
A Z Patterns Catalogue II

definitions and laws, v0.1

Samuel H. Valentine, Susan Stepney, and Ian Toyn

University of York Technical Report YCS-2004-383

October 2004





Contents

Preface xiii

I Background 1

1 Introduction 3

2 ISO Standard Z 5
2.1 History and current status 5

2.1.1 Z: the early years 5
2.1.2 The need for a change 6
2.1.3 Standardisation 7
2.1.4 Aims of this chapter 7

2.2 Changed features of Standard Z 8
2.3 Improvements 8

2.3.1 Sections 8
2.3.2 Mutually-recursive Free Types 9
2.3.3 Operators 9
2.3.4 Conjectures 9
2.3.5 Binding Extensions and Tuple Selections 10
2.3.6 Schemas as Expressions 11
2.3.7 Empty Schemas 12
2.3.8 Loose Generics 13
2.3.9 Local Constant Declarations 13
2.3.10 Axiom-parts as Predicates 14
2.3.11 Soft Newlines 15
2.3.12 Lexis of Words 15
2.3.13 Toolkit 15

2.4 Incompatibilities 16
2.4.1 Singleton Sets 16

i



ii Contents

2.4.2 Decorated References to Schemas 17
2.4.3 Decorated References to Generic Schemas 18
2.4.4 let on Predicates 18
2.4.5 Renaming on Theta Expressions 18
2.4.6 Underlined Infix Relations 19
2.4.7 Operator Precedences 19
2.4.8 Theta Expressions 21
2.4.9 Lexis of Words 21

2.5 Subtle Changes 21
2.5.1 Quantified Expressions 21
2.5.2 Preconditions 22
2.5.3 Schema Instantiation 22
2.5.4 Precedence of lambda and mu 22

2.6 Conclusions 22

3 Patterns Catalogue Conventions 23
3.1 Background 23
3.2 Generalisations 24
3.3 Criteria for inclusion of definitions in the toolkit 25
3.4 Layout 26
Name of the pattern 26
3.5 Design 27
3.6 Presentation conventions 28

3.6.1 Specification style conventions 28
3.6.2 Distinct elements 28
3.6.3 Diagramming conventions 28
3.6.4 Global naming conventions 29
3.6.5 Local naming conventions 29
3.6.6 Consistency 30

3.7 Generic parameters 31
3.7.1 Implicit generic parameters 31
3.7.2 Generic schemas 31
3.7.3 Generic conjectures 32

3.8 Loose generics 33
3.8.1 Extendable definitions 34
3.8.2 Example: loose choice function 35
3.8.3 Example: polymorphic addition operator 35

3.9 Operator template paragraphs 36



iii

II Core Language 39

4 Core meta-language definitions 41
4.1 Introduction 41
4.2 Syntax notation 41

5 Specification, Section, Paragraph 42
Specification, Section 42
Paragraph 43
Simple declarations 44
Generic declarations 45
Conjectures 47
Operator templates 49

6 Predicates 54
truth, falsity, and negation 55
Conjunction and disjunction 55
Implication 57
Equivalence 57
Universal quantification 58
Existential quantification 59
Unique existential quantification 61
Schema predicate 61
Relation predicate 62
Schema Text 64

7 Expressions 65
Lambda expression 65
Mu expression 66
Let expression 67
Conditional expression 68
Cartesian tuple expression 68
Tuple component selection 69
Function and generic application expression 70
Reference expression 70
Set extension expression 71
Set comprehension expression 71

8 Schema Expressions 74
Schema quantification 75



iv Contents

Schema propositional 77
Schema combination 79
Schema restriction 80
Schema renaming expressions 81
Schema construction 83
Schema binding construction 83
Schema binding extension 84
Binding selection 87

9 Type constructors 89
Given Set Paragraph 89
Free Type Paragraph 90
Power set Expression 94
Cartesian product Expression 96
Schema type 99

10 Lexis 102
10.1 Introduction 102
10.2 Z characters 102
10.3 Z words 103
10.4 Newlines and Line breaking 104

III Sets 105

11 Sets, Types and Values 107
11.1 Introduction 107
11.2 Z types 107
11.3 New sets 108
11.4 Set membership 108
11.5 Structure of the Part 109

12 Simple operations 110
Type signature 110
Boolean expressions 111
Negated core relation predicates 112
Cartesian square 113

13 Basic set operations 115
Empty Set 116



v

Set union 117
Set intersection 122
Set difference 126
Symmetric set difference 131
Distribution properties 133
Closure property 135

14 Subsets 137
Subset 137
Proper subset 140
Non-empty subsets 141
Distribution property 142

15 Finiteness 144
Finite sets 144

IV Binary relations 149

16 Relations 151
Tuple component selection 151
Relation notation 152
Finite relations 153
Maplet notation 154
Relational inverse 154
Deriving dual laws 156

17 Domain and Range of relations 158
Domain and range 158

18 Relation restriction 161
Domain restriction 161
Range restriction 166

19 Images, bounds, shadows 168
Upper and lower image 168
Upper and lower bound 171
Upper and lower shadow 176
Upper and lower singleton image 180

20 Combining relations 182



vi Contents

Compatible relations 182
Override 184
Composition 187
Demonic composition 192
Merge and split 195
Bicomposition 196

21 Functions 198
Functionality 199
General functions 200
Total functions 202
Finite functions 204
Surjections 204
Injections 207
Homomorphism 212
Isomorphism 214

22 Labelled Sets 217
Disjointness 218
Partition 219

23 Binary operators 220
Idempotence 221
Semigroup 222
Monoid 223
Group 225
Distributing an abelian monoid 228
Finite distributed sum 230
Finite distributed product 231

24 Homogeneous relations 233
Functions on the domain and range 236
Vertices 237
Roots and leaves 238
Identity relation 239
Reflexive relation 241
Reflexive closure 242
Irreflexive relation 243
Irreflexive residue 244
Symmetric relation 245



vii

Symmetric closure and residue 246
Antisymmetric relation 247
Transitive relation 249
Transitive closures 251
Intransitive relation 253
Intransitive residue 255
Vertex finiteness 256
Equivalence relation 257
Acyclic relation 258
Maximal iteration 260

25 Connected graphs, forests and trees 263
Connected graph 263
Forest 265
Tree 267

26 Orders 269
Partial order 270
Poset 273
Total order 274
Chain 276
Preorder 277
A spectrum of orders 278
Minimum and maximum 280
Greatest lower bound, least upper bound 283
Well order 285
Well founded chain 286
Graph-preserving maps 287
Graph-reversing maps 290

27 Sorting 293
Sort 293

28 Two binary operators 297
Ring 297
Integral domain 300
Field 301
Ordered domain 302
Ordered field 303
Complete field 304



viii Contents

V Numbers 307

29 Axiomatic Properties of Numbers 309
Concrete syntax for number literals 310
Standard Prelude 311
Basic numerical operators 311
Integers and natural numbers 312
Rational numbers 314
Real numbers 316
Subtraction and division 317
Numerical orders 318

30 Further Numbers 319
Sign 319
Absolute value 320
Floor and ceiling 321
Integer division and modulus 322
Integer range 324
Cardinality 326
Total cardinality 328
Minimum and maximum 330
Prime numbers 331
Square root 332

31 Numbers and Relations 334
Relation iteration 334
Vertex degree 336

32 Extending to infinite sets 338
Making a function complete on a set 338
Complete distributed sum 339
Complete distributed product 340

33 Powers and Trigonometry 342
Factorial 342
Power function, integer exponent 343
Exponential function and natural logarithm 344
Power function, completed 345
Common logarithm 346
Sine and cosine 346



ix

34 Streams and sequences 348
General Streams 349
General Sequences 350
Finite streams 352
Finite sequences 353
Shifting the base of a stream 354
Stream and sequence displays 354

35 Constructing streams and sequences 355
Concatenation 355
Enumerable order 357
Enumerable chains 359
Enumeration of an enumerable chain 360
Forming a sequence from a labelled set 360
Squashing a sequence from a numbered set 361

36 Prefix, suffix and infix orders 363
Prefix and suffix relations 363
Infix relations 365
Prefix lower bounds 367
Prefix upper bounds 367
Suffix lower bounds 368
Suffix upper bounds 369
Infix lower bounds 370
Infix upper bounds 371

37 Manipulating streams and sequences 372
Reversal 372
head, last, tail, front 374
Extraction and filtering 377
Paths and steps 380

38 Sequenced families of sets 384
Distributing a monoid over a sequence 385
Distributed override 386
Distributed composition 387
Distributed concatenation 388

39 Bags 390
Bags 390



x Contents

Functions of a single bag 392
Functions of two bags 392
Building a bag 394
Bag display 395
Further bag operations 396

VI Example Specifications 401

40 Changing representations: a memory map 403

41 Neural networks 405
41.1 Introduction 405
41.2 A network 405

41.2.1 A simple network 405
41.2.2 A feed forward network 406
41.2.3 A layered network 407

41.3 Pattern Recognition 407
41.4 Net Training 407
41.5 Further Reading 408

42 Kinship 409
42.1 Introduction 409
42.2 Ancestors 409
42.3 The royal house of Thebes 411
42.4 The ancestral line 412
42.5 Matrilineal and patrilineal relations 414
42.6 Specialisations of the ancestor relation 416
42.7 Descendants 417
42.8 Collateral relations 417

42.8.1 Disjoint lines 418
42.8.2 Common ancestors 418

42.9 Siblings 419
42.10Aunt, uncle, niece, nephew, cousin 420
42.11General theorem of blood relationship 423
42.12Antigone’s relations 424

42.12.1Antigone’s grandparents’ grandchildren 424
42.12.2Antigone’s great-grandparents’ great-grandchildren 425
42.12.3Summary 426

42.13Monotonic functions on sets 426



xi

42.14Other compositions 427
42.14.1Composition of descendant with ancestor 427
42.14.2Composition with collateral 428

42.15Enriching the model 428
42.15.1 Including birth order 428
42.15.2 Including relationship by marriage 428
42.15.3Relaxing the axiom of ancestry 429

42.16Further reading 429

43 Chess 431
43.1 Introduction 431
43.2 The board 431
43.3 The chessmen 432
43.4 Board positions 432
43.5 The starting position 433
43.6 Moves in general 433
43.7 Moves in particular 436
43.8 Legal moves 440
43.9 Winning 441
43.10Draws 441
43.11Other endings 443
43.12Optimal play 443

VII Appendix 445

A Diagrammatic conventions 447
A.1 Introduction 447
A.2 Venn diagrams 447
A.3 Diagrams for relations 448

A.3.1 Venn diagrams 448
A.3.2 Cartesian diagrams 449

A.4 Functions 450
A.5 Homogeneous relations 450

A.5.1 Venn diagrams 450
A.5.2 Cartesian diagrams 451

A.6 Orders 451
A.6.1 Cartesian diagrams 451
A.6.2 Network diagrams 452



xii Contents

B Summary of operator templates 453

C Bibliography 458

D Proofs 464

E Index 493



Preface

The Z Patterns Calatogues

The various volumes in the Z Patterns Catalogue series, outlined below, are evolv-
ing documents – as we discover and are informed of more patterns, we will add
them to new versions of the catalogues.

The three catalogues, history and plans for the future

• I : specification and refactoring (Stepney, Polack, Toyn)
– v0.1 (YCS-2003-349): The initial structure, with a focus on promotion

as a generative pattern, and refactoring, with many skeleton patterns
(particularly in the developmental section)

– v0.2 (planned early 2005): fleshed out skeletons, more patterns, and ma-
terial from Z in Practice

• II : definition and laws (Valentine, Stepney, Toyn)
– v0.1 (this catalogue): The initial structure, of a rich mathematical toolkit

– v0.2: More generic patterns, including a type-constrained generic schema
toolkit, and patterns for generating toolkits by abstraction

• III : proof and refinement (Cooper, Stepney, Woodcock)
– v0.1 (planned end 2005): The initial structure, with proofs of interesting

properties, and refinement as a generative proof pattern

– v0.2: Refactoring proofs, retrenchment as ‘approximate proof refactoring’

Acknowledgements

Many people have contributed in a number of ways to this catalogue, commenting
on various drafts over the years, suggesting examples to specify, and discussing

xiii



xiv Preface

approaches to specification. Our thanks to you all, including Rob Arthan, Tim Ball
(for proving some of the laws here, and disproving others, which were subsequently
removed), Jane Gardner, Ian Hayes, Helen King, Trevor King, Fiona Polack, Dan
Simpson, Alf Smith, Jim Woodcock, John Wordsworth.

