do not contain all outputs O (since these do not correspond to the

observation of quiescence) and replaces other refusals with 𝛿 . Events are untouched. We can use the function st to
Manuscript submitted to ACM

30 ANA CAVALCANTI, ROBERT M. HIERONS, and SIDNEY NOGUEIRA

define the set of suspension traces of a process. For a process P , we use straces[[P]] to denote the set of suspension

traces of P and define it below in terms of IOrtracesO [[P]].

Definition 5.6. straces[[P]] =̂ st (| IOrtracesO [[P]] |).

There is no translation from CSP to IOLTS available in the literature. (Such a translation would characterise a semantics

for CSP with inputs and outpus.) As a result, it is not possible to directly compare Definition 5.6 with the definition of

suspension traces for an IOLTS. We have, however, used Definition 5.6 to calculate a suspension-trace semantics for the

CSP operators [13]. Here, we use it just to compare input-output refusal-traces refinement with ioco.

The following establishes that for a process P we have that straces[[P]] is ST2-healthy. This is immediate from the

definition of st and the fact that refusal traces in IOrtracesO [[P]] alternate between events and refusals.

Lemma 5.7. straces[[P]] is ST2-healthy.

Proof. We provide a proof by contradiction.

𝜎1
⌢ ⟨𝛿, 𝛿⟩ ⌢ 𝜎2 ∈ straces[[P]]

⇒ ∃ 𝜌 : IOrtracesO [[P]] • st (𝜌) = 𝜎1
⌢ ⟨𝛿, 𝛿⟩ ⌢ 𝜎2 [definition of straces[[P]]]

⇒ ∃ 𝜌 : IOrtracesO [[P]]; i : 1..#𝜌 • st (𝜌) (i) = 𝛿 ∧ st (𝜌) (i + 1) = 𝛿 [properties of sequences]

⇒ ∃ 𝜌 : IOrtracesO [[P]]; i : 1..#𝜌 • 𝜌 (i) ∈ ran refusal ∧ 𝜌 (i + 1) ∈ ran refusal [definition of st]

This contradicts the definition of RTrace, which is the type of 𝜌 , as required. □

We recall that ioco is traditionally defined using functions after and Out as shown below.

Q ioco P =̂ ∀𝜎 : straces[[P]] • Out (Q after 𝜎) ⊆ Out (P after 𝜎)

This can be simply rewritten to the following.

Q ioco P =̂ ∀𝜎 : straces[[P]] • a ∈ Out (Q after 𝜎) ⇒ a ∈ Out (P after 𝜎)

Above, since a is an output, it can be either an output event or 𝛿 . By definition, a is in Out (R after 𝜎), for a process R,
if, and only if, R can move via 𝜎 to a state r (that is, r ∈ (R after 𝜎)) in which the observation of a can be made (that

is, a ∈ Out (r)). This is the case if, and only if, 𝜎 ⌢ ⟨a⟩ ∈ straces[[R]]. As a result, a ∈ Out (R after 𝜎) if, and only if,

𝜎 ⌢ ⟨a⟩ ∈ straces[[R]]. Based on this, we obtain the definition below of Q ioco P in terms of straces[[P]] and straces[[Q]].

Definition 5.8. For an arbitrary process P and an input-enabled process Q,

Q ioco P =̂ ∀𝜎 : straces[[P]]; a : O ∪ {𝛿} • 𝜎 ⌢ ⟨a⟩ ∈ straces[[Q]] ⇒ 𝜎 ⌢ ⟨a⟩ ∈ straces[[P]]

We note that a similar formalisation of ioco in terms of suspension traces has already been given for IOLTS by Tretmans

in [38]. Our discussion above justs recasts these results in the context of CSP suspension traces.

Suspension traces that are ST2-healthy (as opposed to those that include occurrences of ⟨𝛿, 𝛿⟩) are structurally similar

Manuscript submitted to ACM

Inputs and outputs in CSP: a model and a testing theory 31

to refusal traces. Given a suspension trace 𝜎 , it is straightforward to define a corresponding refusal trace rt (𝜎).

rt : StraceO → RTrace

∀ a : Σ; 𝜎 : StraceO •
rt (⟨ ⟩) = ⟨ ◦ ⟩ ∧ rt (⟨a⟩ ⌢ 𝜎) = ⟨ ◦, event a⟩ ⌢ rt (𝜎) ∧
rt (⟨𝛿⟩) = ⟨refusal O⟩ ∧ rt (⟨𝛿, a⟩ ⌢ 𝜎) = ⟨refusal O, event a⟩ ⌢ rt (𝜎)

We include in rt (𝜎) the events from 𝜎 . Where there is a 𝛿 , we include the refusal set O, and, otherwise, use ◦.

Example 5.9. For the suspension trace 𝜎1 = ⟨a, b, 𝛿⟩, we have the following.

rt (𝜎1) = ⟨ ◦, a⟩ ⌢ rt (⟨b, 𝛿⟩) = ⟨ ◦, a⟩ ⌢ ⟨ ◦, b⟩ ⌢ rt (⟨𝛿⟩) = ⟨ ◦, a⟩ ⌢ ⟨ ◦, b⟩ ⌢ ⟨O⟩ = ⟨ ◦, a, ◦, b,O⟩

For 𝜎2 = ⟨a, 𝛿, b⟩, we can proceed as follows.

rt (s2) = ⟨ ◦, a⟩ ⌢ rt (⟨𝛿, b⟩) = ⟨ ◦, a⟩ ⌢ ⟨O, b⟩ ⌢ rt (⟨⟩) = ⟨ ◦, a⟩ ⌢ ⟨O, b⟩ ⌢ ⟨ ◦ ⟩ = ⟨ ◦, a,O, b, ◦ ⟩

2

We now establish how st and rt relate. We show that rt and st form a Galois connection between refusal traces, ordered

by the ≤RT relation, and suspension traces with equality. We recall that the omitted proofs are in [10, Appendix F].

Theorem 5.10. st (rt (𝜎)) = 𝜎 and rt (st (𝜌)) ≤RT 𝜌

There are two reasons why we do not always have rt (st (𝜌)) = 𝜌 . The first is that st removes any record of inputs from

refusal sets (although this is not a problem when processes are input-enabled). The second reason is that a refusal set X

in 𝜌 that is a proper subset of O is removed by st, and then rt introduces ◦ at the corresponding position in the trace,

even if the process considered is quiescent at that point.

We recall that we have used IOrtracesOM (P) to provided an alternative characterisation of input-output refusal traces

refinement. We obtain the following stronger result for input-enabled processes and IOrtracesOM (P).

Theorem 5.11. For an input-enabled process P, if 𝜌 ∈ IOrtracesOM (rtraces[[P]]), then rt (st (𝜌)) = 𝜌 .

If a process P is input-enabled, then rt and st are inverses on IOrtracesOM (P).
Interestingly, it also transpires that rtraces[[P]], IOrtracesO [[P]], and IOrtracesOM (P) define the same sets of suspension

traces as characterised using the function st as established by the theorem below.

Theorem 5.12. st (| IOrtracesO [[P]] |) = st (| IOrtracesOM (rtraces[[P]]) |) = st (| rtraces[[P]] |)

Finally, we can show that input-output refusal traces refinement implies ioco.

Theorem 5.13. Given processes P and Q such that Q is input-enabled,

P ⊑IORT Q ⇒ Q ioco P .

Proof.

P ⊑IORT Q

⇒ IOrtracesO [[Q]] ⊆ IOrtracesO [[P]] [definition of ⊑IORT]

⇒ st (| IOrtracesO [[Q]] |) ⊆ st (| IOrtracesO [[P]] |) [property of relational image]

Manuscript submitted to ACM

32 ANA CAVALCANTI, ROBERT M. HIERONS, and SIDNEY NOGUEIRA

⇒ straces[[Q]] ⊆ straces[[P]] [definition of straces[[P]]]

⇒ ∀𝜎 ′
: 𝜎 ′ ∈ straces[[Q]] ⇒ 𝜎 ′ ∈ straces[[P]] [definition of set inclusion]

⇒ ∀𝜎 : straces[[P]]; a : O ∪ {𝛿} • 𝜎 ⌢ ⟨a⟩ ∈ straces[[Q]] ⇒ 𝜎 ⌢ ⟨a⟩ ∈ straces[[P]][substitution of 𝜎 ⌢ ⟨a⟩ for 𝜎 ′
]

⇒ Q ioco P [definition of ioco]

□

We note that, although it could be argued that the proof above of Theorem 5.13 does not use the hypothesis that Q is

input-enabled, this hypothesis is needed because ioco is defined only for input-enabled implementations.

It has been shown in [12, Theorems 1 and 2] that there are processes P and Q such that Q ioco P , but where we do

not have that P ⊑IOF Q. The following is thus a direct consequence of Theorem 4.14.

Theorem 5.14. There are P and Q such that Q ioco P, but not P ⊑IORT Q.

As an example, we can take as the specification P the process SKIP and let Q be any input-enabled implementation that

can produce an output out in response to some input in but that cannot produce an output before first receiving an

input. Under ioco we only need to consider the outputs (and quiescence) of Q after the empty sequence and this is just

quiescence. Since the specification is also initially quiescent, we have that Q ioco P as required. However, P ⊑IORT Q

does not hold since the implementation Q has input-output refusal traces that are not input-output refusal traces of P

(for example, any that involves the input inp followed by the output out).

The last two theorems show that input-output refusal traces refinement is strictly stronger than ioco for input-enabled

implementations. This is our main result in this section.

We now consider the special case where P and Q are both input-enabled. For input-enabled processes P and Q, we

have that Q ioco P implies P ⊑IOF Q [12, Theorem 3]. We can now strengthen this result for ⊑IORT .

In the proof of Theorem 5.16, we use the lemma below regarding ioco [2].

Lemma 5.15. Given input-enabled processes P and Q, Q ioco P ⇔ straces[[Q]] ⊆ straces[[P]] .

Theorem 5.16. Given input-enabled processes P and Q, P ⊑IORT Q ⇔ Q ioco P.

Proof. The left to right implication is given by Theorem 5.13. So, we assume that Q ioco P and prove that P ⊑IORT Q.

Q ioco P

⇒ straces[[Q]] ⊆ straces[[P]] [Lemma 5.15]

⇒ st (| IOrtracesO [[Q]] |) ⊆ st (| IOrtracesO [[P]] |) [definition of straces]

⇒ st (| IOrtracesOM (Q) |) ⊆ st (| IOrtracesOM (P) |) [Theorem 5.12]

⇒ rt (| st (| IOrtracesOM (Q) |) |) ⊆ rt (| st (| IOrtracesOM (P) |) |) [property of relational image]

⇒ IOrtracesOM (Q) ⊆ IOrtracesOM (P) [Theorem 5.11]

⇒ P ⊑IORT Q [Lemma 4.17]

□

To summarise, we have shown that input-output refusal-traces refinement is strictly stronger than ioco, in general,

Manuscript submitted to ACM

Inputs and outputs in CSP: a model and a testing theory 33

and equivalent to ioco for input-enabled specifications. This means that failure of an implementation to conform to a

specification according to ioco indicates that the implementation is not an input-output refusal-traces refinement of the

specification. We next consider how we can test for input-output refusal traces refinement.

6 TESTING AND INPUT-OUTPUT REFUSAL TRACES

This section provides a testing theory for input-output refusal-traces refinement. For that, we consider two processes,

an SUT Q and a test case T , and define a process Execution(Q, T) representing Q and T interacting as black boxes. (The

compositional nature of the denotational semantics leads to a simple definition of Execution(Q, T)). We then define the

notion of the SUT failing a test and demonstrate how we can define a test set ExhaustORT (P) that is sound (that is, no

correct SUT can fail) and exhaustive (that is, all incorrect SUTs will fail).

First of all, we characterise input-output refusal-traces refinement in terms of traces refinement and a new confor-

mance relation confOIO concerned just with refusals. With this, we can take advantage of results of the CSP testing

theory [7] regarding traces refinement, and concentrate our efforts on confOIO, which is simpler than ⊑IORT . As in the

stable-failures model, the notion of a trace and, therefore, traces refinement and its associated testing theory are not

affected by the distinction between inputs and outputs made here.

Inspired by [4, 7], we define confOIO to capture the requirements, under ⊑IORT , on the refusals as follows.

Q confOIO P =̂ ∀ t : traces[[P]] ∩ traces[[Q]] • Ref OIO (Q, t) ⊆ Ref OIO (P, t)
where Ref OIO (P, t) =̂ {𝜌 : RTrace | trace(𝜌) = t ∧ 𝜌 ∈ IOrtracesO [[P]]}

In this conformance relation, we consider only traces t of both the specification P and the implementation Q. For those,

the associated refusal traces of the implementation as defined by Ref OIO (Q, t) must be traces of the specification.

Using confOIO, traces and refusals can be considered separately when establishing refinement.

Theorem 6.1. P ⊑IORT Q ⇔ traces[[Q]] ⊆ traces[[P]] ∧ Q confOIO P

Proof.