Our thanks also to Visio, Donald Knuth for TEX, Leslie Lamport for LATEX, Mike
Spivey for the original Z Mathematical Toolkit, and Paul King for oz2e.sty, with-
out whom this catalogue would have looked very different.
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Background





Chapter 1

Introduction

It is a profoundly erroneous truism, repeated by all copy-books and by eminent peo-

ple when they are making speeches, that we should cultivate the habit of thinking

of what we are doing. The precise opposite is the case. Civilisation advances by

extending the number of important operations which we can perform without think-

ing about them. Operations of thought are like cavalry charges in a battle — they

are strictly limited in number, they require fresh horses, and must only be made at

decisive moments.

— Alfred North Whitehead, An Introduction to Mathematics

Why a bigger toolkit?

When writing a Z specification, we want to capture those things that are essential
properties of the system, and omit those things that are merely contingent. We
want to have as much structure as is necessary, but no more. For example, we
should not model something as a sequence if we merely want to label the elements,
if their order is unimportant.

Our historical heritage is Spivey’s Mathematical Toolkit [Spivey 1992]. Spivey’s
toolkit gives us a language for modelling. In this catalogue we extend that language
to a richer vocabulary that enables us to make finer discrimination of the essential
properties.

The possibility of abstraction is often suggested when the same or closely similar
formal text occurs more than once in a specification. It may then be useful to
separate out the common material as one or more schemas, functions, sets and so
on whose properties and relationships can then be explored and proved in isolation,
away from the context of use. Doing this can make specifications as a whole briefer.
It can also suggest useful generalisations. The decision as to whether to do it should

3



4 Chapter 1. Introduction

be taken above all on the basis of maximising correctness and clarity.

In this catalogue we have made some Z definitions and developed some theories,
all of which correspond to mathematical entities that have been known about for
many years. Familiarity with this material will allow specifiers to make use of that
established understanding without having to reinvent it. Our experience has been
that many of the structures presented here are useful in specification work. Our
aims in writing this catalogue are both to provide useful general theories and to
encourage users to develop their own.

We are not doing anything here that could not be done in your own specification.
However, having a rich pre-exisiting vocabulary can be a great advantage: it helps
you to distinguish what may be the essential properties; it reduces the need to
keep reinventing subtly different wheels; it reduces the size of the specification you
need to write; it reduces the cognitive load for a reader already familiar with the
larger vocabulary.

Granted, it may take more time to become familiar with this rich vocabulary
initially, but it can be worth the effort in the long run. This is a similar theme to
the use of a class library provided with an object-oriented programming language
such as Smalltalk or Eiffel: it takes a while to learn such a library, but it gives you
greater power in the end.

We have structured the catalogue using our notation for Z patterns [Stepney et al.
2003].



Chapter 2

ISO Standard Z

Indulging myself in the freedom of epistolary intercourse, I beg leave to throw out

my thoughts, and express my feelings, just as they arise in my mind, with very little

attention to formal method.

— Edmund Burke, Reflections on the Revolution in France,
10th edition, 1791.

2.1 History and current status

2.1.1 Z: the early years

In the early days of Z specification and publication, authors were obliged to include
some kind of ‘Z appendix’, to explain the language they were using. As the language
has matured, fuller descriptions have become available.

• [Abrial 1980] The Specification Language Z was one of the earliest documents
on Z.

• [Sufrin et al. 1984] The Z Handbook was one of the first descriptions of Z
available to the wider community.

• [Hayes 1987] Specification Case Studies, contains its own Z appendix, includ-
ing a summarised mathematical toolkit. The bulk of the book comprises
many excellent examples of typical ways of using Z to build specifications.
It is currently in its second edition [Hayes 1993] with syntax brought more
closely in line with ZRM (see below).

• [King et al. 1988] Z: Grammar and concrete and abstract syntaxes, also known
as the Yellow Book, from the colour of its cover, gives one of the first formal
description of Z’s syntax.

• [Spivey 1988] Understanding Z, also known as the Blue Book, describes se-
mantics for (a subset of) Z.

5



6 Chapter 2. ISO Standard Z

• [Spivey 1989] The Z Reference Manual, (ZRM), gives a full syntax descrip-
tion for Z, an informal semantics, and a Z specification of the Mathematical
Toolkit. It too is currently in its second edition [Spivey 1992] with let, if,
schema piping and more bag operators added.

There are also many publications on how to use Z: some tutorials for beginners, for
example [Potter et al. 1991] An Introduction to Formal Specification and Z; some
for more advanced users, for example [Barden et al. 1994] Z in Practice; some
emphasising refinement, for example [Wordsworth 1992] Software Development
with Z; some emphasising proof [Woodcock & Davies 1996] Using Z. These tend
to follow ZRM.

2.1.2 The need for a change

Because of these multiple descriptions of Z, the need for a Standard Z has been
felt for some time. This need has become more pressing as tool-support for Z has
grown. Where dialects differ, which should a tool support? Where ambiguities
exist, what resolution should a tool adopt?

This need is felt most sharply as the use of proof in Z increases. For example,
when performing a proof, a common step is to expand an expression by replacing
a name by its definition. One might wish to replace the name of a schema with
an expression that defines its value. However, in ZRM, such a substitution is not
syntactically valid: an Expression may be a Schema-Ref, but not a Schema-Exp.
If the syntax were more liberal, to allow ‘substitution of equals for equals’ to be
syntactically valid everywhere, then proofs could be performed more easily.

In addition to syntax problems with proof, it has become clear that the semantics
described in the Blue Book, although an excellent first step, is not in a form suitable
for a Standard defintion. It is the published form of Spivey’s doctoral dissertation,
which was written to support the thesis that giving a satisfactory semantics for Z
is a soluble problem; this it successfully does. A Standard, however, needs to be
organised in a different way from a dissertation, with everything spelt out explicitly
and in a way suitable for reference purposes.

Z has become mature enough that others wish to use it to define their own in-
ternational standards. The Open Distributed Computing (ODP) community, in
particular, felt that their own work could benefit by being formally specified in Z.
ISO rules require that for it to be used in another standard, Z must be a standard
itself.
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2.1.3 Standardisation

The main guiding principles for Z’s standardisation are

• to remove certain unnecessary restrictions (in particular, to liberalise the
syntax)

• to define the semantics (type rules and meaning)

• to remove the need for certain special cases, to allow things to be defined in
the Toolkit, rather than be hardwired into the base language

• to allow correct existing Z specifications to remain correct Standard Z speci-
fications, as far as possible

The process of standardising Z began under the ZIP project, part-funded by the
United Kingdom’s Department of Trade and Industry, initially for submission to
the British Standards Institute (BSI). After the end of that project, the standard-
isation work continued, under the banner of the International Standards Organi-
sation (ISO). Z became an ISO standard in 2002 [ISO-Z 2002].

2.1.4 Aims of this chapter

There are many excellent tutorials for ZRM, and Standard Z is mostly a superset
of that, with a few small changes. Here we highlight the main differences between
ZRM and Standard Z, especially those that we exploit in writing the rest of this
catalogue.

The authors of this catalogue were all members of the Z Standards Panel, and
many of the ideas explained here can be attributed to other members of the Z
panel. The Z panel has taken into account other work from the history of Z
besides ZRM, including those early works mentioned in section 2.1.1. The formal
reasoning experiences gained with ProofPower [Arthan 1991], Zola [Harwood 1995]
and CADiZ [Jordan et al. 1991] [Toyn 1996] have had some influence. Most users of
Z regard ZRM as their de facto standard, and so that is the most suitable point of
comparison for this chapter. For some historical context for these ideas, see [Toyn
1998], from which the remainer of this chapter has been adapted and updated.

There is a lot more that could be said about the Standard document and its history,
and maybe one day some historian will do so.
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2.2 Changed features of Standard Z

ZRM was a huge step forward at the time of its first publication. Many syntax
and typechecking tools for Z have been based on it, and it has become a de facto
standard. It is an excellent work that has certainly served the Z community well.
However, there are several issues that it does not adequately address. Standardi-
sation aimed to provide widely acceptable solutions to the issues, so that diverse
dialects can be avoided.

The rest of this chapter is in three parts. First, the restrictions of ZRM are
identified and Standard Z’s solutions are outlined. Second, the incompatibilities
arising from those solutions between ZRM and Standard Z notations are discussed.
Third, some subtle changes are explained where, although existing ZRM notation
still has the same meaning, the interpretation of the notation to give that meaning
has changed.

2.3 Improvements

This section presents improvements in Standard Z that address inadequacies in
ZRM.

2.3.1 Sections

Specifications are rarely written in terms of the Z base language. Even pedagogic
examples usually refer to the definitions of the mathematical toolkit. Real specifi-
cations are constructed from libraries or toolkits of operations relevant to particular
application domains. It should be possible to reuse toolkits by reference, without
having to duplicate them into every specification that uses them. This is an issue
that ZRM ignores. Toolbuilders usually incorporate ZRM mathematial toolkit by
default, which causes problems for specifiers who want a different toolkit.

Standard Z provides probably the simplest possible solution to the toolkit reuse
problem, in the form of its section notation.

The mechanics of how sections are brought together is unspecified. Sections might
be separate documents, or chapters or appendices in the same document. A tool
might use a relation between section names and file names.
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2.3.2 Mutually-recursive Free Types

ZRM presents a free type as an abbreviation for a given type followed by axiomatic
constraints to ensure that its constants are elements of the given type, that its
constructors are injections producing members of the given type, that the elements
and the values returned by the injections are all distinct from each other, and that
all values of the type are either elements or returned by an injection.

Standard Z extends ZRM free types to allow mutually-recursive free types. The
mutually-recursive free types are written within a single paragraph, the parts sep-
arated by & characters.

2.3.3 Operators

An operator is a name with special lexical status, for example an infix operator
appears between its operands. ZRM notation allows the use of various operators.
A use of an operator has to be preceded by its definition. Its definition ought to
be preceded by some kind of template for the operator, to indicate that the name
will be defined and used in, for example, infix position. Without the information
provided by such a template, it is not possible to parse the operator’s definition
and uses. ZRM says what kinds of templates it permits operators to have, but
it specifies no notation for the introduction of operator templates. It presumes
that all the operators defined in its toolkit are already known to the reader and
hence recognisable, and leaves each tool to implement its own distinct notation for
templates.

Standard Z has an operator template paragraph that serves to introduce new op-
erators.

2.3.4 Conjectures

ZRM presents many laws, particularly about the toolkit operators, but without
formalising their syntax as part of Z. Their presentation is pseudo-formal, none of
their variables being declared.

Proof tools typically provide sequents, which are a notation suitable for expressing
not only laws, but also conjectures, theorems, goals, lemmas and axioms. Of
these, conjectures are the starting point for proofs, and are sometimes hand-written
within specifications. Different proof tools use different syntaxes for sequents, and
it was not thought appropriate to standardise their syntax. However, standardising
a simpler syntax specifically for conjectures is possible and worthwhile, as this
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ZRM Standard Z
Constructors Selectors Constructors Selectors

Tuples (x , y , z ) (x , y , z ) triple.3
Bindings binding .name 〈| x == 1, y == 42 |〉 binding .name

Table 2.1 Product type operations

allows them to be written within specifications in a form that potentially eases
their interchange between tools and allows them to be subjected to typechecking.

Standard Z’s notation for a (generic) conjecture involves (a generic parameter list,)
a `? symbol, and a single predicate. This simple syntax is chosen as it is likely
to conform to the syntax of a sequent, or at least be translatable to a sequent,
whatever proof tool is used.

In this catalogue, we use an extended conjecture syntax; see §5, Conjectures : variant
for details.

2.3.5 Binding Extensions and Tuple Selections

The Z base language provides both labelled and unlabelled product types, called
schema types and Cartesian product types respectively. One would expect to find
notations for construction and selection operations on values of each of these types,
but ZRM offers only a selection operation for values of schema type, and only a
construction operation for values of Cartesian product type (table 2.1). Standard
Z also offers notations for the other two operations.

ZRM explains bindings using the notation 〈p1 V x1, ..., pn V xn〉 (pages 26 and
62), but does not permit use of this as Z notation. ZRM notation is used largely
for producing abstract specifications of systems, where the emphasis is on the use
of schemas and constraints on them rather than particular bindings, those being
more specific and concrete. However, Z can be used in other ways and in other
contexts, for example, in reasoning about a relational database, where the rows of
a table could be modelled by the bindings of a schema. Bindings can arise in ZRM
either by theta expressions or as members of schemas. It is particularly useful to
have such notation during proofs, where showing the truth of predicates such as
θS = θS ′ involves consideration of the underlying binding values. (An example of
such a proof appears in the next subsection.)
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Standard Z’s notation for the construction of bindings from explicit component
values is called a binding extension expression: 〈| i1 == e1, ..., in == en |〉

ZRM notation provides first and second selectors for pairs in the toolkit, but no
selectors for larger tuples. Standard Z’s notation for the selection of components
from tuples is called a tuple selection expression: expr .n. This allows one to say
things such as (x , y , z ).2 = y . Standard Z retains first and second in the toolkit
for backwards compatibility.

2.3.6 Schemas as Expressions

An expression has a value of a particular type. A schema has a value — it is
a set of bindings — but ZRM syntax permits only references to named schemas,
not general schema expressions, to be used as expressions. Instead, ZRM has a
separate category of schema expressions, that may appear only in named horizontal
schema definition paragraphs. This distinction between schema expressions and
other expressions also prohibits an expression whose type is that of a set of bindings
from being used within a schema expression.

This syntactic restriction can result in some added verbosity in specifications, but
its main problem is that it is an obstacle to formal reasoning. The replacement
of a name by its defining expression is a typical ‘substitution of equals for equals’
logical inference, but is precluded by the syntactic restriction. Without that par-
ticular inference rule, it is not clear how to replace a reference to a schema by the
mathematics of its definition, and hence to reason further. More generally, all for-
mulae arising from logical inferences should be expressible in the concrete syntax,
and so irregularities in the concrete syntax should be eradicated.

In Standard Z, the syntactic category of schema expressions is merged into that
of expressions. So an arbitrary schema expression may appear wherever a schema
reference could appear in ZRM notation: as an inclusion declaration, as a predicate,
as an operand to θ, or as an expression. The type system ensures that a schema is
used only where an expression whose type is that of a set of bindings is permissible,
and that only an expression whose type is that of a set of bindings is used where
a schema is required.

Tutorials on Z can now give a much simpler description of schemas, for example:

A schema is any value whose type is a set of bindings. In addition to its
ordinary use as a set, a schema may be used in three special, and important
ways: (i) as a declaration; (ii) as a predicate and (iii) as an operand of certain
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special operators (called the schema calculus operators) which construct new
schemas from old in various convenient ways.

— [Jones 1992]

The following example illustrates use of schema expressions as inclusion declara-
tions and as operands to θ.

S == [ x : Z; y : N ]

∆Sx == [ S ; S ′ | θ(S \ (x )) = θ(S \ (x ))′ ]

(See §2.3.9 for an explanation of the use of == rather than =̂ when declaring these
schemas.)

The ∆Sx schema can be interpreted as defining a change to the state represented
by schema S in which only the x component’s value can change. The conjecture
that the value of component y is left unchanged by ∆Sx can now be stated and
proved. In this proof, schema expressions can be seen being used as predicates.
(See §5, Conjectures : variant for details of the variant conjecture syntax used here.)

` ∀∆Sx • y = y ′

` ∀S ; S ′ • ∆Sx ⇒ y = y ′ expand ∆Sx

` ∀S ; S ′ • [ S ; S ′ | θ(S \ (x )) = θ(S \ (x ))′ ] ⇒ y = y ′ expand ∆Sx
` ∀S ; S ′ • [ S ; S ′ | 〈| y == y |〉 = 〈| y == y ′ |〉 ] ⇒ y = y ′ expand θs
` ∀S ; S ′ • [ S ; S ′ | y = y ′ ] ⇒ y = y ′ absorb binding extensions
` ∀S ; S ′ • y = y ′ ⇒ y = y ′ absorb schema predicate
` ∀S ; S ′ • true absorb implication
` true absorb universal quantification
�

2.3.7 Empty Schemas

An empty schema is a schema with no declarations. One can arise in ZRM notation
from the hiding of all declarations from a schema.

Schema == [x , y : Z | x 6= y ] \ (x , y)

This should simplify to the following equivalent paragraph:

Schema == [ | ∃ x , y : Z • x 6= y ]



13

ZRM does not permit this to be written, as the list of declarations is not allowed
to be empty. Standard Z does allow this.

2.3.8 Loose Generics

ZRM informally requires that generic definitions not be loose:

A restriction must be obeyed by the definitions of generic constants for
them to be mathematically sound: the definition must uniquely determine
the value of the constant for each possible value of the formal parameters.
. . . [This] places a proof obligation on the author of a specification . . .

— [Spivey 1992, §2.4]

That proof obligation is rarely discharged by authors.

The reason for this restriction is discussed in [Spivey 1988, §4.1.1]. Standard Z
relaxes this restriction, which allows us to use loose generic definitions; we no
longer have to uniquely define each generic constant. However, it is important to
ensure that a generic is not loose when it is used:

• either, provide supplementary constraints to tighten it before it is used (al-
though such ‘nonconservative extension’ might cause difficulties for some
proof tools)

• or, use only the part of its definition where it is not loose (for example, a
generic function may be loose on part of its domain, if it is used only on parts
that are not loose)

2.3.9 Local Constant Declarations

ZRM restricts the use of == to the global level in non-generic declarations and
to (2nd edition) let declarations. This is an unnecessary irregularity. Standard
Z removes this restriction, and allows such an ‘equality declaration’ to be used
anywhere a ‘colon declaration’ is valid: the declaration x == e is equivalent to the
declaration x : {e}. This form of declaration has the advantage that the uniqueness
of the value of x is clear.

As a conseqence of merging schemas and expressions in the syntax, declaring a
schema S to be some set of bindings is just a special case of declaring x to be some
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set of values. So Standard Z uses the same notation for these declarations:

S == [ x1, . . . xn : X | P ]

U == S ∧ T

x == { x1, . . . xn : X | P }
y == 42

So Standard Z does not use the ‘=̂’ symbol for schema declaration.

When used in quantified predicates or definite description (or let) expressions, local
constant declarations provide a neat notation for expressing substitutions.

∃ x == 42; y == 1998 • p
µ x == 42; y == 1998 • e
let x == 42; y == 1998 • e

This generalisation makes the let notation redundant, but it is retained for back-
wards compatibility with ZRM (although only the expression form is retained, as
explained in section 2.4.4).

2.3.10 Axiom-parts as Predicates

ZRM’s ‘Predicate’ paragraph is not present in Standard Z; since the declaration
part of an axiomatic definition may be empty, a predicate constraint can be written
as

P

Alternatively, if the predicate is not meant as a constraint, but is rather the state-
ment of some property of the specification, it can be written as a conjecture (see
§2.3.4 and §5).

ZRM permits newline or semicolon to separate outermost conjuncts in an Axiom-
part. Standard Z removes the unnecessary irregularity that distinguishes Axiom-
parts from other predicates by permitting newline or semicolon between any predi-
cates to mean conjunction, and giving newline and semicolon very low precedences,
so that any such new uses of newline and semicolon must be parenthesized. So the
following are permitted in Standard Z, and are equivalent:

. . .

∃ S •
P ; Q

. . .

∃ S •
P
Q

. . .

∃ S •
(P)
∧ (Q)
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2.3.11 Soft Newlines

Newlines serve two different purposes in Z: hard newlines separate declarations and
conjuncts; soft newlines merely break up long formulae onto multiple lines without
themselves having any semantic significance. In ZRM, newlines are soft if they
are adjacent to an infix operator. In Standard Z, newlines are also soft if they
follow a prefix operator or precede a postfix operator. This recognises the other
circumstances where the next line must contain a continuation of the same formula.
A particular case that was not breakable in ZRM is the application expression

veryLongFunctionExpression veryLongArgumentExpression

which in Standard Z, with the addition of parentheses, can be broken.

veryLongFunctionExpression(
veryLongArgumentExpression)

2.3.12 Lexis of Words

In the ZRM syntax, Word is a terminal symbol. There is some informal description
of a Word being made up of letters, digits, underscores and other symbols, but it
is imprecise about what those are and how they can be put together. Standard
Z gives a formal definition of Word, referring to the symbols of the Unicode stan-
dard [Unicode 1996]. It is a very flexible definition, and largely compatible with
traditional practice.

2.3.13 Toolkit

A major inadequacy in ZRM’s toolkit is the omission of a formal definition of
the numeric operations. This omission is resolved in Standard Z as follows. The
integers Z are replaced as the basis for numeric operations by the set A (pronounced
“arithmos”), representing an unrestricted concept of number; A is introduced in
the prelude section. The prelude section also introduces N, 0, succ, and addition
and multiplication of naturals, which gives the minimum necessary to provide a
basis for the semantics of natural number literals in the Z base language. The
prelude section is written in Z like any other section, but is regarded as part of the
Z base language for the purpose of the semantic definition; it is an implicit parent
of every other section.

The integers Z and further properties of the natural numbers N are defined in
the Standard toolkit. Having these sets as subsets of A and making the numeric
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operations be partial functions on A avoids having either to introduce distinct
names for the operations on different subsets or to introduce an overload resolu-
tion mechanism into Z. (The ad hoc overloading introduced by loose generics is
inappropriate in this context.) The numeric functions and relations declared in
[Spivey 1992, §4.4], except succ, have had their domains widened where appropri-
ate, while retaining their ZRM meanings for integers. This allows their definitions
to be widened to cope with other kinds of numbers, such as reals R. We have
availed ourselves of this opportunity in this catalogue.

The Standard toolkit also revises the ZRM toolkit in other small ways. The
meanings of most definitions remain unchanged, though the domains of some are
widened.

2.4 Incompatibilities

This section lists backwards incompatibilities between ZRM and Standard Z arising
from the changes discussed in the previous section. For each incompatibility is
given an explanation of what it is, a rationale for why it exists, and some notes on
how instances of it can be detected and rectified.

2.4.1 Singleton Sets

The notation {i}, where i is the name of a schema, is parsed differently: ZRM
parses it as a set comprehension, whereas Standard Z parses it as a singleton set
extension. (In ZRM, the set extension (set display) containing a single schema
reference is written {(i)}.)

Standard Z permits any schema-valued expression to be written wherever ZRM
permits only a schema reference, so the potential ambiguity between singleton
set extensions and set comprehensions is broadened to expressions matching the
pattern {e}. Since e can contain parentheses, the ambiguity cannot be resolved in
the way ZRM resolves it. (Where e is not a schema name, both parse {e} as a set
extension.)

The type of the ZRM set comprehension {i} is that of a set of bindings, whereas
the type of the Standard Z set extension {i} is that of a set of sets of bindings, so
a typechecking tool will detect and report most instances of this incompatibility.
The Standard Z coercion to a set comprehension is to write {i | true}. The value
of the set comprehension is just i , and that equivalence holds in ZRM notation too,
so another translation from ZRM to Standard Z is just to drop the set brackets.
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2.4.2 Decorated References to Schemas

Any decoration on a reference to a schema must be separated from the schema
name.

The merging of schemas and expressions has included the merging of the name-
spaces of schema names and other names, so a schema can now be defined with
a decoration within its name. For each expression comprising a name with a
decoration, there are two possible intentions and hence interpretations: either the
name refers to a schema declaration in the environment and the decoration is to
be applied to the components of that schema, or the decorated name refers to a
schema declaration in the environment whose name is itself decorated. Standard
Z must be able to express either intention, whereas ZRM-compliant specifications
have only the former possibility.

Standard Z distinguishes the two intentions by the presence or absence of separation
between the name and decoration. That separation can be either white space
or parentheses around the name. For example, consider the parentheses in the
following.

S == [ x : N ]

S ′ == [ y : N ]

T == (S )′ ∧ S ′

The expression (S )′ is a reference to schema S with its components decorated, so
(S )′ = [ x ′ : N ], whereas the expression S ′ is a reference to the schema S ′. So
T = [ x ′, y : N ]. The decoration expression (S )′ could equally be written S ′ (note
the space).