P ⊑IORT Q

⇔ IOrtracesO [[Q]] ⊆ IOrtracesO [[P]] [definition of ⊑IORT]

⇔ traces[[Q]] ⊆ traces[[P]] ∧ IOrtracesO [[Q]] ⊆ IOrtracesO [[P]] [Lemma 4.10]

⇔ traces[[Q]] ⊆ traces[[P]] ∧ ∀ t : traces[[Q]] ◦ Ref OIO (Q, t) ⊆ Ref OIO (P, t)

[definitions of Ref OIO (P, t) and Ref OIO (P, t)]

⇔ traces[[Q]] ⊆ traces[[P]] ∧
∀ t : traces[[Q]] ∩ traces[[P]] ◦ Ref OIO (Q, t) ⊆ Ref OIO (P, t)

[traces[[Q]] ⊆ traces[[P]] ⇒ traces[[Q]] = traces[[Q]] ∩ traces[[P]]]

⇔ traces[[Q]] ⊆ traces[[P]] ∧ Q confOIO P [definition of confOIO]

□

In our approach to generating test cases for confOIO, we identify a set of input-output refusal traces that the SUT should

Manuscript submitted to ACM

34 ANA CAVALCANTI, ROBERT M. HIERONS, and SIDNEY NOGUEIRA

not have, if it is a correct implementation of the specification. Given such a trace 𝜌 that the SUT should not have, we

define a test case T IO
F (𝜌) that checks whether 𝜌 is an input-output refusal trace of the SUT. Naturally, the SUT fails this

test case if its interactions with T IO
F (𝜌) demonstrate that 𝜌 is one of its input-output refusal traces.

For a trace of events t of the specification P , we might consider the whole set CO
IO (P, t) of input-output refusal traces

with trace t that are not input-output refusals traces of P . This is the set of input-output refusal traces that have trace t

and are not in Ref OIO (P, t). We could then test the implementation Q to check whether it implements any of the traces in

CO
IO (P, t). As illustrated below, however, it is necessary to use the smaller set of traces whose refusals are all either ◦ or

contain all outputs, and that are minimal under ≤RT (see Section 3.3 for the definition of ≤RT).

Example 6.2. We consider as the specification the process EC from Example 3.2, and its trace t = ⟨inB.1⟩. Before
inB.1, EC can refuse any output, but no inputs. CO

IO (EC, t) contains, for example, the input-output refusal trace

𝜌1 = ⟨{inA.1, outA.1}, inB.1, ◦ ⟩: this is not an input-output refusal trace of EC, since it records an initial refusal of

an event inA.1 in which EC can participate. We now suppose that we wish to test to determine whether 𝜌1 is an

input-output refusal trace of the SUT. If 𝜌1 is an input-output refusal trace of the SUT, then the SUT must be able to

refuse {inA.1, outA.1}, in a stable state, before performing inB.1. Since no outputs can be enabled in a stable state, by

RT2 we know that, if 𝜌1 is an input-output refusal trace of the SUT, then 𝜌2 = ⟨{|inA.1, outA, outB|}, inB.1, ◦ ⟩, which
differs from 𝜌1 in that the first refusal contains all outputs, must also be an input-output refusal trace of the SUT. In

addition, RT1 tells us that if 𝜌2 is an input-output refusal trace of the SUT, then 𝜌1 is also an input-output refusal trace

of the SUT. Thus, in order to determine whether 𝜌1 is an input-output refusal trace of the SUT, it is sufficient to test in

order to determine whether 𝜌2 is an input-output refusal trace of the SUT. 2

We also restrict ourselves to refusal traces that are minimal with respect to ≤RT . Since we have a fixed trace of events t,

minimality is in relation to the refusals. If a refusal X1, different from ◦, is not an observation of the SUT, then any X2
containing all events of X1 is also not a refusal of the SUT (because of RT1). So, it is enough to consider X1 in tests.

Traces whose refusals are all either ◦ or contain all outputs are those in the range of the function iotrace. Therefore,

given a specification P and a trace t of P we are interested in the following set of input-output refusal traces.

AO
IO (P, t) = min≤RT {𝜌 : IORTrace | trace(𝜌) = t ∧ 𝜌 ∉ IOrtracesO [[P]] • iotrace(𝜌)}

The input-output refusal traces in AO
IO (P, t) have the trace of events t, are not traces of P , include all outputs O in its

refusals different from ◦, and are minimal with respect to ≤RT .

Example 6.3. We consider again the process EC from Example 3.2, and the trace t = ⟨inA.1⟩. The set AO
IO (EC, t)

contains traces such as 𝜌1 = ⟨{inB.1, outA.1, outB.1}, inA.1, ◦ ⟩. Since EC deadlocks after inA.1, all input-output refusal

traces of the form ⟨ ◦, inA.1,X⟩ are input-output refusal traces of EC. Furthermore, an input-output refusal trace of the

form ⟨X , inA.1,X ′⟩ with X ≠ ◦ and X ′ ≠ ◦ cannot be a minimal input-output refusal trace that is not in IOrtracesO [[EC]]
since ⟨X , inA.1, ◦ ⟩ ≤RT ⟨X , inA.1,X ′⟩ and ⟨X , inA.1,X ′⟩ ∉ IOrtracesO [[EC]] ⇔ ⟨X , inA.1, ◦ ⟩ ∉ IOrtracesO [[EC]]. Thus,
all traces in AO

IO (EC, t) are of the form ⟨{|e, outA, outB|}, inA.1, ◦ ⟩ where e is an input. 2

To check whether an SUT allows a given input-output refusal trace we need to observe a sequence of events and refusals,

and so we need to observe a refusal of the SUT and then continue testing for further events and refusals.

Example 6.4. We consider again the processes IC1 and IC2 from Example 4.8 and the trace t = ⟨out, inp⟩. We

recall that the maximal input-output refusal traces of IC1 with events as in t are ⟨ ◦, out, {out,✓}, inp, ◦ ⟩ and

⟨ ◦, out, ◦, inp, {out,✓}⟩. So, we obtain a number of input-output refusal traces in AO
IO (IC1, ⟨out, inp⟩) including

Manuscript submitted to ACM

Inputs and outputs in CSP: a model and a testing theory 35

𝜌 = ⟨ ◦, out, {out}, inp, {out}⟩. As pointed out in Example 4.8, 𝜌 is a trace of IC2, but not of IC1. Testing can show that

IC2 is not an input-output refinement of IC1 if it can demonstrate that 𝜌 is a trace of IC2. To test IC2 against IC1 based

on 𝜌 = ⟨ ◦, out, {out}, inp, {out}⟩, we need to observe a refusal {out} after ⟨ ◦, out⟩ and also after ⟨ ◦, out, {out}, inp⟩.
The observation of the refusal after ⟨ ◦, out⟩ is not sufficient, since ⟨ ◦, out, {out}⟩ is a trace of IC1. In addition, the

observation of the refusal {out} after ⟨ ◦, out, ◦, inp⟩ would also produce an input-output refusal trace of IC1. 2

In summary, as perhaps should be expected, it is not enough to observe a refusal after a trace of events (like in the

standard CSP testing theory for failures refinement); we need to observe events and refusals in alternation.

Essentially, the observation of a refusal in an input-output refusal trace requires us to observe deadlock before

progressing. Potentially, this might be achieved using a timed version of CSP, but instead we use priorities.

The prioritise operator of CSP applies to a process P and a sequence 𝜃 of (pairwise disjoint) sets of events whose

priority decreases along 𝜃 . The process prioritise(P, 𝜃), in which 𝜃 = ⟨Z1, . . . , Zk⟩, behaves like P , but prevents an event

a ∈ Zi if either an event b ∈ Zj is possible for j < i, or i > 1 and P can take an internal event or can terminate. Internal

events, termination, and events in Z1 have the same priority.

We can use priorities to observe a refusal X and, if this is observed, continue with an event a. Essentially we prioritise

all elements in X above a, offer all events in X as well as a, and so if a is followed then the set X must have been refused.

To define the notion of test, we follow the approach in the existing testing theory of CSP by including special events

in a test case. Namely, we have a set V = {inc, pass, fail} of verdict events to indicate an inconclusive, pass, or fail

verdict. All events of the specification (and of the SUT) are hidden and, therefore, cannot be observed or blocked by the

environment of a testing experiment. The last visible verdict event gives the verdict of the experiment.

Formally, the execution of a test T against an SUT Q can be described as follows.

Definition 6.5. Execution(Q, T) =̂ prioritise(Q |[Σ]| T , ⟨Σ,V ⟩) \ Σ

As usual, the SUT and the test are run in parallel. The specification events, that is, those in Σ, are given higher priority

than the verdict events from V . Due to the form of a test T defined below, this ensures, as required, that the observation

of a refusal is possible, before the experiment continues to observe the next event.

The verdict or, more specifically, the failure of a test, is defined as follows. Basically, a test experiment Execution(Q, T)
identifies a failure if it has itself a refusal trace 𝜌 that leads to a deadlock (characterised by the refusal Σ✓ ∪ V ⟩ of
all specification and verdict events) or a termination (characterised that the existence of a refusal trace that ends in

⟨ ◦,✓, ◦ ⟩) after the verdict event fail. (For simplicity, we do not use the Observation constructors like in examples). We

note that the semantics taken for the test experiment is the refusal-traces model.

Definition 6.6. Q fails T =̂ ∃ 𝜌 : RTrace • {𝜌 ⌢ ⟨fail, Σ✓ ∪ V ⟩, 𝜌 ⌢ ⟨fail, ◦,✓, ◦ ⟩} ∩ rtraces[[Execution(Q, T)]] ≠ ∅

We define below a function T IO
F that takes an input-output refusal trace and returns a corresponding test case. We note

that in Definition 6.7(2), we use the iterated external choice 2 x : Z • x → pass → STOP indexed by events x from a

set Z . As usual, the external choice is resolved by the environment. If an event x is chosen, this process behaves like

x → pass → STOP . If Z is empty, this process behaves just like STOP . In Definition 6.7(2), for an empty Z , we get just

fail → STOP , since STOP is the unit of an external choice. Similar comments apply to Definition 6.7(5).

Definition 6.7. Below a ∈ Σ, that is, it is not event (✓), X is in ran refusal, 𝜌 : RTrace, and Z : Σ.

(1) T IO
F (⟨ ◦ ⟩) = fail → STOP

(2) T IO
F (⟨refusal(Z)⟩) = (2 x : Z • x → pass → STOP) 2 inc → (SKIP 2 fail → STOP)

Manuscript submitted to ACM

36 ANA CAVALCANTI, ROBERT M. HIERONS, and SIDNEY NOGUEIRA

(3) T IO
F (⟨ ◦, event (✓),X⟩) = fail → (SKIP 2 pass → STOP)

(4) T IO
F (⟨ ◦, event (a)⟩ ⌢ 𝜌) = inc → a → T IO

F (𝜌)
(5) T IO

F (⟨refusal(Z), event (a)⟩ ⌢ 𝜌) = (2 x : Z • x → inc → STOP) 2 inc → a → T IO
F (𝜌)

With the test T IO
F (⟨ ◦ ⟩) defined in (1), we always have verdict fail. Since all processes have ⟨ ◦ ⟩ as an (input-output)

refusal trace, we do not really generate a test just for it. T IO
F (⟨ ◦ ⟩) is used as a base case for the recursive definition.

The test in (2) offers the events in Z . If one of them is accepted by the SUT, then the test execution, which prioritises

events of Σ over V , ensures that an event in Z occurs, and so the refusal of Z is not observed. As a result, the event

pass occurs and the test case deadlocks. Otherwise, the event inc occurs and the test experiment terminates with that

verdict, or, if termination is not possible, the event fail occurs and the test deadlocks with that alternative verdict. This

reflects the fact that the forbidden trace ⟨refusal(Z)⟩ has been observed.

In the definition of the test case in (3), we rely on the fact that, in a test execution,✓ has priority over pass. Thus,

if the SUT can terminate then the test case behaves like SKIP after giving verdict fail, which is then the last event

observed. Otherwise, pass occurs and then the test case deadlocks.

The recursive definitions in (4) and (5) consider traces of size three or more. For a trace starting with ⟨ ◦, event (a)⟩,
there is no refusal to test at first. Moreover, we cannot be sure that the SUT can perform a. Due to nondeterminism, it

might not need to, and, whether or not a forbidden event can occur is captured by the tests for traces refinement; here,

in testing for confOIO, we are interested only in refusals. So, the test in (4) gives an inconclusive verdict before a, to

indicate that the trace of events in ⟨ ◦, event (a)⟩ ⌢ 𝜌 has not yet been observed. If a occurs, we then test for 𝜌 .

Finally, with the test in (5), we try to observe that Z is not a refusal of the SUT. If this is the case, the test deadlocks

after the inc event, and so is successful: the forbidden trace is not observed. If, however, Z is refused, then a may be

accepted, in which case we proceed with the test T IO
F (𝜌). If a is not accepted either, again, the last event observed is inc.