Separation is needed to get the ZRM interpretation, but ZRM specifications might
not have that separation. If there is no white space, then a type-checking tool will
report that the decorated schema name is not declared.

This backwards incompatibility could be avoided by transforming undeclared dec-
orated references to decoration expressions, distributing the minimum number of
strokes from the references to the decoration expressions to give a type correct
result. However, reliance on this transformation in new specifications would make
those specifications less clear for readers, and the transformation would complicate
both tools and the standard. Use of separation in decoration expressions should
be at least encouraged.
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2.4.3 Decorated References to Generic Schemas

The decoration and instantiation on a reference to a generic schema is reversed,
for example, ZRM’s S ′[N] becomes in Standard Z S [N]′.

ZRM treats both the decoration and the instantiation as part of a schema reference,
requiring them to be written in that order. Standard Z requires the instantiation
to be on the reference, but the decoration could be on any schema, and so the
decoration must follow the instantiation.

A syntax checking tool will recognise a decoration expression, and will then be able
to recognise an instantiation list (that being distinct from a schema construction
expression, and can appear only in different contexts to generic parameter lists),
but will be unable to recognise their juxtaposition, so a syntax error is guaranteed.
The decoration and the instantiation must be reversed.

2.4.4 let on Predicates

The let notation introduced in ZRM cannot be used as a predicate in Standard Z.

In ZRM, in a context where a predicate is expected, a let with a schema name
after its • can be parsed as either a let expression used as a predicate or as a
let predicate with a schema name used as a predicate, but both have the same
meaning. In Standard Z, any schema expression can be used after the •, and so
there can be free variables in that part, leading to different meanings depending on
whether the let is taken to be an expression or a predicate. So Standard Z cannot
have both let expressions and let predicates. Neither is needed, thanks to local
constant declarations. The expression form is retained, as it allows some uses of
µ, less familiar to non-specialists than ∃, to be avoided.

A syntax checking tool will detect some uses of let on predicates, but might mistake
some uses of let on relational predicates as let on the leading expression. Each use
of let on a predicate should be replaced by ∃ (or by ∃1 or ∀ since all mean the same
given that the quantified declarations are all == declarations).

2.4.5 Renaming on Theta Expressions

The square-bracketted renaming notation on theta expressions, that was intro-
duced in ZRM, is parsed differently in Standard Z.

The Z Standard’s merging of the syntaxes of schemas and expressions has resulted
in a single schema renaming production that permits renaming of any expres-
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sion, with the type constraint that the expression be a schema. The renaming
production has lower precedence than that of θ, so θS [new/old , . . .] is parsed as
(θS )[new/old , . . .].

Since θS is a binding, not a schema, and renaming is permitted only of a schema
not a binding, the renaming of θS will always be detected as a type error. The
ZRM θS [new/old ] denotes the binding 〈| old == new |〉. (It is interesting to note
that the effect of the notation is not to rename the name on the left of the == but
rather to substitute for the value on the right.) That same binding can be built in
Standard Z using the notation let old == new • θS (which with the addition of
surrounding parentheses is valid in ZRM too).

2.4.6 Underlined Infix Relations

The underlining notation for infix relational operators, introduced in ZRM, cannot
be used in Standard Z.

In ZRM, there is no way of introducing new operator notation, so instead each use
of an identifier as an infix relation can be underlined to make clear that it is being
used as an infix symbol. In Standard Z, operator template paragraphs provide a
way of introducing new operator notation, so there is no need to mark uses of it as
such. Moreover, the underlining notation has not caught on, and it does not help
with operators other than infix relations.

A syntax checking tool will detect all uses of underlining notation. Each under-
lined infix relational operator should be declared in an earlier operator template
paragraph.

2.4.7 Operator Precedences

Table 2.2 enumerates the relative precedences of the predicate and expression no-
tations in ZRM and Standard Z, from lowest at the top to highest at the bottom,
revealing some differences. Schema expression notations of ZRM are omitted, as
they appear in separate contexts. The relative precedences of ZRM’s schema cal-
culus operations are, from lowest to highest, >>, o

9, \, �, ⇔, ⇒, ∨, ∧, pre, ¬ .

Operator templates cause several rows of the table to appear to be different, but
in fact the only change in relative precedence caused by them is that between
juxtaposed function applications and postfix functions . The merging of schema
expressions with expressions is the cause of most of the differences. Many schema
expressions use the same operators as quantified or logical predicates. In Standard
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ZRM Standard Z
newline

• •
| |
; ;
: : ==
⇔ ⇔
⇒ ⇒
∨ ∨
∧ ∧
¬ ¬
predicate pre (section 2.5.2)
prefix and infix relations relational predicates
if then else if then else

>>
o
9

\
�
pre

infix generics
×
infix functions operator templates,
P with ×, P, etc, at
prefix generics same precedence
(− )
( (| |))
juxtaposed function application juxtaposed function application
postfix functions

decoration
renaming

selection selection
θ θ

Table 2.2 Operator precedences

Z, one of these schemas used as a predicate is equivalent to the corresponding pred-
icate involving the operand schemas used as predicates. By using the same prece-
dences, that ambiguity can be resolved arbitrarily. The remaining schema opera-
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tors (>>, o
9, \, �, pre) are given precedences adjacent to those of other expression-

forming (functional) operators, and hence bind more tightly than they do in ZRM.
The ZRM column omits some operators (namely newline, ==, decoration, and
renaming) because ZRM notation permits their use in only restricted contexts.

Type errors are likely as a result of unintended parses, but are not guaranteed.

2.4.8 Theta Expressions

Standard Z requires the types of components in the operand schema to be the same
as the types of the same names in the current environment, unlike ZRM.

Mismatching types is likely to be indicative of a mistake, and, in those cases where
it isn’t, binding extensions provide an alternative notation.

A typechecker will detect and report all such problems.

2.4.9 Lexis of Words

The improvements in the lexis of Words (section 2.3.12) leads to a small incom-
patibilitiy. For example, λx is lexed as a single word.

ZRM views λ as a symbol and x as a letter, whereas Standard Z inherits Unicode’s
classification of both of them being letters.

Wherever two words are parsed as one, or one word is parsed as two, syntax or
type errors are likely to result. White space should be inserted, e.g. λ x , or the
single word renamed, as appropriate to conform to Standard Z.

2.5 Subtle Changes

This section discusses some subtle changes in the interpretation of certain notations
that nevertheless leave the semantics of ZRM notation unchanged.

2.5.1 Quantified Expressions

Consider the schema quantification expression ∀ S • T . ZRM requires all names
in S to be declared in T , too. Standard Z relaxes this requirement, for consistency
with the scope rules of quantified predicates. For example, the schema expression
∀ x : A • T , where T == [ y : A ], is erroneous in ZRM (because x is not declared
in T ), but acceptable in Standard Z.
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2.5.2 Preconditions

ZRM notation has pre predicates and pre schema expressions. Standard Z has
only pre expressions. ZRM pre predicates are parsed as expressions, and those
expressions are treated as schema predicates, giving a backwards-compatible effect.

2.5.3 Schema Instantiation

References to generic schemas no longer have to be given explicit instantiations, so
long as the instantiations can be determined from the context. On the other hand,
a reference to a generic schema in a theta expression is now permitted to have an
explicit instantiation.

2.5.4 Precedence of lambda and mu

ZRM notation requires all λ and µ expressions to be parenthesized. Standard Z
gives them precedences, so that parentheses can often be omitted. Parentheses are
still required in the case of a µ expression whose • part is omitted.

2.6 Conclusions

There are several changes in Standard Z relative to ZRM. These are at the cost of
some backwards incompatibilities. Although several pages have been devoted to
the incompatibilities, they are all relatively minor compared to the improvements.
It is hoped that the changes presented resolve satisfactorily the known inadequacies
in the notation of ZRM.

There are further changes that could be made to Z. Some suggestions include: user-
defined schema operators; operators for manipulating and removing decorations;
further lexical issues (fonts, 2-dimensional templates for ‘over-bar’-like symbols
and matrices, etc). However, Standard Z goes a long way to removing many of the
deficiencies that have become irksome as Z has increased in popularity and scope
of use.



Chapter 3

Patterns Catalogue Conventions

These instances could be supplemented by many others, but they will serve to

indicate how slow a process is the evolution of workable symbolism, and to point

out that the process is far from complete.

— entry on ‘Mathematical Notations’,
Encyclopedia Britannica, 14th edition, 1949.

3.1 Background

The Z language is extensible. The ISO Standard includes a Standard Z Mathemat-
ical Toolkit (adapted from [Spivey 1992]), written in Z itself, which defines many
of the sets, relations and functions used in Z specifications. A user is at liberty to
add further new sets, relations and functions that may be used for a document,
or for all of a specification containing many documents, or for all of the work of
a particular author or at a particular installation, for example. (For example, see
the Application-oriented theory pattern in [Stepney et al. 2003].)

This Patterns Catalogue volume presents a larger Toolkit, different parts of which
we envisage would be useful to the majority of Z specifiers. It includes restatements,
enhancements and modifications of the definitions in the Standard Z Mathematical
Toolkit. The changes are of the following kinds:

1. alternative briefer definitions with identical effect

2. changes in the meaning of existing named sets, relations and functions

3. names for new sets, relations and functions

23
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3.2 Generalisations

Standard Z introduces a new numeric type, whose most general form is given by
the set A, with subsets the integers, Z, and the natural numbers, N. In addition,
we introduce further subsets: the real numbers, R, and the rational numbers, Q.
We have the subsetting

N ⊂ Z ⊂ Q ⊂ R ⊆ A

where all of these sets are considered to be of the same type. We give axioms
to characterise R and its subsets, leaving the possibly wider set A undescribed.
Defining numbers in this way means that it is permissible for a Z specifier to widen
the set of numbers while preserving all the properties we give here.

We have generalised most functions and relations that use numbers, and have
introduced some new ones. All such modified relations and functions have their
meaning extended over a wider domain than previously stated. This applies mainly
to functions with numeric parameters, and takes three forms:

1. functions and relations involving integers have been generalised to allow real
parameters wherever appropriate

2. functions and relations on finite sequences have been generalised to allow
infinite sequences wherever appropriate

3. functions and relations involving any sort of number are stated in a way
which defines their meaning for parameters in the intended domains, but
leaves unstated the actual extent of the domain, so that a user may add to
the meaning of the function or relation without falsifying the axioms of this
Toolkit

The new versions here are supersets of the narrower versions in the Z Standard.
This means that existing legal Z specifications remain legal except insofar as they
explicitly refer to domains and ranges of standard functions and relations.

These generalisations cannot make any particular proof harder than it was before.
This is because any properties that are true under the Standard Z Toolkit definition
with the narrower domain remain theorems applicable to at least that domain, and
once the old definitions are proved to be subsets of the new, a task that need be
done once only, all proofs can be inherited. To work entirely within the narrower
domains, one can carry on exactly as before.
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3.3 Criteria for inclusion of definitions in the toolkit

When considering desirable toolkit content we need to remember the needs of
several categories of user, such as specifiers, specification readers, tool-builders,
and textbook writers. For each of these we can consider the impact of new toolkit
content at successive levels of Z:

The lexical level. There is no problem when a toolkit gives meaning to ordinary
alphabetic names, but wherever there is the introduction of new symbols, work
is made for tool-builders. It also raises the familiarisation load for, in particular,
readers. Learning the funny characters is off-putting to Z novices, and it seems
that even experienced Z users are near the limit of what they want to remenber.

We introduce new characters and symbols only where they are already familiar in
mathematics, (such as π) or, sparingly, where there is a real need. In particular,
there does not seem to be a sufficient case for the provision of a large number of
special characters for use with bags.

The syntax and type levels. There should not be a problem; our toolkit is
written in Z, so tools can just use the definitions.

The semantics level. It is crucially important that all toolkit definitions are
consistent, since otherwise all specifications using them are inconsistent too. Apart
from that, provision of extra toolkit definitions makes no difference to specifications
in which they are not used. Where they are used, having a definition in the toolkit
rather than in the specification itself is an effective form of specification reuse. The
development of laws about toolkit definitions should raise the effective power of
proof about specifications.