Example 6.8. We consider IC1 and 𝜌 = ⟨ ◦, out, {out}, inp, {out}⟩ from Example 4.8. We obtain a test case as follows.

T IO
F (𝜌) = T IO

F (⟨ ◦, out, {out}, inp, {out}⟩)

= inc → out → T IO
F (⟨{out}, inp, {out}⟩) [(4)]

= inc → out → ((2 x : {out} • x → inc → STOP) 2 inc → inp → T IO
F (⟨{out}⟩)) [(5)]

= inc → out → (out → inc → STOP 2 inc → inp → T IO
F (⟨{out}⟩)) [simplification]

= inc → out → (out → inc → STOP

2

inc → inp → ((2 x : {out} • x → pass → STOP) 2 inc → (SKIP 2 fail → STOP)))

[(2)]

= inc → out → (out → inc → STOP 2 inc → inp → (out → pass → STOP 2 inc → (SKIP 2 fail → STOP)))

[simplification]

2

There is no inc event after the last input, since, all events of the trace have been observed.

Example 6.9. We now suppose that we apply this test case to IC2. The following is a calculation of a process that

describes one of the possible executions of this experiment, where we resolve the internal choice of IC2 in favour of the

Manuscript submitted to ACM

Inputs and outputs in CSP: a model and a testing theory 37

first process in the definition of IC2. In the calculation, we repeatedly apply step laws of parallelism.

IC2 |[Σ]| T IO
F (𝜌)

= inc → out → (inp → inp → STOP

|[Σ]|
(out → inc → STOP 2 inc → inp → (out → pass → STOP 2 inc → (SKIP 2 fail → STOP))))

= inc → out → inc → (inp → inp → STOP

|[Σ]|
inp → (out → pass → STOP 2 inc → (SKIP 2 fail → STOP)))

= inc → out → inc → inp → (inp → STOP |[Σ]| (out → pass → STOP 2 inc → (SKIP 2 fail → STOP)))

= inc → out → inc → inp → inc → (inp → STOP |[Σ]| (SKIP 2 fail → STOP))

= inc → out → inc → inp → inc → (STOP ⊓ fail → (inp → STOP |[Σ]| STOP))

= inc → out → inc → inp → inc → (STOP ⊓ fail → STOP)

The use of prioritise has no effect. Hiding Σ means that the only maximal traces of events we observe are ⟨inc, inc, inc⟩
and ⟨inc, inc, inc, fail⟩. This corresponds to a refusal trace that ends in fail followed by a deadlock: a failed experiment.

Now, we consider the application of the same test to an implementation of the first process in the choice in IC1.

out → inp → (out → STOP 2 inp → STOP) |[Σ]| T IO
F (𝜌)

= inc → out → (inp → (out → STOP 2 inp → STOP)
|[Σ]|

(out → inc → STOP 2 inc → inp → (out → pass → STOP 2 inc → (SKIP 2 fail → STOP))))

= inc → out → inc → (inp → (out → STOP 2 inp → STOP)
|[Σ]|

inp → (out → pass → STOP 2 inc → (SKIP 2 fail → STOP)))

= inc → out → inc → inp → ((out → STOP 2 inp → STOP)
|[Σ]|

(out → pass → STOP 2 inc → (SKIP 2 fail → STOP)))

= inc → out → inc → inp → (out → (STOP |[Σ]| pass → STOP)
2

inc → ((out → STOP 2 inp → STOP) |[Σ]| (SKIP 2 fail → STOP)))

In this case, application of the prioritise operator removes the possibility of the inc event in favour the out event in the

external choice. This yields the process inc → out → inc → inp → out → pass → STOP and so a successful verdict. 2

Manuscript submitted to ACM

38 ANA CAVALCANTI, ROBERT M. HIERONS, and SIDNEY NOGUEIRA

As already said, the aim is for T IO
F (𝜌) to produce a trace that ends with the event fail, when interacting with a process

Q, if, and only if, Q can perform the sequence of events and refusals in 𝜌 .

Lemma 6.10. Q fails T IO
F (𝜌) if, and only if, 𝜌 ∈ rtraces[[Q]].

This is proved in Appendix B. A test set is exhaustive if all incorrect implementations fail some test case. The lemma

above suggests the following exhaustive test set for confOIO.

Definition 6.11. ExhaustORT (P) =̂ {t : traces[[P]]; 𝜌 : RTrace | 𝜌 ∈ AO
IO (P, t) • T IO

F (𝜌)}

The following shows that ExhaustORT (P) is exhaustive for conf
O
IO.

Theorem 6.12. If Q confOIO P does not hold, there is some T in ExhaustORT (P) such that Q fails T.

Proof.

¬Q confOIO P

⇒ ∃ t : traces[[P]] ∩ traces[[Q]] • Ref OIO (Q, t) ⊈ Ref OIO (P, t) [definition of Q confOIO P]

⇒ ∃ t : traces[[P]] ∩ traces[[Q]]; 𝜌 : RTrace • 𝜌 ∈ Ref OIO (Q, t) ∧ 𝜌 ∉ Ref OIO (P, t) [property of sets]

⇒ ∃ t : traces[[P]] ∩ traces[[Q]]; 𝜌 : RTrace •
𝜌 ∈ {𝜌1 : IOrtracesO [[Q]] | trace(𝜌1) = t} ∧
𝜌 ∉ {𝜌1 : IOrtracesO [[P]] | trace(𝜌1) = t}

[definition of Ref OIO (P, t)]

⇒ ∃ t : traces[[P]] ∩ traces[[Q]]; 𝜌 : RTrace • 𝜌 ∈ IOrtracesO [[Q]] ∧ 𝜌 ∉ IOrtracesO [[P]] ∧ trace(𝜌) = t

[property of sets]

⇒ ∃ t : traces[[P]] ∩ traces[[Q]]; 𝜌 : RTrace •
iotrace(𝜌) ∈ IOrtracesO [[Q]] ∧ iotrace(𝜌) ∉ IOrtracesO [[P]] ∧ trace(𝜌) = t

[RT5]

⇒ ∃ t : traces[[P]] ∩ traces[[Q]]; 𝜌 : RTrace •
iotrace(𝜌) ∈ IOrtracesO [[Q]] ∧ iotrace(𝜌) ∉ IOrtracesO [[P]] ∧ trace(𝜌) = t ∧
(∃ 𝜌1 : RTrace • iortrace(𝜌1) ∈ AO

IO (P, t) ∧ 𝜌1 ≤RT iotrace(𝜌))

[definition of AO
IO (P, t)]

⇒ ∃ t : traces[[P]] ∩ traces[[Q]]; 𝜌, 𝜌1 : RTrace •
iotrace(𝜌) ∈ IOrtracesO [[Q]] ∧ iotrace(𝜌) ∉ IOrtracesO [[P]] ∧ trace(𝜌) = t ∧
iotrace(𝜌1) ∈ AO

IO (P, t) ∧ 𝜌1 ≤RT iotrace(𝜌)

[predicate calculus]

⇒ ∃ t : traces[[P]] ∩ traces[[Q]]; 𝜌, 𝜌1 : RTrace •
iotrace(𝜌) ∈ IOrtracesO [[Q]] ∧ iotrace(𝜌) ∉ IOrtracesO [[P]] ∧ trace(𝜌) = t ∧
iotrace(𝜌1) ∈ AO

IO (P, t) ∧ iotrace(𝜌1) ≤RT iotrace(𝜌)

[definition of iotrace]

⇒ ∃ t : traces[[P]] ∩ traces[[Q]]; 𝜌, 𝜌1, 𝜌2 : RTrace •
iotrace(𝜌) ∈ IOrtracesO [[Q]] ∧ iotrace(𝜌) ∉ IOrtracesO [[P]] ∧ trace(𝜌) = t ∧
𝜌2 = iortrace(𝜌1) ∧ 𝜌2 ∈ AO

IO (P, t) ∧ 𝜌2 ≤RT iortrace(𝜌)

[predicate calculus]

⇒ ∃ t : traces[[P]] ∩ traces[[Q]]; 𝜌, 𝜌1, 𝜌2 : RTrace •
iotrace(𝜌) ∈ IOrtracesO [[Q]] ∧ iotrace(𝜌) ∉ IOrtracesO [[P]] ∧ trace(𝜌) = t ∧
𝜌2 = iortrace(𝜌1) ∧ 𝜌2 ∈ AO

IO (P, t) • 𝜌2 ≤RT iortrace(𝜌) ∧ 𝜌2 ∈ IOrtracesO [[Q]]

[RT1]

Manuscript submitted to ACM

Inputs and outputs in CSP: a model and a testing theory 39

⇒ ∃ t : traces[[P]] ∩ traces[[Q]]; 𝜌2 : RTrace • 𝜌2 ∈ AO
IO (P, t) ∧ 𝜌2 ∈ IOrtracesO [[Q]] [predicate calculus]

⇒ ∃ t : traces[[P]] ∩ traces[[Q]]; 𝜌2 : RTrace •
𝜌2 ∈ AO

IO (P, t) ∧ 𝜌2 ∈ IOrtracesO [[Q]] ∧ T IO
F (𝜌2) ∈ ExhaustORT (P)

[definition of ExhaustORT (P)]

⇒ ∃ t : traces[[P]] ∩ traces[[Q]]; 𝜌2 : RTrace • T IO
F (𝜌2) ∈ ExhaustORT (P) ∧ Q fails T IO

F (𝜌2) [Lemma 6.10]

⇒ ∃ T : ExhaustORT (P) • Q fails T [predicate calculus]

□

The result established by the above theorem means that, together with the exhaustive test set for traces refinement [7],

the set ExhaustORT (P) provides exhaustive coverage for input-output refusal traces refinement.

The focus of this section has been the definition of an exhaustive set of test cases. However, there is scope to

optimise the proposed approach; we did not consider these since they would complicate the proofs. For example, we

can use different exhaustive test sets. For example, for traces t1 and t2 of P , with t1 a proper prefix of t2, we might have

𝜌1 ∈ AO
IO (P, t1) and 𝜌2 ∈ AO

IO (P, t2), where 𝜌1 is a proper prefix of 𝜌2. In such situations, there is no need to test with 𝜌2.

So, instead of using AO
IO (P, t) for each trace of events t of P , we might consider the set of minimal input-output refusal

traces whose event trace is in traces[[P]] and that are not input-output refusal traces of P to eliminate redundancy.

We might also use adaptive test cases, where the behaviour of the tester depends on previous observations. To

illustrate the potential of this approach, we consider that a test case T is used, an input-output refusal trace 𝜌 is observed,

the next event in the test case is a ∈ O, and, instead, an output b ≠ a occurs, and T terminates with an inconclusive

verdict. If there is another test case T ′
formed from 𝜌 followed by b, we can combine T and T ′

to produce a single

adaptive test case that behaves like T if a is output after 𝜌 , and like T ′
if b is output instead.

Optimisations such as these are a topic for future work. Here, we have formalised a core notion of a test and associated

exhaustive test set to establish a testing theory for input-output refusal traces refinement. Our theory is a solid basis to

study the soundness of optimisations, and of test selection and generation techniques in general.

7 CONCLUSIONS

This paper addresses the important problem of model-based testing using CSP models with inputs and outputs. The

theory is based on the refusal-testing model of CSP. We have presented a modern complete formalisation of this model,

including healthiness conditions and definitions of core CSP operators. Our model gives an appropriate treatment to

divergence and termination in line with the standard CSP models.

The work in [26] presents yet another refusal testing model. It admits empty refusal traces, and has a different set of

healthiness conditions. The model is expected to be isomorphic to that of [29] and so to ours. Like ours, the healthiness

conditions in [26] rule out the empty set of refusal traces. Divergence, deadlock, prefixing, and choice are defined in

[26]; due to the different notion of valid sets of refusal traces, these definitions are different. In addition, [26] does not

discuss healthiness of operators or termination, but to deal with temporal logic, [26] considers infinite traces.

Based on an earlier approach to inputs and outputs in CSP using the stable-failures model, we have defined an

input-output refusal traces model for CSP. This includes the definition of healthiness conditions, the relationship with

the refusal traces model, and a calculation of a definition for all the core CSP operators.

Inputs and outputs in CSP are also studied in [23]. The model in that work is for receptive processes, in which inputs

and outputs are never blocked. So, unlike ours, that is a model for input-enabled processes, although it admits that

Manuscript submitted to ACM

40 ANA CAVALCANTI, ROBERT M. HIERONS, and SIDNEY NOGUEIRA

processes may not be ready to accept an input. If such an input is provided, however, instead of a deadlock, like in

standard CSP, we have a divergence. The model in [23] includes no refusals, like the suspension-traces model. It is,

however, a model for development, rather than testing, and includes a treatment of divergence. The notion of divergence,

includes the possibility of an infinite number of outputs. Quiescence is not annotated. A complete set of algebraic laws

is presented for this model. Algebraic laws of our (input-output) refusal-traces model is a topic of future work.