The names in scope. If the toolkit gives meaning to a name, it is undesirable,
even if legal, to use that name globally for anything else. Names chosen for toolkit
definitions should either be well-established in mathematics, like cos , or sufficiently
long and explicit that accidental reuse is unlikely, like totalOrder . Note that if a
specification makes frequent use of a concept which is in the toolkit with a long
name, it is trivial for the specifier to give it a short synonym.

The cognitive and credibility level. It is important not to burden the toolkit
with anything that is going to be perceived as silly or meaningless or ill-designed.
This judgement, however, can only be made by experienced Z people who have
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taken the trouble to understand what a proposed new definition means. We should
not exclude anything of value just because it is unfamiliar to novices.

Redundant modes of expression. There can never be a canonical way of using a
notation as powerful as Z, so there is always scope for taste in the way specifications
are written. Nevertheless we should not add any definitions whose only effect is to
allow an alternative to existing forms, unless they also allow some specifications to
be shorter or more readable, or proofs easier.

Let us also give some positive reasons for including things in the toolkit.

• A useful concept is well-established in mathematics, but the definitions in the
literature differ in detail (for example, totalOrder). A standardised definition
allows all Z users to speak the same language.

• A concept is well-established in mathematics, but the Z community, although
showing a need for it, has not grown accustomed to expressing it in Z (for
example: the road leading to the eventual specification of π in §33). With
these well established concepts available in this toolkit, specifiers should find
it easy to add further such definitions for themselves.

• A concept is well-established in mathematics, and can be used as a brief and
elegant way of defining concepts that are to be included anyway (for example,
monoids and groups, used in the definition of numbers).

• A concept closes up the algebra of some part of Z, or improves the semantic
neatness of the system (for example, symmetric set difference).

3.4 Layout

Each of the toolkit chapters introduces several constructs, in the form of patterns.
Each pattern has the following structure:

Name of the pattern
Intent
A short description of what the pattern is for.

Syntax/Definition
For the core language, the syntax of the construct. For the toolkit proper,
the mathematical definition of the constuct. These definitions may make use
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of earlier definitions, but there are no forward references.

Examples

A few simple examples to explain the syntax or definition of the construct,
with a diagram if appropriate; a few examples of its typical use in a spec-
ification. These latter examples may include forward references to other
constructs not yet defined: specification-before-use might be required for
definitions, but it can lead to a very unmotivated style of description.

Laws
Some of the laws that the construct obeys, that may be used when reason-
ing about a specification. These laws can also help in understanding the
properties of the construct. Again, laws sometimes make use of constructs
not yet defined. Any examples of laws are typeset in a smaller font, to help
distinguish them. Laws marked with � are proved in appendix D.

[Various]

Optional descriptions peculiar to the construct in question.
•

3.5 Design

When designing a toolkit, one is often abstracting from existing specifications,
trying to generalise the commonalities, and fill in obvious gaps. For example: we
include symmetric set difference to close the set operator definitions; we have many
associative operators, so this suggests including group; we have various distributed
operators, so it suggests the general distributeOverSequence.

Many of our definitions are generic. When writing a generic definition, there are
questions to bear in mind: does the axiomatic definition (of a relation or whatever)
depend on the properties of all the types in the declaration? If not, can it sensibly
be made generic in those types? If so, can it be sensibly generalised? Can it be
made into a family of definitions? Is it actually (close to) an existing mathematical
concept that can be reused? If there is a cluster of definitions, are there any more
definitions that are needed to complete the cluster in some way?

When using a particular set in a declaration, N say, questions include: are all its
properties needed (arithmetic, say) or just some of them (that it is ordered)? If
not all the properties are being used, generalise it to the less constrained set that
has just those properties needed.
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(Future versions of the Pattern Catalogue will capture these guidelines more for-
mally as process patterns.)

3.6 Presentation conventions

It was said of Jordan’s writings that if he had 4 things on the same footing (as a,

b, c, d) they would appear as a, M ′3, ε2, Π′′1,2.

— J. E. Littlewood, Littlewood’s Miscellany, 1986

3.6.1 Specification style conventions

In Z, there are often many different ways to say the same thing. When we give
examples, we try to exercise these differences, in order to show the available range.
However, there are times when this could be confusing, so then we stick to a
convention.

In particular, a naming convention is important for reuse, because it can make
things easier to understand in the first place, and easier to refresh your memory
when looking up a definition ([Barden et al. 1994, chapter 8], the Name consistently
pattern in [Stepney et al. 2003].) Designers of (good) object oriented class libraries,
for example, take great care over method naming across related classes.

3.6.2 Distinct elements

In some examples and laws, we wish to introduce several named elements, for
example x , y , z : X , and we wish these to be distinct. There are several ways we
could express this distinction, for example

• Say they are not equal: x 6= y 6= z 6= x
This does not extend well to many items.

• Say they are disjoint: disjoint〈{x}, {y}, {z}〉
This uses rather a lot of symbols for such a simple concept.

• Say how many of them there are: #{x , y , z} = 3
This is the style we use.

3.6.3 Diagramming conventions

A diagram is not a definition, just an example. We use conventions, described in
appendix A, to make these examples more uniformly understandable.
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There is a great danger with using a diagram, as with using any other example,
that more will be read into it than is intended. The most obvious danger is that
a diagram is finite, and hence ‘finiteness’ may be thought to be a distinguishing
property. This is not so. Although on occasion there seems to be a vague assump-
tion in some specifications that sets are naturally finite, with funny special cases
being infinite, in reality, the opposite holds: sets known to be finite are the special
case.

3.6.4 Global naming conventions

External names affect the meaning of a specification. They are often chosen to be
quite long, so as not to clash unexpectedly with existing names. In this catalogue,
textual global names (as opposed to symbolic ones) are written in a roman (non-
italic) font. This helps to distinguish them visually (although not formally) from
local names, and also, in large specifications, from user-introduced global names.

We also use a capitalisation convention to distinguish different kinds of definitions:

• given sets (including free types): ALL CAPITALS

• schema names: UpperStartMixedCases

• all other names: lowerStartMixedCase or symbolic

Sometimes a concept being specified already has a well-known name that does not
obey our capitalisation convention. In such a case we use the well-known name,
but write it in a sans serif font, to indicate that our convention is not being used.
For example

OPCODE ::= AND | TAD | ISZ | DCA | JMS | JMP

3.6.5 Local naming conventions

We use an italic font for local names. Subscripts are used to indicate a particular
subset of the more general set.

• meta-parameters: for syntactic elements that cannot be quantified over or
made generic in the core language: E for an arbitrary expression; N for an
arbitrary name

• generic parameter: [X ,Y ,Z ] generally; [L] for a labelling parameter; [†S ,T ]
for type constrained generics

• given set values: x , y , z : X ; y : Y ; l : L
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• set valued: a, b, c : P X ; α, β : P(P X )
non-empty sets: a1; finite sets: af ;

• pair valued: p, q : X × Y

• relation valued: r , s , t : X ↔ Y ; ρ, σ : P(X ↔ Y )

• order valued: l : order X ; ≺ : irreflexiveOrderX ; 4 : reflexiveOrderX

• function valued: f , g , h : X 7→ Y
total functions: ft ; injections: fi ; surjection: fs ; bijection: fb .

• sequence valued: s , t , u, v : seqX

• bag valued: b, c : bag X

• natural valued: n,m : N
• prime valued: p : prime

• integer valued: i , j , k : Z
• real valued: x , y , z : R

Dashes are used for variables with a similar role. For example, we use x , y , y ′ if y
and y ′ have a similar relationship to x , but would use x , y , z if they do not.

The name lists above overlap (for example, b could be a set valued or bag valued
name), but, since a name is used only in the scope of a declaration, it is clear from
such context which one is meant.

3.6.6 Consistency

A foolish consistency is the hobgoblin of little minds.

— Ralph Waldo Emerson, ‘Self-Reliance’, 1841

It is important to use conventions consistently, because this aids readability and
understandability. However, it is also important to remember the reasons for these
conventions. Where their use would in fact decrease readability, possibly because
two conventions clash confusingly, they should not be followed slavishly. On those
rare occasions in what follows, we abandon the conventions above, and use a more
flexible approach.
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3.7 Generic parameters

3.7.1 Implicit generic parameters

Many of the definitions we give are generic; on use the generic parameters can be
instantiated with some particular set, or left implicit, in which case they default
to the type, which is usually what is wanted. In only a few circumstances is it
necessary to supply actual generic parameters, in order to provide sufficient type
information. On rare occasions a piece of Z may be more understandable when
generic parameters are given; for example, when an empty set appears twice, with
different instantiations:

X = ∅ ⇔ P1 X = ∅

On such occasions only, we give explicit instantiation:

X = ∅[X ] ⇔ P1 X = ∅[P X ]

3.7.2 Generic schemas

In several places we define a compound mathematical structure using a schema to
gather together the various components. For example, Homomorphism (§21) and
Group (§23).

These structures are generic, and involve various sets and functions over those sets.
For example, we choose to define a Homomorphism using the following generic
schema:

Homomorphism0[X ,Y ]
a : P X ; �x : X × X 7→ X
b : P Y ; �y : Y × Y 7→ Y
h : X 7→ Y

a2× C ( �x ) ∈ a × a → a

b2× C ( �y ) ∈ b × b → b

a C h ∈ a → b

∀ x , y : a • h(x �x y) = h x �y h y

We use the generic parameters, here X and Y , to capture the types of the sets,
and we also explicitly define sets of interest, here a and b, requiring them to be
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subsets of the relevant generic sets. We then require the functions to be total only
on the possibly smaller explicit sets a and b.

We can then state that some particular sets and functions form a Homomorphism
as:

∃Homomorphism0[A, A] • a = R+ ∧ ( �x ) = ( ∗ )
∧ b = R ∧ ( �y ) = ( + )
∧ h = ln

We could have chosen a different definition, that takes the generic parameters to be
the sets of interest, and requires the functions to be total on the generic parameter
sets. For example:

Homomorphism1[X ,Y ]
�x : X × X → X
�y : Y × Y → Y

h : X → Y

∀ x , y : X • h(x �x y) = h x �y h y

We would have then stated that some particular set and function form a Homomorphism
as:

∃Homomorphism1[R+, R] • ( �x ) = (R+ × R+) C ( ∗ )
∧ ( �y ) = (R× R) C ( + )
∧ h = (R+ × R+) C ln

Although our choice leads to a slightly longer definition, it results in simpler use:
we can define various structures with functions that have been defined over wider
sets without having to restrict them at the point of instantiation.

3.7.3 Generic conjectures

(In this catalogue, we use an extended conjecture syntax; see §5, Conjectures :
variant for details.)

There are some subtleties in the definition and instantiation of generic conjectures.
Consider a generic theorem such as

[X ,Y ] f : X → Y ` dom f = X
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and consider trying to use it to prove the conjecture

f : N → N ` dom f = N

Leaving the generic parameters of dom implicit it appears that we can do the
proof. But once the parameters have been instantiated, we see that the theorem
is actually

[X ,Y ] f : X → Y ` dom[X ,Y ]f = X

and the conjecture is actually

f : N → N ` dom[A, A]f = N

and so the theorem is inapplicable. If instead we write the theorem as

[X0,Y0] X : P X0; Y : P Y0 ` ∀ f : X → Y • dom f = X

then on instantiation it becomes

[X0,Y0] X : P X0; Y : P Y0 ` ∀ f : X → Y • dom[X0,Y0]f = X

and it is now applicable.

We choose not to clutter our conjectures in this way. If such a facility is required,
any of our conjectures, which are of the form

[X , . . . ,Z ] S ` P

may be recast as

[X0, . . . ,Z0] X : P X0; . . . ; Z : P Z0 ` ∀S • P

as required.

Do I contradict myself?

Very well then I contradict myself,

(I am large, I contain multitudes.)

— Walt Whitman, ‘Song of Myself’, part 51, 1855

3.8 Loose generics

As we mentioned in §2.3.8, Standard Z allows us to use loose generic definitions.
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3.8.1 Extendable definitions

Our later definitions use A, a set of numbers big enough to contain at least the
reals, and with enough freedom to be extendable in different ways by different
specifiers. When we define functions over As, we define them for no more than
reals, leaving the definition loose outside this set.