We have defined input-output refusal traces refinement in the expected way: subset inclusion. Using the refusal-traces

model, we have also characterised the set of suspension traces of a CSP model. With that, we have been able to prove

that input-output traces refinement is stronger than ioco. This guarantees that programs developed to conform to a

given specification using input-output traces refinement can meaningfully be tested using ioco. Moreover, we note that

input-output refusal traces refinement is not a relation restricted to input-enabled implementations.

In the context of the Unifying Theories of Programming (UTP) [22], the work in [43] studies the relationship between

ioco and refinement for divergence-free reactive processes. For that, it presents a UTP theory of suspension traces

enriched with refusals and divergence. It defines a model for key process operators, input-enabledness, and ioco in this

predicative relational setting. It considers new operators for input-enabled processes and proves that ioco is stronger

than refinement. This is probably because their model includes general refusals, unlike the pure suspension-trace model.

In the domain of operational models, the works in [18, 19] propose a testing theory based on the iocos relation,

which is defined using the notion of simulation over an LTS with inputs and outputs. Like input-output refusal-traces

refinement, iocos is a pre-order stronger than ioco. Moreover, it can be used both for refinement and testing. Despite

the similarities, there are two essential differences. Quiescence is defined as the absence of outputs, and internal events

are not modelled. Moreover, the modelling notation is a simplified subset of CCS [28], less expressive than CSP.

The definitions of the input-output failures and input-output refusal traces of the CSP operators are not congruences.

So, they do not provide an appropriate model for the CSP operators in their full generality. There are two main issues,

reflected in the restrictions we impose on parallelism and renaming when calculating their input-output semantics.

First, given a very different semantics of inputs and outputs like ours, renaming an input to an output, or vice-versa,

is bound to lead to a model with a very different meaning. So, the reuse of models that can be achieved by renaming in

CSP has to be restricted in the way we suggest here if we are distinguishing inputs and outputs.

Second, the semantics in this paper does not allow parallel composition in which the synchronisation set contains

one or more outputs. This restriction is imposed because such a parallel composition allows outputs to be blocked and

so can convert an unstable state into a stable state. We have noted that a semantics for testing should reflect the standard

testing assumption, that outputs are not blocked, and the restriction imposed is consistent with this assumption.

As future work, it might be possible to extend the results regarding parallel composition to the case where including

an output out in a synchronisation set, when composing processes P and Q, cannot lead to out being blocked. This is

the case, for example, if P (or Q) cannot block out, that is, out is always possible in P . For example, if out is an input in

P , then this property is guaranteed if P is input-enabled, a condition under which ioco becomes compositional [42].

Parallelism in CSP can be used to model conjunction of requirements as well as parallel designs. Currently, we can

cater for conjunction of requirements on inputs, but not outputs. To deal with synchronisation of outputs in a general

way, we are likely to need to resort to the original refusal-traces model. From a pragmatic perspective, we can take the

view that testing models use parallelism to reflect concurrent designs.

Finally, we have presented a testing theory for the input-output refusal traces model. We have formalised the notions

of test, test execution, verdict, and exhaustive test set. A theory for the refusal-traces model can be very similar. Although

Manuscript submitted to ACM

Inputs and outputs in CSP: a model and a testing theory 41

we adopt the use of special verdict events of the standard CSP testing theory for refinement, our tests are very different.

Also, our notion of test execution requires the use of priorities.

The use of a denotational semantics has many benefits. For example, it allows the use of a number of tools for

reasoning about specifications. In addition, our semantics is compositional - this helps our techniques scale. CSP does

have an operational (refusal-testing) semantics (implemented in its model checker FDR); the denotational semantics is

congruent to it [34, page 252]. We have also proved how traces and failures can both be derived from our semantics

(Theorems 3.12 and 3.15); this helps to justify our derivation of suspension traces from our semantics.

Our results establish a solid foundation for further work on practical and sound test selection and generation based on

CSP models. For testing, an appropriate treatment of inputs and outputs is crucial. We now plan to develop a refinement

technique, so that we can both develop and test programs using the input-output refusal traces model.

ACKNOWLEDGEMENT

The authors would like to thank James Baxter, Augusto Sampaio, and Jim Woodcock for useful discussions regarding

both the technical material and the presentation of this paper. Ana Cavalcanti is funded by the UK EPSRC (Engineering

and Physical Sciences Research Council) under Grants No EP/M025756/1 and EP/R025479/1, and by the Royal Academy

of Engineering under Grant No CiET1718/45. Robert M. Hierons is funded by the EPSRC, under Grant No EP/R025134/1.

Sidney Nogueira is funded by the CNPq (Brazilian National Research Council) under Grant No 249710/2013-7.

REFERENCES
[1] G. Barrett. 1995. Model checking in practice: The T9000 Virtual Channel Processor. IEEE Transactions on Software Engineering 21, 2 (1995), 69–78.

[2] M. Bijl, A. Rensink, and J. Tretmans. 2003. Component Based Testing with ioco. Technical Report. University of Twente. CTIT Technical Report TR

CTIT 03 34.

[3] I. B. Bourdonov, A. Kossatchev, and V. V. Kuliamin. 2006. Formal Conformance Testing of Systems with Refused Inputs and Forbidden Actions.

Electronic Notes in Theoretical Computer Science 164, 4 (2006), 83–96.
[4] E. Brinksma. 1988. A theory for the derivation of tests. In Protocol Specification, testing and Verification VIII. North-Holland, 63–74.
[5] E. Brinksma, L. Heerink, and J. Tretmans. 1998. Factorized Test Generation for Multi-Input/Output Transition Systems. In 11th IFIP Workshop on

Testing of Communicating Systems. Kluwer Academic Publishers, 67–82.

[6] L. B. Briones and E. Brinksma. 2005. Testing Real-Time Multi Input-Output Systems. In 7th International Conference on Formal Engineering Methods
(Lecture Notes in Computer Science), Vol. 3785. Springer, 264–279.

[7] A. L. C. Cavalcanti and M.-C. Gaudel. 2007. Testing for Refinement in CSP. In 9th International Conference on Formal Engineering Methods (Lecture
Notes in Computer Science), Vol. 4789. Springer-Verlag, 151–170. https://doi.org/10.1007/978-3-540-76650-6_10

[8] A. L. C. Cavalcanti and M.-C. Gaudel. 2014. Data Flow coverage for Circus-based testing. In Fundamental Approaches to Software Engineering (Lecture
Notes in Computer Science), Vol. 8441. 415–429. https://doi.org/10.1007/978-3-642-54804-8_29

[9] A. L. C. Cavalcanti, M.-C. Gaudel, and R. M. Hierons. 2011. Conformance Relations for Distributed Testing based on CSP. In IFIP International
Conference on Testing Software and Systems (Lecture Notes in Computer Science), B. Wolff and F. Zaidi (Eds.). Springer-Verlag. https://doi.org/10.1007/

978-3-642-24580-0_5

[10] A. L. C. Cavalcanti, R. Hierons, and S. Nogueira. 2017. Input and outputs in CSP: a model and a testing theory. Technical Report. University of York,

Department of Computer Science, York, UK. Available at www-users.cs.york.ac.uk/˜alcc/CHN17.pdf.

[11] A. L. C. Cavalcanti and R. M. Hierons. 2012. Testing with inputs and outputs in CSP - Extended version. Technical Report. Available at www-

users.cs.york.ac.uk/ alcc/CH12.pdf.

[12] A. L. C. Cavalcanti and R. M. Hierons. 2013. Testing with Inputs and Outputs in CSP. In Fundamental Approaches to Software Engineering (Lecture
Notes in Computer Science), Vol. 7793. 359–374. https://doi.org/10.1007/978-3-642-37057-1_26

[13] A. L. C. Cavalcanti, R. M. Hierons, S. Nogueira, and A. C. A. Sampaio. 2016. A Suspension-Trace Semantics for CSP. In International Symposium on
Theoretical Aspects of Software Engineering. 3–13. https://doi.org/10.1109/TASE.2016.9 Invited paper.

[14] A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. 2003. A Refinement Strategy for Circus. Formal Aspects of Computing 15, 2 - 3 (2003),

146–181. https://doi.org/10.1007/s00165-003-0006-5

[15] A. Feliachi, M. C. Gaudel, M. Wenzel, and B. Wolff. 2013. The Circus Testing Theory Revisited in Isabelle/HOL. In 15th International Conference on
Formal Engineering Methods (Lecture Notes in Computer Science), L. Groves and J. Sung (Eds.), Vol. 8144. Springer, 243–260.

Manuscript submitted to ACM

https://doi.org/10.1007/978-3-540-76650-6_10
https://doi.org/10.1007/978-3-642-54804-8_29
https://doi.org/10.1007/978-3-642-24580-0_5
https://doi.org/10.1007/978-3-642-24580-0_5
https://doi.org/10.1007/978-3-642-37057-1_26
https://doi.org/10.1109/TASE.2016.9
https://doi.org/10.1007/s00165-003-0006-5

42 ANA CAVALCANTI, ROBERT M. HIERONS, and SIDNEY NOGUEIRA

[16] C. Fischer. 1998. How to Combine Z with a Process Algebra. In The Z Formal Specification Notation, J. Bowen, A. Fett, and M. Hinchey (Eds.).

Springer-Verlag.

[17] T. Gibson-Robinson, P. Armstrong, A. Boulgakov, and A. W. Roscoe. 2014. FDR3 - A Modern Refinement Checker for CSP. In Tools and Algorithms
for the Construction and Analysis of Systems. 187–201.

[18] C. Gregorio-Rodríguez, L. Llana, and R. Martínez. 2018. An axiomatic semantics for iocos conformance relation. Journal of Logical and Algebraic
Methods in Programming (2018).

[19] C. Gregorio-Rodríguez, L. Llana, and R. Martínez-Torres. 2013. Input-Output Conformance Simulation (iocos) for Model Based Testing. In Formal
Techniques for Distributed Systems, D. Beyer and M. Boreale (Eds.). Springer, 114–129.

[20] A. Hall and R. Chapman. 2002. Correctness by construction: Developing a commercial secure system. IEEE Software 19, 1 (2002), 18–25.
[21] L. Heerink and J. Tretmans. 1997. Refusal Testing for Classes of Transition Systems with Inputs and Outputs. In Formal Description Techniques and

Protocol Specification, Testing and Verification (IFIP Conference Proceedings), Vol. 107. Chapman & Hall, 23–38.

[22] C. A. R. Hoare and He Jifeng. 1998. Unifying Theories of Programming. Prentice-Hall.
[23] M. B. Josephs. 1992. Receptive Process Theory. Acta Informatica 29, 1 (1992), 17–31.
[24] T. Kahsai, M. Roggenbach, and B.-H. Schlingloff. 2007. Specification-based testing for refinement. In 5th IEEE International Conference on Software

Engineering and Formal Methods. IEEE Computer Society, 237–246.

[25] M. Krichen. 2010. A Formal Framework for Conformance Testing of Distributed Real-Time Systems. In Principles of Distributed Systems, C. Lu,
T. Masuzawa, and M. Mosbah (Eds.). Lecture Notes in Computer Science, Vol. 6490. Springer, 139–142.

[26] G. Lowe. 2008. Specification of communicating processes: temporal logic versus refusals-based refinement. Formal Aspects of Computing 20, 3 (2008),

277–294.

[27] B. P. Mahony and J. S. Dong. 1998. Blending Object-Z and Timed CSP: An Introduction to TCOZ. In The 20th International Conference on Software
Engineering (ICSE’98). IEEE Computer Society Press, 95–104.

[28] R. Milner. 1989. Communication and Concurrency. Prentice-Hall.
[29] A. Mukarram. 1993. A Refusal Testing Model for CSP. Ph.D. Dissertation. Department of Computer Science, University of Oxford.

[30] S. Nogueira, A. C. A. Sampaio, and A. C. Mota. 2014. Test generation from state based use case models. Formal Aspects of Computing 26, 3 (2014),

441–490.

[31] I. Phillips. 1987. Refusal testing. Theoretical Computer Science 50, 3 (1987), 241–284.
[32] M. Roggenbach. 2006. CSP-CASL: a new integration of process algebra and algebraic specification. Theoretical Computer Science 354, 1 (2006), 42–71.
[33] A. W. Roscoe. 1998. The Theory and Practice of Concurrency. Prentice-Hall.
[34] A. W. Roscoe. 2011. Understanding Concurrent Systems. Springer.
[35] A. C. A. Sampaio, S. Nogueira, A. Mota, and Y. Isobe. 2014. Sound and mechanised compositional verification of input-output conformance. Software

Testing, Verification and Reliability 24, 4 (2014), 289–319.

[36] S. Schneider and H. Treharne. 2002. Communicating B Machines. In ZB’2002: Formal Specification and Development in Z and B (Lecture Notes in
Computer Science), D. Bert, J. Bowen, M. Henson, and K. Robinson (Eds.), Vol. 2272. 416–435.