Even if we restrict ourselves to just real numbers, not all functions are defined
over all sets of reals. For example, the sum of a series (modelled as a labelled set
of numbers) is defined only if the series is convergent. Our approach is to give
a declaration wide enough to allow the operation on all labelled sets of As, but
to define it only on a subset, leaving it loose outside this set, allowing different
extensions as appropriate. So we declare such a sum operator as:

[L]
Σ : (L 7→ A) 7→ A

. . .

We have a style for defining functions in an extendable way. We define a total
function (often by using a λ-expression) over the subdomain of interest, and say
that it is a subset of the wider, loosely defined function.

[Y ]
op : A 7→ Y

( λ x : R • Exy ) ⊆ op

(Here Ex represents some expression involving x and y .) This allows some later
extension of the definition to a wider subdomain, but the definition within the
subdomain cannot be changed. Any such change must either remove a pair from
the relation, which would violate the subset condition, or add a pair to the relation,
which would violate functionality. (It cannot change a pair, becuase that would not
be an extension.) Hence a consistent change of the definition inside the subdomain
is not possible.

We also have a style for defining relations in an extendable way. Over the sub-
domain of interest we uniquely define the relation; outside the subdomain we leave
the definition loose. This allows some later extension of the relation to a wider
subdomain, but the definition within the subdomain cannot be changed.
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3.8.2 Example: loose choice function

The ability to define loose generics allows a simple form of operator overloading
and polymorphic definitions. An example of using a loose generic definition in this
way is the following choice function (suggested by Rob Arthan). It is loose in the
sense that it avoids specifying which component of the given pair is returned by
the function.

[X ]
pickFromPair : X × X → X

∀ x , y : X × X • pickFromPair(x , y) ∈ {x , y}

In combination with global constraints (which can be generic), loose generics pro-
vide an ad hoc overloading mechanism without any additional notation. For ex-
ample, different instantiations of the generic definition pickFromPair can be con-
strained to behave differently.

pickFromPair [N] = first
pickFromPair [R] = second

This paragraph outline reflects Standard Z’s view of a global constraint as being
an axiomatic paragraph with no declaration.

3.8.3 Example: polymorphic addition operator

Another example of using a loose generic definition to provide polymorphism is the
following addition operator (suggested by Jim Woodcock).

We can declare a generic operator

[X ,Y ]
op : X 7→ Y

and then extend its definition to cover the required types of arguments

∀ a : A • op a = Eab

∀ n : N • op n = Enm
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Hence the same operator name can be used for different types, with different pat-
terns of behaviour. The generic declaration requires it to be functional.

We later declare our arithmetic operators over the set of numbers A. We could
instead choose to define them generically, allowing them to be extended later for
use with a different type of argument, as

[X ]
+ : X × X 7→ X

and then numeric addition, matrix addition, and sequence concatenation (say)
could all use the same symbol.

∀ x , y : R • x + y = (definition of arithmetic addition)

∀m, n : M | compatible(m, n) • m + n = (definition of matrix addition)

[X ]

∀ s , t : seqX • s + t = (definition of sequence concatenation)

Style point: Although there is now the ability to write loose generics, the over-
loading that they enable has been little used in practice as yet. Such ‘operator
overloading’ should be used only for the same ‘kind’ of operation. There is poten-
tial for obfuscation, so use loose generics with care.

3.9 Operator template paragraphs

We exploit the introduction of operator template paragraphs in our style of spec-
ification. We usually specify relations and functions explictly, rather than using
quantifiers. For example, we specify the relation ‘not equal to’ with

relation ( 6= )

6= [X ] == { x , y : X | ¬ x = y }

rather than as
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[X ]
6= : X ↔ X

∀ x , y : X • x 6= y ⇔ ¬ x = y

and the function ‘set difference’ as

function 30 leftassoc ( \ )

\ [X ] == λ a, b : P X • { x : X | x ∈ a ∧ x 6∈ b }

rather than as

[X ]
\ : P X × P X → P X

∀ a, b : P X • a \ b = { x : X | x ∈ a ∧ x 6∈ b }

We are able to use these new forms because the operator template paragraphs
clearly distinguish between infix functions and infix relations. We feel that our
style of definition is superior to the quantified style because it is shorter; because
the proof that it defines something is immediate (whereas the quantifed style often
requires a less trivial proof that the object fulfilling the stated conditions actually
exists); and because the quantified form is more easily derived from the explicit
form than vice versa. We often provide the equivalent quantified form as a law.
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Core Language





Chapter 4

Core meta-language definitions

4.1 Introduction

Some constructs are part of the core Z language (that is, not defined in Z themselves
as part of a toolkit). Their syntax, type and meaning needs to be defined separately,
using some meta-language.

In this part we define the syntax of the core language constructs, and describe
their type and meaning where appropriate. (Future versions of this catalogue
will define the type rules and meaning functions, as done in the ISO Z Standard
document [ISO-Z 2002], and will include explanatory and tutorial material.)

It is useful to have laws about such constructs, and some are given in this part.

4.2 Syntax notation

The notation we use to describe Standard Z syntax is as follows. (The meta-
symbols used in the descriptions are given in typewriter font, to distinguish them
from similar-appearing Z symbols.)

• sequence: juxtaposition: a b c

• alternatives: separated by vertical bars: a | b | c

• optional: enclosed in square brackets: [ a ]

• zero or more: enclosed in braces { a }

41



Chapter 5

Specification, Section, Paragraph

Specification, Section

Intent

Provide a simple structuring mechanism, to permit reusable ‘toolkit’ sections to
be added to specifications.

Syntax

Specification ::= { Section }

A Standard Z Specification comprises a list of Sections.

A Section may have a header, which gives it a name, and if so may include one or
more parent sections (a Section without a header is ‘anonymous’). The body of a
section is a list of Paragraphs.

Section ::= [ section NAME [ parents NAME { , NAME } ] ]

{ Paragraph }

Meaning

For a Specification to be well-formed, each of a section’s parents must occur as a
previous section.

For backwards compatibility, an anonymous section (a single sequence of para-
graphs with no section header) is accepted as a single section with toolkit (the
Standard Z Mathematical Toolkit) as its sole parent. An anonymous section can-
not be the parent of any other section.

42
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The meaning of the whole specification is derived from the last listed section and
the inclusion of each of its parents, their parents, and so on. The Standard Z
Prelude (§29) is a default parent of every section.

Sections provide Standard Z with a minimal form of modularisation. It is not an
encapsulation mechanism: a section does not hide any of its paragraphs. So if a
section is included as a parent, all its global declarations become visible; there is
nothing equivalent to an ‘export’ clause.

Global redeclaration is not permitted, either within a section or across related
sections. A name may be included by different routes through the parent hierarchy
provided that it was originally declared in a single parent section.

The Standard Z toolkit, and the declarations we provide here, are composed into
one section per chapter.

•

Paragraph

Syntax

Paragraph ::= GivenSet

| FreeType

| AxiomaticDeclaration

| HorizontalDeclaration

| SchemaBoxDeclaration

| GenericAxiomaticDeclaration

| GenericHorizontalDeclaration

| GenericOperatorDeclaration

| GenericSchemaBoxDeclaration

| Conjecture

| GenericConjecture

| OperatorTemplate

There are three kinds of Paragraph:

1. Global declarations, which introduce new names, with their types and values,
or further constrain previously declared names. There are three kinds of
names that can be introduced:
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(a) given sets, either unconstrained, or constrained as free types (covered in
§9)

(b) simple declarations, including schemas as a special case

(c) generic declarations, including generic schemas as a special case

2. Conjectures, both simple and generic, which assert properties of the specifi-
cation.

3. Operator templates, which define the ‘shape’, precedence and associativity
of mixfix operators.

•

Simple declarations

Intent

There is one main form of simple declaration, the axiomatic declaration, with two
special cases, the horizontal declaration (capturing both of ZRM’s ‘abbreviation
definition’ and ‘horizontal schema declaration’), and the schema box declaration.

Syntax

AxiomaticDeclaration ::= AX SchemaText

HorizontalDeclaration ::= ZED EqualityDeclaration

EqualityDeclaration ::= DeclName == Expression

SchemaBoxDeclaration ::= SCH NAME SchemaText

Description

Standard Z’s axiomatic declaration is similar in concept to ZRM’s axiomatic dec-
laration, with the main changes being due to liberalisation of the syntax elsewhere:

• The declaration part may include ‘equality declarations’ as well as ‘colon
declarations’

• The declaration part may include schema expressions, as well as ‘schema
references’
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• The declaration part may be empty

The horizontal declaration can be used where a single name is being given a single
value (which may itself be set valued). A horizontal declaration

N == E

is equivalent to the axiomatic declaration

N == E

which is also equivalent to

N : {E}

The schema box declaration

N
S

is equivalent to the horizontal declaration

N == [ S ]

The vertical box form tends to be chosen for use where a schema definition is large,
in order to emphasise the extent of the formal text, and the horizontal form when
it is small, in order to save space.

•

Generic declarations

Intent

There are generic forms of each of the simple declaration paragraphs, allowing
the provision of generic parameters. The generic horizontal declaration form is
split into two kinds, one for simple names, one for mixfix operator names with the
generic parameters placed in their slots.
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Syntax

GenericAxiomaticDeclaration ::= GENAX [ Formals ] SchemaText

GenericHorizontalDeclaration ::= NAME [ Formals ] == Expression

GenericOperatorDeclaration ::= GenName == Expression

GenericSchemaBoxDeclaration ::= GENSCH NAME [ Formals ] SchemaText

Description

The paragraph

X x1 . . . xn Z == E

is equivalent to

[X , . . . ,Z ]
x1 . . . xn == E

(and similarly for other styles of templates).

Variant

We use schema-constrained generics [Valentine et al. 2000] in some of our laws.
These are generic parameters whose types are constrained to be schemas, allowing
us to express laws about general schemas in a natural manner.

The constrained parameters are written after a dagger in the generic parameter
list. So [X ,Y † S ,T ] indicates the usual unconstrained generic parameters X
and Y , and the variant schema-constrained parameters S and T . (Further type
constraints may be implicit in the use of S and T , for example, they might need
to have compatible signatures. Such constraints are inferrable. See [Valentine et
al. 2000] for details.)

•
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Conjectures

Intent

Express desired properties of a specification.

Syntax

Conjecture ::= `? Predicate

GenericConjecture ::= [ Formals ] `? Predicate

Meaning

A conjecture is valid if its predicate can be shown to be implied by the properties
of the specification, without itself contributing to those properties.

A conjecture is not required to be valid in a well-formed specification; it must
merely be well-typed. It is said to be a theorem if and only if it is valid.

Motivation

If one writes a predicate paragraph

Predicate

then the meaning of this paragraph is to restrict the specification to environments
where the Predicate is true. For example, we could introduce a number n

n : N

and then the predicate that n is even

n ∈ even

The effect of the predicate paragraph is to constrain n to be even.

We can have a paragraph that states the Predicate is true for all environments.
For example, there is always a number greater than n:

`? ∃m : N • n < m
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This conjecture does not constrain n to those values that have such a property.
Rather, it states that it should be true for all n (as constrained by the other
paragraphs) — it may require a proof to establish this fact. So a conjecture adds
no new constraints to the specification.

Variant

In our statements of laws later, we claim these are theorems (that they are true in
all environments) by dropping the conjecture question mark.

We also separate out declarations from the ‘body’ of the theorem. We use

D | P ` Q

as syntactic sugar for

` ∀ D | P • Q

and

[X ] D | P ` Q

as syntactic sugar for

[X ] ` ∀ D | P • Q

Examples

1. a : Z ` a . . a = {a}
2. [X ] α : P1 P X ; a : P X ` a \ ⋃α =

⋂{b : α • a \ b}
3. an invalid, but still well-formed, conjecture: ` 42 ∈ {1, 2, 3}

•
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Operator templates

Intent

Define general mixfix symbols, with specified associativity and precedence.

Syntax

OperatorTemplate ::= Category [ Assoc ] ( Template )

Category ::= relation | function | generic

Assoc ::= NUMBER ( leftassoc | rightassoc )

Template ::= [ ] NAME [ { Slot NAME } ] [ ]

Slot ::= | , ,

There must be at least one slot in the template.