[37] J. Tretmans. 1992. A formal approach to conformance testing. Ph.D. Dissertation. University of Twente, Enschede, The Netherlands.

[38] J. Tretmans. 1996. Test Generation with Inputs, Outputs, and Quiescence. In Tools and Algorithms for the Construction and Analysis of Systems
(Lecture Notes in Computer Science), Vol. 1055. Springer-Verlag, 127–146.

[39] J. Tretmans. 1996. Test Generation with Inputs, Outputs and Repetitive Quiescence. Software - Concepts and Tools 17, 3 (1996), 103–120.
[40] J. Tretmans. 2008. Formal Methods and Testing. Springer-Verlag, Chapter Model Based Testing with Labelled Transition Systems, 1–38.

[41] J. Tretmans and E. Brinksma. 2003. TorX: Automated Model Based Testing. In 1st European Conference on Model-Driven Software Engineering. 13–25.
[42] M. van der Bijl, A. Rensink, and J. Tretmans. 2004. Compositional Testing with ioco. In Formal Approaches to Software Testing, A. Petrenko and

A. UlrichAndreas (Eds.). Lecture Notes in Computer Science, Vol. 2931. Springer, 86–100.

[43] M. Weiglhofer and B. Aichernig. 2010. Unifying Input Output Conformance. In Unifying Theories of Programming, A. Butterfield (Ed.). Lecture Notes
in Computer Science, Vol. 5713. Springer, 181–201.

[44] T. A. C. Willemse. 2006. Heuristics for ioco-Based Test-Based Modelling. In Formal Methods: Applications and Technology (Lecture Notes in Computer
Science), L. Brim, B. Haverkort, M. Leucker, and J. van de Pol (Eds.), Vol. 4346. Springer, 132–147.

[45] J. C. P. Woodcock and J. Davies. 1996. Using Z - Specification, Refinement, and Proof. Prentice-Hall.

A AUXILIARY DEFINITIONS

Here, we define operators used in our work that are not directly available in Z.

odd , even : PN

odd = { n : N | nmod 2 ≠ 0} ∧ even = { n : N | nmod 2 = 0}

Manuscript submitted to ACM

Inputs and outputs in CSP: a model and a testing theory 43

∈RT : Observation ↔ Observation

∀ e,X : Observation • e ∈RT X ⇔ e ∈ ran event ∧ X ∈ ran refusal ∧ event∼e ∈ refusal∼X

⊆RT : Refusal ↔ Refusal

∀X1,X2 : Refusal • X1 ⊆RT X2 ⇔ X1 ≠◦∧ X2 ≠◦∧ refusal∼X1 ⊆ refusal∼X2

∪RT : ran refusal × P(ran event) → Refusal

∀X : ran refusal; Y : P(ran event) • X ∪RT Y = refusal (refusal∼ X ∪ event∼ (| Y |))

lastevent : RTrace ↦→ Σ✓

dom lastevent = {𝜌 : RTrace | #𝜌 ≥ 3} ∧ ∀ 𝜌 : RTrace | #𝜌 ≥ 3 • lastevent 𝜌 = event∼ (𝜌 (#𝜌 − 1))

B ELECTRONIC APPENDIX: PROOF OF KEY RESULTS

We present proof for key lemmas and theorems in the paper. In these proofs we sometimes refer to results found in [10].

B.1 SKIP

Theorem 3.6. P ; SKIP = P

Proof.

rtraces[[P ; SKIP]]

= {𝜌 : rtraces[[P]] | event (✓) ∉ ran 𝜌} ∪
{𝜙 : seq Obs; 𝜌 : RTrace | 𝜙 ⌢ ⟨ ◦, event (✓), ◦ ⟩ ∈ rtraces[[P]] ∧ 𝜌 ∈ rtraces[[SKIP]] • 𝜙 ⌢ 𝜌}

[definition of rtraces[[P ; Q]]]

= {𝜌 : rtraces[[P]] | event (✓) ∉ ran 𝜌} ∪
{𝜙 : seq Obs; 𝜌 : RTrace |
𝜙 ⌢ ⟨ ◦, event (✓), ◦ ⟩ ∈ rtraces[[P]] ∧ (𝜌 = ⟨ ◦ ⟩ ∨ (∃X : Refusal • 𝜌 = ⟨ ◦, event (✓),X⟩)) • 𝜙 ⌢ 𝜌

}

[definition of rtraces[[SKIP]]]

= {𝜌 : rtraces[[P]] | event (✓) ∉ ran 𝜌} ∪
{𝜌 : RTrace | ∃𝜙 : seq Obs; 𝜌1 : RTrace • 𝜌 = 𝜙 ⌢ 𝜌1 ∧
𝜙 ⌢ ⟨ ◦, event (✓), ◦ ⟩ ∈ rtraces[[P]] ∧ (𝜌1 = ⟨ ◦ ⟩ ∨ (∃X : Refusal • 𝜌1 = ⟨ ◦, event (✓),X⟩))

}

[property of sets]

= {𝜌 : rtraces[[P]] | event (✓) ∉ ran 𝜌} ∪
{𝜌 : RTrace |

(∃𝜙 : seq Obs • 𝜙 ⌢ ⟨ ◦, event (✓), ◦ ⟩ ∈ rtraces[[P]] ∧ 𝜌 = 𝜙 ⌢ ⟨ ◦ ⟩) ∨
(∃𝜙 : seq Obs; X : Refusal • 𝜙 ⌢ ⟨ ◦, event (✓), ◦ ⟩ ∈ rtraces[[P]] ∧ 𝜌 = 𝜙 ⌢ ⟨ ◦, event (✓),X⟩))

}

[predicate calculus]

Manuscript submitted to ACM

44 ANA CAVALCANTI, ROBERT M. HIERONS, and SIDNEY NOGUEIRA

= {𝜌 : rtraces[[P]] | event (✓) ∉ ran 𝜌} ∪
{𝜌 : rtraces[[P]] |

(∃𝜙 : seq Obs • 𝜙 ⌢ ⟨ ◦, event (✓), ◦ ⟩ ∈ rtraces[[P]] ∧ 𝜌 = 𝜙 ⌢ ⟨ ◦ ⟩) ∨
(∃𝜙 : seq Obs; X : Refusal • 𝜙 ⌢ ⟨ ◦, event (✓), ◦ ⟩ ∈ rtraces[[P]] ∧ 𝜌 = 𝜙 ⌢ ⟨ ◦, event (✓),X⟩))

}

[RT1 and RT4]

= {𝜌 : rtraces[[P]] | event (✓) ∉ ran 𝜌} ∪
{𝜌 : rtraces[[P]] |

(∃𝜙 : seq Obs • 𝜙 ⌢ ⟨ ◦, event (✓), ◦ ⟩ ∈ rtraces[[P]] ∧ 𝜌 = 𝜙 ⌢ ⟨ ◦ ⟩) ∨
(∃𝜙 : seq Obs; X : Refusal • 𝜌 = 𝜙 ⌢ ⟨ ◦, event (✓),X⟩)

}

[RT1]

= {𝜌 : rtraces[[P]] |
event (✓) ∉ ran 𝜌 ∨
(∃𝜙 : seq Obs • 𝜙 ⌢ ⟨ ◦, event (✓), ◦ ⟩ ∈ rtraces[[P]] ∧ 𝜌 = 𝜙 ⌢ ⟨ ◦ ⟩) ∨
(∃𝜙 : seq Obs; X : Refusal • 𝜌 = 𝜙 ⌢ ⟨ ◦, event (✓),X⟩)

}

[property of sets]

= {𝜌 : rtraces[[P]] |
event (✓) ∉ ran 𝜌 ∨
(∃𝜙 : seq Obs • 𝜙 ⌢ ⟨ ◦, event (✓), ◦ ⟩ ∈ rtraces[[P]] ∧ 𝜌 = 𝜙 ⌢ ⟨ ◦ ⟩ ∧ event (✓) ∉ ran 𝜌) ∨
(∃𝜙 : seq Obs; X : Refusal • 𝜌 = 𝜙 ⌢ ⟨ ◦, event (✓),X⟩)

}

[RT3]

= {𝜌 : rtraces[[P]] | event (✓) ∉ ran 𝜌 ∨ (∃𝜙 : seq Obs; X : Refusal • 𝜌 = 𝜙 ⌢ ⟨ ◦, event (✓),X⟩)}

[predicate calculus]

= rtraces[[P]] [RT3]

□

Theorem 3.7. SKIP |[Z]| SKIP = SKIP

rtraces[[SKIP |[Z]| SKIP]]

= {𝜌1 : RTrace | 𝜌2 ∈ rtraces[[SKIP]] ∧ 𝜌3 ∈ rtraces[[SKIP]] ∧ 𝜌1 ∈ (𝜌2 |[Z]|RT 𝜌3)}

[definition of rtraces[[P |[Z]| Q]]]

= {𝜌1 : RTrace | (𝜌2 = ⟨ ◦ ⟩ ∨ ∃X : Refusal • 𝜌2 = ⟨ ◦, event (✓),X⟩) ∧
(𝜌3 = ⟨ ◦ ⟩ ∨ ∃X : Refusal • 𝜌3 = ⟨ ◦, event (✓),X⟩) ∧
𝜌1 ∈ (𝜌2 |[Z]|RT 𝜌3)}

[definition of rtraces[[SKIP]]]

Manuscript submitted to ACM

Inputs and outputs in CSP: a model and a testing theory 45

= {𝜌1 : RTrace |
(𝜌2 = ⟨ ◦ ⟩ ∧ 𝜌3 = ⟨ ◦ ⟩ ∨
𝜌2 = ⟨ ◦ ⟩ ∧ (∃X : Refusal • 𝜌3 = ⟨ ◦, event (✓),X⟩) ∨
(∃X : Refusal • 𝜌2 = ⟨ ◦, event (✓),X⟩) ∧ 𝜌3 = ⟨ ◦ ⟩ ∨
(∃X : Refusal • 𝜌2 = ⟨ ◦, event (✓),X⟩) ∧
(∃X : Refusal • 𝜌3 = ⟨ ◦, event (✓),X⟩)) ∧

𝜌1 ∈ (𝜌2 |[Z]|RT 𝜌3)
}

[propositional calculus]

= {𝜌1 : RTrace | 𝜌1 ∈ {⟨ ◦ ⟩} ∨ 𝜌1 ∈ {⟨ ◦ ⟩} ∨ 𝜌1 ∈ {⟨ ◦ ⟩} ∨ 𝜌1 ∈ {X : Refusal | ⟨ ◦, event (✓),X⟩}}

= {⟨ ◦ ⟩} ∪ {X : Refusal | ⟨ ◦, event (✓),X⟩} [predicate calculus]

= rtraces[[SKIP]] [definition of rtraces[[SKIP]]]

B.2 Input-output refusal traces

Lemma 4.6. iotrace(𝜌) ∈ RTrace ⇒ 𝜌 ∈ IORTrace

Proof.

iotrace(𝜌1) ∈ RTrace

= ∃ 𝜌2 : RTrace • #𝜌1 = #𝜌2 ∧ ∀ i : 1 . . #𝜌2 •
(even i ⇒ 𝜌2 i = 𝜌1 i) ∧ (odd i ⇒ 𝜌1 i =◦∧ 𝜌2 i =◦∨ 𝜌2 i = refusal(refusal∼ (𝜌1i) ∪ O)) ∧ 𝜌2 ∈ RTrace

[definition of iotrace]

⇒ ∃ 𝜌2 : RTrace • #𝜌1 = #𝜌2 ∧ ∀ i : 1 . . #𝜌2 •
(even i ∨ 𝜌1 i =◦⇒ 𝜌2 i = 𝜌1 i) ∧
(odd i ∧ 𝜌1 ≠ ◦⇒ 𝜌2 i = refusal(refusal∼ (𝜌1i) ∪ O) ∧ i < #𝜌2 ⇒ event∼ (𝜌2 (i + 1)) ∉ O)

[definition of RTrace and 𝜌2 ∈ RTrace]

= ∃ 𝜌2 : RTrace • #𝜌1 = #𝜌2 ∧ ∀ i : 1 . . #𝜌2 •
(even i ∨ 𝜌1 i =◦⇒ 𝜌2 i = 𝜌1 i) ∧
(odd i ∧ 𝜌1 ≠ ◦⇒ 𝜌2 i = refusal(refusal∼ (𝜌1i) ∪ O) ∧ i < #𝜌2 ⇒ event∼ (𝜌1 (i + 1)) ∉ O)

[odd i ⇒ even (i + 1) ∧ 𝜌2 (i + 1) = 𝜌1 (i + 1)]

⇒ ∀ i : 1 . . #𝜌1 − 1 • odd i ∧ 𝜌1 ≠ ◦⇒ event∼ (𝜌1 (i + 1)) ∉ O [𝜌1 = 𝜌2 and predicate calculus]

= 𝜌1 ∈ IORTrace [definition of IORTrace]

□

Lemma 4.10. P ⊑IORT Q ⇒ traces[[Q]] ⊆ traces[[P]].

Proof.

P ⊑IORT Q

= IOrtracesO [[Q]] ⊆ IOrtracesO [[P]] [definition of ⊑IORT]

Manuscript submitted to ACM

46 ANA CAVALCANTI, ROBERT M. HIERONS, and SIDNEY NOGUEIRA

= ∀ 𝜌1 : RTrace • iotrace(𝜌1) ∈ rtraces[[Q]] ⇒ iotrace(𝜌1) ∈ rtraces[[P]]

[definition of IOrtraces and property of sets]

= ∀ 𝜌1 : RTrace • (∃ 𝜌2 : rtraces[[Q]] • 𝜌2 = iotrace(𝜌1)) ⇒ iotrace(𝜌1) ∈ rtraces[[P]] [predicate calculus]

= ∀ 𝜌1 : RTrace; 𝜌2 : rtraces[[Q]] • 𝜌2 = iotrace(𝜌1) ⇒ iotrace(𝜌1) ∈ rtraces[[P]] [predicate calculus]

= ∀ 𝜌1 : RTrace; 𝜌2 : rtraces[[Q]] • 𝜌2 = iotrace(𝜌1) ⇒ 𝜌2 ∈ rtraces[[P]] [predicate calculus]

= ∀ 𝜌2 : rtraces[[Q]] • (∃ 𝜌1 : RTrace • 𝜌2 = iotrace(𝜌1)) ⇒ 𝜌2 ∈ rtraces[[P]] [predicate calculus]

= ∀ 𝜌2 : rtraces[[Q]] • 𝜌2 ∈ ran iotrace ⇒ 𝜌2 ∈ rtraces[[P]] [property of functions]

= ∀ 𝜌2 : RTrace • 𝜌2 ∈ rtraces[[Q]] ∩ ran iotrace ⇒ 𝜌2 ∈ rtraces[[P]] [predicate calculus]

= rtraces[[Q]] ∩ ran iotrace ⊆ rtraces[[P]] [property of sets]

⇒ trace(| rtraces[[Q]] ∩ ran iotrace |) ⊆ trace(| rtraces[[P]] |) [property of relational image]

⇒ trace(| rtraces[[Q]] |) ⊆ trace(| rtraces[[P]] |) [[10, Lemma E.3]]

= traces[[Q]] ⊆ traces[[P]] [Theorem 3.12]

□

Lemma 4.12. P ⊑IORT Q ⇒ IOfailuresO (Q) ⊆ IOfailuresO (P).

Proof.

P ⊑IORT Q

= rtraces[[Q]] ∩ ran iotrace ⊆ rtraces[[P]] [as shown in the proof of Lemma 4.10]

⇒ ⋃
failure(| rtraces[[Q]] ∩ ran iotrace |) ⊆ ⋃

failure(| rtraces[[P]] |) [property of relational image and sets]

= {t : seq Σ✓; Z : P Σ✓ | (t, Z) ∈ failures[[Q]] ∧ O ⊆ Z} ⊆ ⋃
failure(| rtraces[[P]] |) [[10, Lemma E.4]]

⇒ {t : Σ✓; Z : P Σ✓ | (t, Z) ∈ failures[[Q]] ∧ O ⊆ Z} ⊆ failures[[P]] [Theorem 3.15]

⇒ {t : Σ✓; Z : P Σ✓ | (t, Z) ∈ failures[[Q]] ∧ O ⊆ Z} ⊆ {t : Σ✓; Z : P Σ✓ | (t, Z) ∈ failures[[P]] ∧ O ⊆ Z}

[property of sets]

= IOfailuresO (Q) ⊆ {t : Σ✓; Z : P Σ✓ | (t, Z) ∈ failures[[P]] ∧ O ⊆ Z} [[10, Lemma E.5]]

= IOfailuresO (Q) ⊆ IOfailuresO (P) [definition of IOfailuresO (P) and properties of sets]

□

Manuscript submitted to ACM

Inputs and outputs in CSP: a model and a testing theory 47

Theorem B.1.

IOrtracesO [[P |[Z]| Q]] = ⋃{𝜌1 : IOrtracesO [[P]]; 𝜌2 : IOrtracesO [[Q]] • (𝜌1 |[Z]|RT 𝜌2)}

Proof. We prove that IOrtracesOM (IOrtracesO [[P |[Z]| Q]]) is equal to

IOrtracesOM (⋃{𝜌1 : IOrtracesO [[P]]; 𝜌2 : IOrtracesO [[Q]] • (𝜌1 |[Z]|RT 𝜌2)})

so that the result follows from [10, Theorem E.17], which is similar to Lemma 4.17, but applies to arbitrary healthy sets

of input-output refusal traces.

IOrtracesOM (IOrtracesO [[P |[Z]| Q]])

= {𝜌 : RTrace | iotrace(𝜌) ∈ IOrtracesO [[P |[Z]| Q]] ∧ iotrace(𝜌) = 𝜌} [Lemma 4.18]

= {𝜌 : RTrace | iotrace(iotrace(𝜌)) ∈ rtraces[[P |[Z]| Q]] ∧ iotrace(𝜌) = 𝜌}

[definition of IOrtracesO [[P |[Z]|RT Z]]]

= {𝜌 : RTrace | iotrace(𝜌) ∈ rtraces[[P |[Z]| Q]] ∧ iotrace(𝜌) = 𝜌} [idempotence of iotrace]

= {𝜌 : RTrace | iotrace(𝜌) ∈ ⋃{𝜌1 : rtraces[[P]]; 𝜌2 : rtraces[[Q]] • (𝜌1 |[Z]|RT 𝜌2)} ∧ iotrace(𝜌) = 𝜌}

[definition of rtraces[[P |[Z]|RT Z]]]

= {𝜌 : RTrace | ∃ 𝜌1 : rtraces[[P]]; 𝜌2 : rtraces[[Q]] • iotrace(𝜌) ∈ (𝜌1 |[Z]|RT 𝜌2) ∧ iotrace(𝜌) = 𝜌}

[property of set comprehension]

= {𝜌 : RTrace | ∃ 𝜌1 : rtraces[[P]]; 𝜌2 : rtraces[[Q]] •
iotrace(𝜌) ∈ (𝜌1 |[Z]|RT 𝜌2) ∧ iotrace(𝜌) = 𝜌 ∧
∃ 𝜌3, 𝜌4 : RTrace • 𝜌3 ≤RT 𝜌1 ∧ 𝜌4 ≤RT 𝜌2 ∧
iotrace(𝜌) ∈ (𝜌3 |[Z]| 𝜌4) ∧ iotrace(𝜌3) = 𝜌3 ∧ iotrace(𝜌4) = 𝜌4

}

[[10, Lemma E.19]]

= {𝜌 : RTrace | ∃ 𝜌1 : rtraces[[P]]; 𝜌2 : rtraces[[Q]] •
iotrace(𝜌) ∈ (𝜌1 |[Z]|RT 𝜌2) ∧ iotrace(𝜌) = 𝜌 ∧
∃ 𝜌3 : rtraces[[P]]; 𝜌4 : rtraces[[Q]] • 𝜌3 ≤RT 𝜌1 ∧ 𝜌4 ≤RT 𝜌2 ∧

iotrace(𝜌) ∈ (𝜌3 |[Z]| 𝜌4) ∧ iotrace(𝜌3) = 𝜌3 ∧ iotrace(𝜌4) = 𝜌4

}

[rtraces[[P]] and rtraces[[Q]] are RT1]

= {𝜌 : RTrace | iotrace(𝜌) = 𝜌 ∧ ∃ 𝜌3 : rtraces[[P]]; 𝜌4 : rtraces[[Q]] •
(∃ 𝜌1 : rtraces[[P]]; 𝜌2 : rtraces[[Q]] • iotrace(𝜌) ∈ (𝜌1 |[Z]|RT 𝜌2) ∧ 𝜌3 ≤RT 𝜌1 ∧ 𝜌4 ≤RT 𝜌2) ∧
iotrace(𝜌) ∈ (𝜌3 |[Z]| 𝜌4) ∧ iotrace(𝜌3) = 𝜌3 ∧ iotrace(𝜌4) = 𝜌4

}

[predicate calculus]

Manuscript submitted to ACM

48 ANA CAVALCANTI, ROBERT M. HIERONS, and SIDNEY NOGUEIRA

= {𝜌 : RTrace | iotrace(𝜌) = 𝜌 ∧ ∃ 𝜌3 : rtraces[[P]]; 𝜌4 : rtraces[[Q]] •
iotrace(𝜌) ∈ (𝜌3 |[Z]| 𝜌4) ∧ iotrace(𝜌3) = 𝜌3 ∧ iotrace(𝜌4) = 𝜌4

}

[predicate calculus: take 𝜌1 and 𝜌2 to be 𝜌3 and 𝜌4]

= {𝜌 : RTrace | iotrace(𝜌) = 𝜌 ∧ ∃ 𝜌3, 𝜌4 : RTrace •
iotrace(𝜌3) ∈ rtraces[[P]] ∧ iotrace(𝜌4) ∈ rtraces[[Q]] ∧
iotrace(𝜌) ∈ (𝜌3 |[Z]| 𝜌4) ∧ iotrace(𝜌3) = 𝜌3 ∧ iotrace(𝜌4) = 𝜌4

}

[predicate calculus]

= {𝜌 : RTrace | iotrace(𝜌) = 𝜌 ∧ ∃ 𝜌3, 𝜌4 : RTrace •
iotrace(𝜌3) ∈ rtraces[[P]] ∧ iotrace(𝜌4) ∈ rtraces[[Q]] ∧
iotrace(𝜌) ∈ (𝜌3 |[Z]| 𝜌4) ∧ iotrace(𝜌3) = 𝜌3 ∧ iotrace(𝜌4) = 𝜌4

∃ 𝜌5, 𝜌6 : RTrace •
iotrace(𝜌5) ∈ rtraces[[P]] ∧ iotrace(𝜌6) ∈ rtraces[[Q]] ∧
iotrace(𝜌) ∈ (𝜌5 |[Z]| 𝜌6) ∧ 𝜌3 ≤RT 𝜌5 ∧ 𝜌4 ≤RT 𝜌6

}

[predicate calculus: take 𝜌5 and 𝜌6 to be 𝜌3 and 𝜌4]

= {𝜌 : RTrace | iotrace(𝜌) = 𝜌 ∧ ∃ 𝜌5, 𝜌6 : RTrace •
(∃ 𝜌3, 𝜌4 : RTrace •
iotrace(𝜌3) ∈ rtraces[[P]] ∧ iotrace(𝜌4) ∈ rtraces[[Q]] ∧
iotrace(𝜌) ∈ (𝜌3 |[Z]| 𝜌4) ∧ iotrace(𝜌3) = 𝜌3 ∧ iotrace(𝜌4) = 𝜌4 ∧ 𝜌3 ≤RT 𝜌5 ∧ 𝜌4 ≤RT 𝜌6) ∧

iotrace(𝜌5) ∈ rtraces[[P]] ∧ iotrace(𝜌6) ∈ rtraces[[Q]] ∧ iotrace(𝜌) ∈ (𝜌5 |[Z]| 𝜌6)
}

[predicate calculus]

= {𝜌 : RTrace | iotrace(𝜌) = 𝜌 ∧ ∃ 𝜌5, 𝜌6 : RTrace •
(∃ 𝜌3, 𝜌4 : RTrace •
iotrace(𝜌) ∈ (𝜌3 |[Z]| 𝜌4) ∧ iotrace(𝜌3) = 𝜌3 ∧ iotrace(𝜌4) = 𝜌4 ∧
𝜌3 ≤RT 𝜌5 ∧ 𝜌4 ≤RT 𝜌6) ∧

iotrace(𝜌5) ∈ rtraces[[P]] ∧ iotrace(𝜌6) ∈ rtraces[[Q]] ∧ iotrace(𝜌) ∈ (𝜌5 |[Z]| 𝜌6)
}

[𝜌3 ≤RT 𝜌5 ≤RT iotrace(𝜌5) and RT1 imply 𝜌3 = iotrace(𝜌3) ∈ rtraces[[P]]]

[𝜌4 ≤RT 𝜌6 ≤RT iotrace(𝜌6) and RT1 imply 𝜌4 = iotrace(𝜌4) ∈ rtraces[[Q]]]

= {𝜌 : RTrace | iotrace(𝜌) = 𝜌 ∧ ∃ 𝜌5, 𝜌6 : RTrace •
iotrace(𝜌5) ∈ rtraces[[P]] ∧ iotrace(𝜌6) ∈ rtraces[[Q]] ∧ iotrace(𝜌) ∈ (𝜌5 |[Z]| 𝜌6)

}

[[10, Lemma E.19]]

= {𝜌 : RTrace | ∃ 𝜌5 : IOrtracesO [[P]]; 𝜌6 : IOrtracesO [[Q]] • iotrace(𝜌) ∈ (𝜌5 |[Z]| 𝜌6) ∧ iotrace(𝜌) = 𝜌}

[definition of IOrtracesO [[P]]]
Manuscript submitted to ACM

Inputs and outputs in CSP: a model and a testing theory 49

= {𝜌 : RTrace | iotrace(𝜌) ∈ ⋃{𝜌5 : IOrtracesO [[P]]; 𝜌6 : IOrtracesO [[Q]] • (𝜌5 |[Z]|RT 𝜌6)} ∧ iotrace(𝜌) = 𝜌}

[property of sets]

= IOrtracesOM (⋃{𝜌5 : IOrtracesO [[P]]; 𝜌6 : IOrtracesO [[Q]] • (𝜌5 |[Z]|RT 𝜌6)}) [Lemma 4.18]

□

B.3 Suspension traces

Lemma 5.3. ∀𝜎 : STrace • 𝜎 ∈ ST ⇔ [𝜎] ⊆ ST

Proof. The reverse implication follows directly from the property 𝜎 ∈ [𝜎] of equivalence classes. For the implication,

we have the following.