Motivation

The operator template paragraph merges the separate ZRM categories of prefix and
infix relations (like disjoint and < ), left-associative infix and postfix operators
(like + and ∗), and generic prefix and right-associative infix operators (like F
and → ) into a single uniform mechanism.

It is not necessary to hardwire sequence brackets, relational image symbols, and
the right associative unary minus, into the syntax. They can each be defined using
a template in an operator template paragraph.

ZRM has a fixed table to define its operator precedence, that multiplication binds
stronger than addition, say. The Standard Z operator template paragraph provides
an extensible way to define precedence.

Table 5.1 summarises what is permitted. The precedences of the Standard Z toolkit
operators have the same order as in ZRM. ZRM is however more restrictive than
suggested by the table: relations and generics cannot be postfix, functions can-
not be declared to be prefix (they just are by default), and there are no nofix
(bracketting) operators.
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ZRM Standard Z

category relation, function, generic relation, function, generic
precedence infix functions 1..6, others

fixed by syntax
infix functions and generics
a..b, others fixed by syntax

associativity left or right, fixed by syntax left or right, user-defined
arity 1..2 1..n, operands and symbols

alternate
sequence arguments no yes

Table 5.1 Operators

Category

There are three categories of fixity paragraph, distinguished by the keyword rela-
tion, function or generic.

An operator’s category determines how applications of the operator are parsed: an
application of a relation operator is parsed as a relational predicate; an application
of a function operator is parsed as a function application expression; an application
of a generic operator is parsed as a generic instantiation expression.

Function and relation operators that are generic usually have their generic argu-
ments left implicit. If for some reason those arguments are explicit then they
appear in square brackets, in either ZRM or Standard Z.

Precedence and Associativity

The Assoc part of the template specifies precedence and associativity for the new
operator. It is required only for function and generic infix templates.

When applications of operators are nested, so that one operator application appears
as an operand in another operator application, the intended nesting can be made
explicit using parentheses. Alternatively, if no parentheses are used, the prece-
dence and associativity information determines how the applications are nested:
applications of operators with higher precedence bind more tightly than ones of
lower precedence; nested applications of infix operators with the same precedence
associate either to the left or right as declared. All operators sharing the same
precedence must have the same associativity.
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A left associative unary operator is simply a function application. An example of a
right associative unary operator is unary minus. Because it is right associative, the
expression - -x means -(-x ), as expected; if it were left associative it would mean
(- -)x , not what is wanted.

The operators in the Standard Z toolkit have precedences chosen to reproduce those
of ZRM as far as possible. Here, we take an infix generic (such as →) to bind less
tightly than Cartesian product ×. So A×B → C ×D means (A×B) → (C ×D).
This is equivalent to Cartesian product having a binding strength between 5 (that
of →) and 10 (that of the weakest binding infix functions).

Avoid making heavy use of precedences: although most readers are happy for
negation to bind more tightly than multiplication, which binds more tightly than
addition, more levels than this probably become confusing. Choose your own
operators to have one of the ‘standard’ precedences (for example, infix generics at
5), and use brackets as necessary.

Fewer brackets are needed with Standard Z than with ZRM. For example, in Stan-
dard Z P P P X means P(P(P X )); seq seq seq a means seq(seq(seq a)); F seq P1 a
means F(seq(P1 a)). In ZRM the unbracketed forms are all syntax errors.

Templates

The Template defines the ‘shape’ of the mixfix symbol. It is made of alternating
argument slots and words (parts of the symbol). For example, the relational image
template is (| |).

An argument slot can be a normal argument ( ), or a list argument( , , ). When
a template is used in a specification, each normal argument slot is filled with a
single expression, for example a template like � can be used as n �#b, and each
sequence argument slot is filled with a comma separated list of expressions, for
example a template like {|, , |} can be used as {| n, #b, 3, 42 |}. When the meaning
of the mixfix symbol is being defined, this comma separated list is treated as a
sequence of expressions. (See §34 and §39 for examples of this kind of template in
use.)

The use of arbitrary arity is subject to the restriction that operands slots and
symbol names must alternate, meaning that two operands cannot be consecutive
without an intervening symbol, and two symbols cannot be consecutive without an
intervening operand. An example of the latter restriction would be the consecutive
symbols else if (within the obvious operator), whereas writing them as a single
symbol elseif would be permitted.



52 Chapter 5. Specification, Section, Paragraph

Templates may begin or end either with an argument slot or with a word, giving
four possibilites:

• infix: begin and end with a slot; for example +

• prefix: begin with a word, end with a slot; for example disjoint

• postfix: begin with a slot, end with a word; for example (| |)
• nofix: begin and end with a word; for example 〈, , 〉

In Standard Z an operator name may be the name of an element or injection of a
free type, may be the name of a let definition, and may be selected from a binding.

Chaining

Chaining of relations in Standard Z is exactly as permitted by ZRM. Only infix
binary relations may be chained; so a chain may not commence with a prefix
relation, nor end with a postfix relation, nor can tertiary or higher relations appear
in a chain. (Technically, an approach could be developed in which these would all
be possible, but they would never be good stylistically, so are not supported in this
approach.)

Examples

1. infix relation, ‘not equal’: relation ( 6= )

2. infix function, ‘union’: function 30 leftassoc ( ∪ )

3. postfix function, ‘relational image’: function ( (| |))
4. postfix function, ‘relational iteration’: function ( up down), typeset

5. nofix function, ‘sequence brackets’: function (〈, , 〉)
6. nofix function, ZRM ‘bag brackets’: function ([[, , ]])

7. prefix generic, ‘finite sequence’: function (seq )

8. infix generic, ‘relation’: generic 5 rightassoc ( → )

9. in a free type: TREE ::= node | foo 〈〈TREE × TREE 〉〉
10. in a let definition: let foo == λ x , y : X • x � y

11. selected from a binding: (µ S ). foo where S == [ foo : . . . ]

12. chaining: a = b < c; x = y ∈ a ⊆ b
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Defining meanings

An operator template paragraph merely defines a new name: it does not define a
meaning for that name. The meaning has to be defined in the usual way, usually
in an axiomatic or generic definition of the name, or of decorated versions of the
name. (See the subsequent catalogue for copious examples.)

•



Chapter 6

Predicates

Students may also bring an owl OR a cat OR a toad.

— J. K Rowling, chapter 5, Harry Potter and the Philosopher’s Stone, 1997

A Z predicate either is true or is false (though sometimes we cannot say which).
That is, the logic of Z is two-valued. There are other possible treatments of predi-
cates, but they are not generally accepted in the Z literature nor recommended in
Standard Z. Specifications written on the assumption of the usual two-valued logic
are consistent with all alternatives that have been seriously proposed, and we keep
to that usual logic.

Predicate

::= Predicate ( NL | ; ) Predicate low-precedence conjunction
| ∀ SchemaText • Predicate universal quantification
| ∃ SchemaText • Predicate existential quantification
| ∃1 SchemaText • Predicate unique existential quantification
| Predicate ⇔ Predicate equivalence
| Predicate ⇒ Predicate implication
| Predicate ∨ Predicate disjunction
| Predicate ∧ Predicate conjunction
| ¬ Predicate negation
| Relation relation operator application
| Expression schema predicate
| true truth
| false falsity
| ( Predicate ) bracketed predicate

Operator precedence increases down the list: ∧ binds more tightly than does ∨,
which binds more tightly than does ⇒, which binds more tightly than does ⇔.

The laws given here are ‘generic’ in schema types. We write S , T for a general
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schema used as a declaration, and P , Q , R for a general schema used as a predicate.
Two predicates are equivalent (have the same truth values) when P ⇔ Q .

Most of these laws are elementary properties of predicates, discussed in any book
on logic; we do not prove them.

truth, falsity, and negation

Syntax

Predicate ::= ¬ Predicate

| true
| false

Laws

Law 6.1 The law of the excluded middle: a predicate is true precisely when it is
not false.

` true ⇔ ¬ false

[†P ] ` P ⇔ ¬ ¬ P

[†P ] ` P ∨ ¬ P

•

Conjunction and disjunction

Syntax

Predicate ::= Predicate ( NL | ; ) Predicate

| Predicate ∨ Predicate

| Predicate ∧ Predicate

Laws

Law 6.2 The newline and semicolon predicates are low-precedence conjunctions,
allowing conjuncts with operators of intervening precedences to be written with
fewer parentheses.
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[†P ,Q ] `
(P
Q)
⇔ (P) ∧ (Q)

[†P ,Q ] ` (P ; Q) ⇔ (P) ∧ (Q)

Law 6.3 Conjunction and disjunction are associative.

[†P ,Q ,R] ` (P ∧ Q) ∧ R ⇔ P ∧ (Q ∧ R)

[†P ,Q ,R] ` (P ∨ Q) ∨ R ⇔ P ∨ (Q ∨ R)

Law 6.4 Conjunction and disjunction are commutative.

[†P ,Q ] ` P ∧ Q ⇔ Q ∧ P

[†P ,Q ] ` P ∨ Q ⇔ Q ∨ P

Law 6.5 Absorbing true and false

[†P ] ` P ∧ false ⇔ false

[†P ] ` P ∧ true ⇔ P

[†P ] ` P ∨ false ⇔ P

[†P ] ` P ∨ true ⇔ true

Law 6.6 Conjunction and disjunction are idempotent.

[†P ] ` P ∧ P ⇔ P

[†P ] ` P ∨ P ⇔ P

Law 6.7 de Morgan’s laws (named for the British logician Augustus de Morgan,
1806–1871): negation pseudo-distributes through conjunction and disjunction.

[†P ,Q ] ` ¬ (P ∧ Q) ⇔ ¬ P ∨ ¬ Q

[†P ,Q ] ` ¬ (P ∨ Q) ⇔ ¬ P ∧ ¬ Q

Law 6.8 Conjunction and disjunction each distributes through the other.

[†P ,Q ,Q ′] ` P ∧ (Q ∨ Q ′) ⇔ P ∧ Q ∨ P ∧ Q ′

[†P ,Q ,Q ′] ` P ∨ Q ∧ Q ′ ⇔ (P ∨ Q) ∧ (P ∨ Q ′)

•
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Implication

Syntax

Predicate ::= Predicate ⇒ Predicate

Laws

Law 6.9 Implication can be defined in terms of disjunction and negation.

[†P ,Q ] ` P ⇒ Q ⇔ ¬ P ∨ Q

•

Equivalence

Syntax

Predicate ::= Predicate ⇔ Predicate

Laws

Law 6.10 Equivalence can be defined in terms of implication and conjunction.
Equivalence is implication in both directions; equivalence means the predicates are
either both true or both false.

[†P ,Q ] ` (P ⇔ Q) ⇔ (P ⇒ Q) ∧ (Q ⇒ P)

[†P ,Q ] ` (P ⇔ Q) ⇔ P ∧ Q ∨ ¬ P ∧ ¬ Q

•
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Universal quantification

Syntax

Predicate ::= ∀ SchemaText • Predicate

Laws

Law 6.11 If the predicate part is true, the entire universal quantification is true.
That is, ‘for every S , true’ is equivalent to true.

[†S ] ` ( ∀ S • true ) ⇔ true

Law 6.12 A predicate can be moved between the declaration part and the predi-
cate part of a universal quantifer. That is, ‘for every S constrained to satisfy P , it
also satisfies Q ’ is equivalent to ‘for every S , if it satisfies P then it also satisfies
Q ’.

[†S ,P ,Q ] ` ( ∀ S | P • Q ) ⇔ ( ∀ S • P ⇒ Q )

Law 6.13 Multiple declarations are equivalent to multiple quantifications.

[†S1, S2,P ] ` ( ∀ S1; S2 • P ) ⇔ ( ∀ S1 • ∀ S2 • P ) [no variable capture]

� Law 6.14 Universal quantification over the empty set is always true; universal
quantification over a non-empty set is equivalent to conjunction.

[X † P ] ` ( ∀ x : ∅[X ] • P ) ⇔ true

[X † P ] y : X ; a : P X `
( ∀ x : {y} ∪ a • P ) ⇔ ( ∃ x == y • P ) ∧ ( ∀ x : a • P )

So any law about universal quantification implies a corresponding law about con-
junction, by quantifying over a two-element set. Also, any law about conjunction
of similar conjuncts can be generalised to a law about universal quantification over
a non-empty finite set of such conjuncts (proof by induction on the size of the set).
The case including quantification over the empty set, or over infinite sets, is not
true in general.
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Law 6.15 Universal quantification distributes through conjunction.