𝜎1 ∈ ST ⇒ [𝜎1] ⊆ ST

= 𝜎1 ∈ ST ⇒ ∀𝜎2 : [𝜎1] • 𝜎2 ∈ ST [property of sets]

= ∀𝜎2 : [𝜎1] • 𝜎1 ∈ ST ⇒ 𝜎2 ∈ ST [predicate calculus]

= ∀𝜎2 : STrace • 𝜎1 ∈ ST ∧ 𝜎1 (∼𝛿)∗ 𝜎2 ⇒ 𝜎2 ∈ ST [predicate calculus]

= true [ST1]

□

Lemma 5.4. ST2 ⊆ ST1 ⇔ {𝜎 : ST2 | ¬ (⟨𝛿, 𝛿⟩ in 𝜎)} ⊆ ST1

Proof. For every equivalence class [𝜎], we use 𝜎 ↓ 𝛿 to denote is canonical representative characterised by

𝜎 ↓ 𝛿 ∈ [𝜎] and ¬ (⟨𝛿, 𝛿⟩ in 𝜎 ↓ 𝛿).

{𝜎1 : ST2 | ¬ (⟨𝛿, 𝛿⟩ in 𝜎1)} ⊆ ST1

= {𝜎1 : ST2 | ∃𝜎2 : STrace • 𝜎2 ↓ 𝛿 = 𝜎1 } ⊆ ST1 [definition of 𝜎2 ↓ 𝛿]

= ∀𝜎1 : ST2 • (∃𝜎2 : STrace • 𝜎2 ↓ 𝛿 = 𝜎1) ⇒ 𝜎1 ∈ ST1 [property of sets]

= ∀𝜎1 : ST2; 𝜎2 : STrace • 𝜎2 ↓ 𝛿 = 𝜎1 ⇒ 𝜎1 ∈ ST1 [predicate calculus]

= ∀𝜎2 : STrace • 𝜎2 ↓ 𝛿 ∈ ST2 ⇒ 𝜎2 ↓ 𝛿 ∈ ST1 [predicate calculus]

= ∀𝜎2 : STrace • [𝜎2 ↓ 𝛿] ⊆ ST2 ⇒ [𝜎2 ↓ 𝛿] ⊆ ST1 [Lemma 5.3]

= ∀𝜎2 : STrace • [𝜎2] ⊆ ST2 ⇒ [𝜎2] ⊆ ST1 [property of equivalence relations]

= ∀𝜎2 : STrace • 𝜎2 ∈ ST2 ⇒ 𝜎2 ∈ ST1 [Lemma 5.3]

= ST2 ⊆ ST1 [property of sets]

□

B.4 Testing

In the proof that our test cases perform as expected, we use a new notation to define processes: Q after ⟨X , e⟩. This is
the process reached by Q after observing X and then e. Importantly, we have the following definition. (This is similar to

Manuscript submitted to ACM

50 ANA CAVALCANTI, ROBERT M. HIERONS, and SIDNEY NOGUEIRA

Roscoe’s definition of after for traces and failures [34]).

rtraces[[Q after ⟨X , e⟩]] = {𝜌 | ⟨X , e⟩ ⌢ 𝜌 ∈ rtraces[[Q]]}

If rtraces[[Q after ⟨X , e⟩]] is non-empty, that is, if there are traces of Q starting with ⟨X , e⟩ then the corresponding set

of refusal traces satisfies the healthiness conditions as established by the lemma below.

Lemma B.2. If ⟨X , e⟩ ⌢ 𝜌 ∈ rtraces[[Q]], then rtraces[[Q after ⟨X , e⟩]] is healthy.

It is proved in [10, Appendix C]. For our lemma below on test failure, we use a formalisation of the refusal traces of the

prioritise(P, 𝜃) operator in terms of a relation 𝜌1 prioritise𝜃 𝜌2 between refusal traces as follows.

prioritise(P, 𝜃) = {𝜌1, 𝜌2 : RTrace | 𝜌2 ∈ rtraces[[P]] ∧ 𝜌1 prioritise𝜃 𝜌2 • 𝜌1}

We require the following properties of prioritise𝜃 .

(1) ⟨ ◦ ⟩ prioritise𝜃 ⟨X⟩
(2) ⟨X1⟩ prioritise𝜃 ⟨X2⟩ provided X1 ⊆RT X2
(3) ⟨ ◦, v⟩ ⌢ 𝜌1 prioritise𝜃 ⟨Σ, v⟩ ⌢ 𝜌2 if 𝜌1 prioritise𝜃 𝜌2 for 𝜃 = ⟨Σ,V ⟩ and v ∈ V .

(4) ⟨X , v⟩ ⌢ 𝜌1 prioritise𝜃 ⟨Σ, v⟩ ⌢ 𝜌2 if X ⊆RT Σ and 𝜌1 prioritise𝜃 𝜌2 for 𝜃 = ⟨Σ,V ⟩ and v ∈ V .

(5) (⟨X1, e1⟩ ⌢ 𝜌1) prioritise𝜃 (⟨X2, e1⟩ ⌢ 𝜌2) if e1 is maximal, X1 ⊆RT X2 ∪RT {e2 : Σ✓ | e2 ≤𝜃 e1} and

𝜌1 prioritise𝜃 𝜌2.

(6) ⟨ ◦,✓⟩ ⌢ 𝜌1 prioritise𝜃 ⟨ ◦,✓⟩ ⌢ 𝜌2 if 𝜌1 prioritise𝜃 𝜌2

We write e2 ≤𝜃 e1 when the priority of the event e2 is strictly lower than that of e1 according to the sequence 𝜃 . We

assume that ✓ always has maximal priority.

Lemma 6.10. Q fails T IO
F (𝜌) if, and only if, 𝜌 ∈ rtraces[[Q]].

Proof. By induction on 𝜌 . For clarity, we omit the Obs constructors when applied to specific values, like fail or Σ✓.

Case ⟨ ◦ ⟩ (⇒). ⟨ ◦ ⟩ ∈ rtraces[[Q]] by MRT0.

Case ⟨ ◦ ⟩ (⇐).

⟨ ◦ ⟩ ∈ rtraces[[Q]]

⇒ rtraces[[fail → STOP]] ⊆ rtraces[[Q |[Σ]| T IO
F (⟨ ◦ ⟩)]] [property of rtraces[[Q |[Σ]| T IO

F (⟨ ◦ ⟩)]]]

⇒ ⟨Σ, fail, Σ✓ ∪ V ⟩ ∈ rtraces[[Q |[Σ]| T IO
F (⟨ ◦ ⟩)]] [definition of rtraces[[fail → STOP]]]

⇒ ⟨Σ, fail, Σ✓ ∪ V ⟩ ∈ rtraces[[prioritise(Q |[Σ]| T IO
F (⟨ ◦ ⟩), ⟨Σ,V ⟩)]]

[definition of rtraces[[prioritise(P, 𝜃)]] and ⟨Σ, fail, Σ✓ ∪ V ⟩ prioritise𝜃 ⟨Σ, fail, Σ✓ ∪ V ⟩ by (4) and (2)]

⇒ ⟨Σ, fail, Σ✓ ∪ V ⟩ ∈ rtraces[[prioritise(Q |[Σ]| T IO
F (⟨ ◦ ⟩), ⟨Σ,V ⟩) \ Σ]]

[⟨Σ, fail, Σ✓ ∪ V ⟩ ∈ ⟨Σ, fail, Σ✓ ∪ V ⟩ \RT Σ]

⇒ Q fails T IO
F (⟨ ◦ ⟩) [definition of fails]

Manuscript submitted to ACM

Inputs and outputs in CSP: a model and a testing theory 51

Case ⟨X⟩ (⇒).

Q fails T IO
F (⟨X⟩)

⇒ ∃ 𝜌 : RTrace • 𝜌 ⌢ ⟨fail, Σ✓ ∪ V ⟩ ∈ rtraces[[prioritise(Q |[Σ]| T IO
F (⟨X⟩), ⟨Σ,V ⟩) \ Σ]]

[definition of fails, ∀ 𝜌 : RTrace • 𝜌 ⌢ ⟨fail, ◦,✓, ◦ ⟩ ∉ rtraces[[T IO
F (⟨X⟩)]], and definition of parallelism]

⇒ ⟨ ◦, inc, ◦, fail, Σ✓ ∪ V ⟩ ∈ rtraces[[prioritise(Q |[Σ]| T IO
F (⟨X⟩), ⟨Σ,V ⟩) \ Σ]]

[RT1, fail ∉ initials(T IO
F (⟨X⟩)), fail ∉ initials(T IO

F (⟨X⟩) after ⟨ ◦, event x⟩) for x ∈RT X ,]

[fail ∈ initials(T IO
F (⟨X⟩) after ⟨ ◦, inc⟩) and fail ∉

⋃
ran(| rtraces[[T IO

F (⟨X⟩) after ⟨ ◦, inc⟩ after ⟨ ◦, fail⟩]] |)]

⇒ ∃ 𝜌 : rtraces[[prioritise(Q |[Σ]| T IO
F (⟨X⟩), ⟨Σ,V ⟩)]] • ⟨ ◦, inc, ◦, fail, Σ✓ ∪ V ⟩ ∈ 𝜌 \RT Σ [definition of hiding]

⇒ ∃ 𝜌 : rtraces[[prioritise(Q |[Σ]| T IO
F (⟨X⟩), ⟨Σ,V ⟩)]]; X1,X2,X3 : Refusal •

𝜌 = ⟨X1, inc,X2, fail,X3⟩ ∧ ⟨ ◦, inc, ◦, fail, Σ✓ ∪ V ⟩ ∈ ⟨X1, inc,X2, fail,X3⟩ \RT Σ

[property of \RT]

⇒ ∃ 𝜌 : rtraces[[prioritise(Q |[Σ]| T IO
F (⟨X⟩), ⟨Σ,V ⟩)]]; X1,X2,X3 : Refusal •

𝜌 = ⟨X1, inc,X2, fail,X3⟩ ∧ (X1 = ◦∨ ¬ (Σ ⊆ X1)) ∧ (X2 = ◦∨ ¬ (Σ ⊆ X2)) ∧ X3 = Σ✓ ∪ V

[definition of \RT]

⇒ ⟨ ◦, inc, ◦, fail, Σ✓ ∪ V ⟩ ∈ rtraces[[prioritise(Q |[Σ]| T IO
F (⟨X⟩), ⟨Σ,V ⟩)]] [predicate calculus and RT1]

⇒ ⟨Σ, inc, Σ, fail, Σ✓ ∪ V ⟩ ∈ rtraces[[Q |[Σ]| T IO
F (⟨X⟩)]]

[⟨ ◦, inc, ◦, fail, Σ✓ ∪ V ⟩ prioritise𝜃 ⟨Σ, inc, Σ, fail, Σ✓ ∪ V ⟩ by (3) and (2)]

⇒ ∃ 𝜌 : rtraces[[Q]] • X ⊆RT 𝜌 1

[definition of rtraces[[Q |[Σ]| T IO
F (⟨X⟩)]] and ⟨refusal({e})⟩ ∉ rtraces[[T IO

F (⟨X⟩)]] for any event e ∈RT X]

⇒ ⟨X⟩ ∈ rtraces[[Q]] [RT1]

Case ⟨X⟩ (⇐). Similar to that for ⟨ ◦ ⟩.

Case ⟨ ◦,✓,X⟩ (⇒).

Q fails T IO
F (⟨ ◦,✓,X⟩)

⇒ ∃ 𝜌 : RTrace • 𝜌 ⌢ ⟨fail, ◦,✓, ◦ ⟩ ∈ rtraces[[prioritise(Q |[Σ]| T IO
F (⟨ ◦,✓,X⟩), ⟨Σ,V ⟩) \ Σ]] [definition of fails,]

[definition of rtraces[[Q |[Σ]| T IO
F (⟨ ◦,✓,X⟩)]] (pass is not refused by T IO

F (⟨ ◦,✓,X⟩),]

[⟨ ◦,✓, ◦ ⟩ prioritise𝜃 ⟨ ◦,✓, ◦ ⟩ (by (6) and (1)),✓ ∉ Σ, and definition of \RT]

⇒ ⟨ ◦, fail, ◦,✓, ◦ ⟩ ∈ rtraces[[prioritise(Q |[Σ]| T IO
F (⟨ ◦,✓,X⟩), ⟨Σ,V ⟩) \ Σ]]

[RT1, fail ∈ initials(T IO
F (⟨ ◦,✓,X⟩)), and fail ∉

⋃
ran(| traces[[T IO

F (⟨ ◦,✓,X⟩) after ⟨fail⟩ |)]]]
Manuscript submitted to ACM

52 ANA CAVALCANTI, ROBERT M. HIERONS, and SIDNEY NOGUEIRA

⇒ ∃ 𝜌 : rtraces[[prioritise(Q |[Σ]| T IO
F (⟨ ◦,✓,X⟩), ⟨Σ,V ⟩)]] • ⟨ ◦, fail, ◦,✓, ◦ ⟩ ∈ 𝜌 \RT Σ [definition of hiding]

⇒ ∃ 𝜌 : rtraces[[prioritise(Q |[Σ]| T IO
F (⟨ ◦,✓,X⟩), ⟨Σ,V ⟩)]]; X1,X2,X3 : Refusal •

𝜌 = ⟨X1, fail,X2,✓,X3⟩ ∧ ⟨ ◦, fail, ◦,✓, ◦ ⟩ ∈ ⟨X1, fail,X2,✓,X3⟩ \RT Σ

[property of \RT]

⇒ ∃ 𝜌 : rtraces[[prioritise(Q |[Σ]| T IO
F (⟨ ◦,✓,X⟩), ⟨Σ,V ⟩)]]; X1,X2,X3 : Refusal •

𝜌 = ⟨X1, fail,X2,✓,X3⟩ ∧ X1 = ◦∧ X2 = ◦∧ X3 = ◦
[definition of \RT]

⇒ ⟨ ◦, fail, ◦,✓, ◦ ⟩ ∈ rtraces[[prioritise(Q |[Σ]| T IO
F (⟨ ◦,✓,X⟩), ⟨Σ,V ⟩)]] [predicate calculus]

⇒ ⟨Σ, fail, ◦,✓, ◦ ⟩ ∈ rtraces[[Q |[Σ]| T IO
F (⟨ ◦,✓,X⟩)]]

[⟨ ◦, fail, ◦,✓, ◦ ⟩ prioritise𝜃 ⟨Σ, fail, ◦,✓, ◦ ⟩ by (3), (6), and (1)]

⇒ ∃X1 : Refusal • ⟨ ◦,✓,X1⟩ ∈ rtraces[[Q]] [definition of rtraces[[Q |[Σ]| T IO
F (⟨ ◦,✓,X⟩)]]]

⇒ ⟨ ◦,✓,X⟩ ∈ rtraces[[Q]] [RT4 and RT1]

Case ⟨ ◦,✓,X⟩ (⇐).

⟨ ◦,✓,X⟩ ∈ rtraces[[Q]]

⇒ rtraces[[fail → SKIP]] ⊆ rtraces[[Q |[Σ]| T IO
F (⟨ ◦,✓,X⟩)]] [property of rtraces[[Q |[Σ]| T IO

F (⟨ ◦,✓,X⟩)]]]

⇒ ⟨Σ, fail, ◦,✓, ◦ ⟩ ∈ rtraces[[Q |[Σ]| T IO
F (⟨ ◦,✓,X⟩)]] [definition of rtraces[[fail → SKIP]]]

⇒ ⟨Σ, fail, ◦,✓, ◦ ⟩ ∈ rtraces[[prioritise(Q |[Σ]| T IO
F (⟨ ◦,✓,X⟩), ⟨Σ,V ⟩)]]

[⟨Σ, fail, ◦,✓, ◦ ⟩ prioritise𝜃 ⟨Σ, fail, ◦,✓, ◦ ⟩ by (4), (6), and (1)]

⇒ ⟨Σ, fail, ◦,✓, ◦ ⟩ ∈ rtraces[[prioritise(Q |[Σ]| T IO
F (⟨ ◦,✓,X⟩), ⟨Σ,V ⟩) \ Σ]]

[⟨Σ, fail, ◦,✓, ◦ ⟩ ∈ ⟨Σ, fail, ◦,✓, ◦ ⟩ \RT Σ]

⇒ Q fails T IO
F (⟨ ◦,✓,X⟩) [definition of fails]

Case ⟨ ◦, e⟩ ⌢ 𝜌 . Similar to that for ⟨X , e⟩ ⌢ 𝜌1 shown below.

Case ⟨X , e⟩ ⌢ 𝜌1.

⟨X , e⟩ ⌢ 𝜌1 ∈ rtraces[[Q]]

= 𝜌1 ∈ rtraces[[Q after ⟨X , e⟩]] [definition of after]

= (Q after ⟨X , e⟩) fails T IO
F (𝜌1) [induction hypothesis]

= ∃ 𝜌2 : RTrace • {𝜌2 ⌢ ⟨fail, Σ✓ ∪ V ⟩, 𝜌2 ⌢ ⟨fail, ◦,✓, ◦ ⟩} ∩ rtraces[[Execution(Q after ⟨X , e⟩, T IO
F (𝜌1))]] ≠ ∅

[definition of fails]

Manuscript submitted to ACM

Inputs and outputs in CSP: a model and a testing theory 53

= ∃ 𝜌2 : RTrace • {𝜌2 ⌢ ⟨fail, Σ✓ ∪ V ⟩, 𝜌2 ⌢ ⟨fail, ◦,✓, ◦ ⟩} ∩
rtraces[[prioritise(Q after ⟨X , e⟩ |[Σ]| T IO

F (𝜌1), ⟨Σ,V ⟩) \ Σ]] ≠ ∅
[definition of Execution(Q after ⟨X , e⟩, T IO

F (𝜌1))]

= ∃ 𝜌2 : RTrace •
{𝜌2 ⌢ ⟨fail, Σ✓ ∪ V ⟩, 𝜌2 ⌢ ⟨fail, ◦,✓, ◦ ⟩} ∩⋃(| {𝜌3, 𝜌4 : RTrace | 𝜌4 ∈ rtraces[[Q after ⟨X , e⟩ |[Σ]| T IO

F (𝜌1)]] ∧ 𝜌3 prioritise𝜃 𝜌4 • 𝜌3} |) \RT Σ ≠ ∅

[refusal traces of hiding and priority]

= ∃ 𝜌2 : RTrace •
{𝜌2 ⌢ ⟨fail, Σ✓ ∪ V ⟩, 𝜌2 ⌢ ⟨fail, ◦,✓, ◦ ⟩} ∩⋃(| {𝜌3, 𝜌4 : RTrace |

⟨X , e⟩ ⌢ 𝜌4 ∈ rtraces[[Q |[Σ]| e → T IO
F (𝜌1)]] ∧ 𝜌3 prioritise𝜃 𝜌4

• 𝜌3

} |) \RT Σ ≠ ∅

[refusal traces of after, parallelism, and prefixing]

= ∃ 𝜌2 : RTrace •
{𝜌2 ⌢ ⟨fail, Σ✓ ∪ V ⟩, 𝜌2 ⌢ ⟨fail, ◦,✓, ◦ ⟩} ∩⋃(| {𝜌3, 𝜌4 : RTrace |

⟨Σ, inc,X , e⟩ ⌢ 𝜌4 ∈ rtraces[[Q |[Σ]| inc → e → T IO
F (𝜌1)]] ∧ 𝜌3 prioritise𝜃 𝜌4

• 𝜌3

} |) \RT Σ ≠ ∅

[refusal traces of parallelism and prefixing, and inc ∉ 𝛼Q]

= ∃ 𝜌2 : RTrace •
{𝜌2 ⌢ ⟨fail, Σ✓ ∪ V ⟩, 𝜌2 ⌢ ⟨fail, ◦,✓, ◦ ⟩} ∩⋃(| {𝜌3, 𝜌4 : RTrace |

⟨Σ, inc,X , e⟩ ⌢ 𝜌4 ∈ rtraces[[Q |[Σ]| T IO
F (⟨X , e⟩ ⌢ 𝜌1)]] ∧ 𝜌3 prioritise𝜃 𝜌4

• 𝜌3

} |) \RT Σ ≠ ∅

[definition of T IO
F (⟨X , e⟩ ⌢ 𝜌1)]

= ∃ 𝜌5 : RTrace •
{𝜌5 ⌢ ⟨fail, Σ✓ ∪ V ⟩, 𝜌5 ⌢ ⟨fail, ◦,✓, ◦ ⟩} ∩⋃(| {𝜌3, 𝜌4 : RTrace |

⟨Σ, inc,X , e⟩ ⌢ 𝜌4 ∈ rtraces[[Q |[Σ]| T IO
F (⟨X , e⟩ ⌢ 𝜌1)]] ∧ 𝜌3 prioritise𝜃 𝜌4

• ⟨Σ, inc,X , e⟩ ⌢ 𝜌3

} |) \RT Σ ≠ ∅

[property of \RT Σ and take 𝜌5 = Σ, inc, ◦, e⟩ ⌢ 𝜌2]

= ∃ 𝜌5 : RTrace •
{𝜌5 ⌢ ⟨fail, Σ✓ ∪ V ⟩, 𝜌5 ⌢ ⟨fail, ◦,✓, ◦ ⟩} ∩⋃(| {𝜌3, 𝜌4 : RTrace |

⟨Σ, inc,X , e⟩ ⌢ 𝜌4 ∈ rtraces[[Q |[Σ]| T IO
F (⟨X , e⟩ ⌢ 𝜌1)]] ∧

⟨Σ, inc,X , e⟩ ⌢ 𝜌3 prioritise𝜃 ⟨Σ, inc,X , e⟩ ⌢ 𝜌4

• ⟨Σ, inc,X , e⟩ ⌢ 𝜌3

} |) \RT Σ ≠ ∅

[properties (4) and (5) of prioritise𝜃]

Manuscript submitted to ACM

54 ANA CAVALCANTI, ROBERT M. HIERONS, and SIDNEY NOGUEIRA

= ∃ 𝜌5 : RTrace •
{𝜌5 ⌢ ⟨fail, Σ✓ ∪ V ⟩, 𝜌5 ⌢ ⟨fail, ◦,✓, ◦ ⟩} ∩⋃(| {𝜌6, 𝜌7 : RTrace | 𝜌7 ∈ rtraces[[Q |[Σ]| T IO

F (⟨X , e⟩ ⌢ 𝜌1)]] ∧ 𝜌6 prioritise𝜃 𝜌7 • 𝜌6} |) \RT Σ ≠ ∅

[property of sets (take 𝜌6 = ⟨Σ, inc,X , e⟩ ⌢ 𝜌3 and 𝜌7 = ⟨Σ, inc,X , e⟩ ⌢ 𝜌4)]

= ∃ 𝜌5 : RTrace • {𝜌5 ⌢ ⟨fail, Σ✓ ∪ V ⟩, 𝜌5 ⌢ ⟨fail, ◦,✓, ◦ ⟩} ∩
rtraces[[prioritise(Q |[Σ]| T IO

F (⟨X , e⟩ ⌢ 𝜌1), ⟨Σ,V ⟩) \ Σ]] ≠ ∅
[refusal traces of hiding and priority]

= ∃ 𝜌5 : RTrace • {𝜌5 ⌢ ⟨fail, Σ✓ ∪ V ⟩, 𝜌5 ⌢ ⟨fail, ◦,✓, ◦ ⟩} ∩
rtraces[[Execution(Q, T IO

F (𝜌1))]] ≠ ∅
[definition of Execution(Q, T IO

F (⟨X , e⟩ ⌢ 𝜌1))]

= Q fails T IO
F (⟨X , e⟩ ⌢ 𝜌1) [definition of fails]

□

Manuscript submitted to ACM

	Abstract
	1 Introduction
	2 CSP and IOLTS
	2.1 CSP
	2.2 IOLTS and IOTS

	3 The RT model: healthiness conditions, CSP operators, and refinement
	3.1 Refusal traces
	3.2 Healthiness conditions
	3.3 Operators
	3.4 Refinement

	4 Inputs and outputs in the RT model
	4.1 Input-output refusal traces
	4.2 Input-output refusal-traces refinement
	4.3 Operators

	5 Input-output refusal-traces refinement and ioco
	6 Testing and input-output refusal traces
	7 Conclusions
	References
	A Auxiliary definitions
	B Electronic appendix: Proof of key results
	B.1 SKIP
	B.2 Input-output refusal traces
	B.3 Suspension traces
	B.4 Testing