[†S ,P ,Q ] ` ( ∀ S • P ∧ Q ) ⇔ ( ∀ S • P ) ∧ ( ∀ S • Q )

Law 6.16 A disjunct that does not depend on the quantified variable can be moved
outside a universal quantification.

[†S ,P ,Q ] ` ( ∀ S • P ∨ Q ) ⇔ P ∨ ( ∀ S • Q ) [P does not depend on S ]

[†S ,P ] ` ( ∀ S • P ) ⇔ P ∨ ( ∀ S • false )

•

Existential quantification

Syntax

Predicate ::= ∃ SchemaText • Predicate

Examples

1. ZRM’s let predicate can be rewritten as an existential quantifier:

let x1 == e1; . . . ; xn == en • P – ZRM only
≡ ∃ x1 == e1; . . . ; xn == en • P – Standard Z only
≡ ∃ x1 : {e1}; . . . ; xn : {en} • P

ZRM’s let predicate conflicts with the let expression when P is a schema, and
so is omitted from Standard Z.

Laws

Law 6.17 de Morgan’s laws for quantifiers: negation pseudo-distributes through
universal and existential quantification. (This law can be used to define existential
quantification in terms of universal quantification, or vice versa.)

[†S ,P ] ` ¬ ( ∀ S • P ) ⇔ ( ∃ S • ¬ P )

[†S ,P ] ` ¬ ( ∃ S • P ) ⇔ ( ∀ S • ¬ P )
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Law 6.18 If the predicate part is false, the entire existential quantification is false.
That is, ‘there is an S such that false’ is equivalent to false.

[†S ] ` ( ∃ S • false ) ⇔ false

Law 6.19 A predicate can be moved between the declaration part and the predi-
cate part of an existential quantifer. That is, ‘there is an S constrained to satisfy
P , that also satisfies Q ’ is equivalent to: ‘there is an S , that satisfies P and also
satisfies Q ’.

[†S ,P ,Q ] ` ( ∃ S | P • Q ) ⇔ ( ∃ S • P ∧ Q )

Law 6.20 Multiple declarations are equivalent to multiple quantifications.

[†S1, S2,P ] ` ( ∃ S1; S2 • P ) ⇔ ( ∃ S1 • ∃ S2 • P ) [no variable capture]

Law 6.21 Existential quantification over the empty set is always false; existential
quantification over a non-empty set is equivalent to disjunction.

[X † P ] ` ( ∃ x : ∅[X ] • P ) ⇔ false

[X † P ] y : X ; a : P X `
( ∃ x : {y} ∪ a • P ) ⇔ ( ∃ x == y • P ) ∨ ( ∃ x : a • P )

So any law about existential quantification implies a corresponding law about dis-
junction, by quantifying over a two-element set. Any law about disjunction of
similar disjuncts can be generalised to a law about existential quantification over
a non-empty finite set of such disjuncts (proof by induction on the size of the set).
The case including quantification over the empty set, or over infinite sets, is not
true in general.

Law 6.22 Existential quantification distributes through disjunction.

[†S ,P ,Q ] ` ( ∃ S • P ∨ Q ) ⇔ ( ∃ S • P ) ∨ ( ∃ S • Q )

Law 6.23 A conjunction that does not depend on the quantified variable can be
moved outside an existential quantification.

[†S ,P ,Q ] ` ( ∃ S • P ∧ Q ) ⇔ P ∧ ( ∃ S • Q ) [P does not depend on S ]

[†S ,P ] ` ( ∃ S • P ) ⇔ P ∧ ( ∃ S • true )

•
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Unique existential quantification

Syntax

Predicate ::= ∃1 SchemaText • Predicate

Laws

Law 6.24 A predicate can be moved between the declaration part and the pred-
icate part of a unique existential quantifer. ‘There is a unique S constrained to
satisfy P , that also satisfies Q ’ is equivalent to: ‘There is a unique S , that satisfies
P and also satisfies Q ’.

[†S ,P ,Q ] ` ( ∃1 S | P • Q ) ⇔ ( ∃1 S • P ∧ Q )

Law 6.25 Unique existence requires both the existence of some value that satisfies
the predicate, and that no other distinct value also satisfies the predicate.

[†S ,P ] ` ( ∃1 S • P ) ⇔ ( ∃ S • P ∧ ( ∀[ S | P ]′ • θS = θS ′ ) )

•

Schema predicate

Intent

A schema expression (§8) can be used as a predicate.

A schema expression denotes a set of bindings, where a binding is a relation between
names and their values. When a schema expression is used as a predicate, it must
be used in a context where those names have been declared (if not, the schema
predicate is ill-typed). Then the schema as predicate is true precisely when the
values of those names in the current context satisfy the schema property, that is,
if the current values of those names form one of the bindings in the set.
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Syntax

Predicate ::= Expression

Examples

1. Pythag == [ l ,m, n : N | l ∗ l = m ∗m + n ∗ n ]
S == [ m, n : N | P ∧ ( ∃ l : N • Pythag ) ]
S denotes those bindings of m and n that satisfy all of:
(a) the declaration constraint, of being natural numbers

(b) the constraint P

(c) the constraint that m ∗m + n ∗ n be the square of some natural number

Laws

Law 6.26 A schema as predicate is true precisely when the relevant current values
from the local environment form one of the bindings.

[†S ] ` S ⇔ θS ∈ S

•

Relation predicate

Syntax

Predicate ::= Relation

Relation ::= Expression ∈ Expression

| Expression = Expression

| TemplateRelation
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Definitions

Equality can be defined in terms of set membership. Two values are equal precisely
when one is in the singleton set containing the other

[X ] x , y : X ` x = y ⇔ x ∈ {y}

The meaning of an instantiated template relation can be defined in terms of set
membership. The instantiated template is equivalent to the tuple of instantiating
expressions being a member of the template relation.

[X ] x : X ; y : Y ; . . . ; z : Z `
T1 x T2 y . . . z Tn ⇔ (x , y , . . . , z ) ∈ (T1 T2 . . . Tn)

Examples

1. a ∈ {a, b}
2. a = b

3. 1 < 2

4. (1, 2) ∈ ( < )

5. ¬ finite prime

6. ¬ prime ∈ (finite )

7. disjoint〈prime, composite〉
8. 〈prime, composite〉 ∈ (disjoint )

9. 〈{0, 1}, prime, composite〉 partition N
10. (〈{0, 1}, prime, composite〉, N ∈ ( partition )

Laws

Law 6.27 Two sets are equal precisely when they have the same members

[X ] a, b : P X ` a = b ⇔ ( ∀ x : X • x ∈ a ⇔ x ∈ b )

•
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Schema Text

Syntax

SchemaText ::= [ DeclPart ] [ | Predicate ]

A SchemaText comprises an optional DeclPart and an optional Predicate.

The DeclPart declares variables and their types. If it is omitted (ZRM’s Schema-
Text does not allow it to be omitted), no variables are declared, and we get the set
containing the empty binding, {〈| |〉}, if the Predicate is true, or the empty set if
the Predicate is false.

The Predicate constrains the declared variables’ values. If it is omitted, it is equiv-
alent to true.

DeclPart ::= Declaration { ; Declaration }

The DeclPart declares variables and their types, in a semicolon separated list of
Declarations.

Declaration ::= DeclName { , DeclName } : Expression

| EqualsDeclaration

| Expression

Each Declaration is either a colon declaration, or an equals declaration, or an
Expression. (ZRM restricts such an expression to be a schema reference; with
Standard Z it can be any expression whose value is a set of bindings.)

Characteristic tuple

The characteristic tuple is the default value of an optional expression when omitted.

[†S ]
χ : P(P S × θS )

We provide a loose definition of this meta-operator, for the characteristic tuple of
a schema, to allow the type-correct statement of some laws. (For a full definition,
see the ISO Z Standard [ISO-Z 2002, §9.2].)

•
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Expressions

Expressions have types and values.

Expression ::= SchemaExpression

| LambdaExpression

| MuExpression

| LetExpression

| ConditionalExpression

| PowerSet

| CartesianProduct

| TupleExpression

| TupleComponentSelection

| Application

| Reference

| SetExtension

| SetComprehension

| ( Expression )

SchemaExpressions are covered in the next chapter. PowerSet and CartesianProduct
expressions are covered in §9.

Lambda expression

Intent

A lambda expression denotes a function (§21). The source elements are formed
from the characteristic tuple of those values satisfying the schema text declaration.
Each target element is given by the value of the expression in the context of the
value of the corresponding source element.

65



66 Chapter 7. Expressions

Syntax

LambdaExpression ::= λ SchemaText • Expression

Examples

1. succ = ( λ x : N • x + 1 ) = { x : N • x 7→ x + 1 }
2. swap = ( λ x : X ; y : Y • y 7→ x ) = { x : X ; y : Y • (x , y) 7→ (y , x ) }
3. S == [ x : X ; y : Y ]; swap2 = ( λ S • y 7→ x ) = { S • θS 7→ (y , x ) }

Laws

Law 7.1 A lambda function can be written as a set comprehension. (One reason
for using a lambda expression is that it is guaranteed to be a function, not just a
relation.)

[†S ] ` ( λ S • E ) = { S • χ S 7→ E }

Law 7.2 The domain of a lambda function is the set of all values satisfying the
schema text. (One reason for using a lambda function is that its domain is imme-
diate.)

[†S ] ` dom( λ S • E ) = { S • χ S } = S

•

Mu expression

Intent

A mu expression denotes a value, or element. The element is given by the value
of the expression in the context of the schema text, which itself must be unique (a
singleton set of bindings, hence ∃1 S • true).
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Syntax

MuExpression ::= µ SchemaText • Expression

| ( µ SchemaText )

Laws

Law 7.3 When the constructing expression is empty, the characteristic tuple is
assumed.

[†S ] ` ( µ S ) = µ S • χ S

•

Let expression

Intent

Introduce local declarations in an expression.

Syntax

LetExpression ::=

let EqualsDeclaration { ; EqualsDeclaration } • Expression

Definition

The let expression is equivalent to a µ expression:

let x1 == e1; . . . ; xn == en • E
≡ µ x1 == e1; . . . ; xn == en • E
≡ µ x1 : {e1}; . . . ; xn : {en} • E

•
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Conditional expression

Intent

The value of the conditional expression is the value of the first sub-expression
when the predicate is true, and it is the value of the second sub-expression when
the predicate is false.

Syntax

ConditionalExpression ::=

if Predicate then Expression else Expression

Laws

Law 7.4 A conditional expression can be written as an equivalent mu-expression.

[X † P ] a, b : P X `
( if P then a else b ) = ( µ x : {a, b} | P ∧ x = a ∨ ¬ P ∧ x = b )

•

Cartesian tuple expression

Intent

Construct a tuple. (This is isomorphic to the Schema binding extension, §8.)

Syntax

TupleExpression ::= ( Expression , Expression { , Expression } )

•
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Tuple component selection

Intent

Select the value of one component of a tuple. (Isomorphic to schema binding
selection, §8.)

Syntax

TupleComponentSelection ::= Expression . NUMBER

Motivation

Consider the Cartesian product a == X × Y × Z . This denotes a set of tuples,
one of which might be t = (x0, y0, z0).

With ZRM the direct way to select the y component of some tuple t is to write
( λ x : X ; y : Y ; z : Z • y )t = y0, or to define this λ-expression as a named
function and then use it.

This kind of selection is done quite often, so Standard Z has a new notation,
allowing us to express this example as t .2. In general, if e denotes an expression
whose type is that of a tuple, we can write e.n to select the nth component of that
tuple, where n is an unsigned base ten number literal whose value is between 1 and
the number of components of the tuple. This new facility is just an abbreviation
for the effective application of a λ-expression as given in the example above, which
is why n must be a number literal, rather than any more general expression.

This dot notation does not allow us to apply component extraction. So we still
need to define functions like first and second to do this. For example, if s is a
sequence of pairs, s : seq(X × Y ), then s o

9 first is the corresponding sequence of
the first elements of those pairs, seqX . We cannot write something like s o

9 ( .1)
for this.

•
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Function and generic application expression

Intent

Apply a function to its argument expressions, or instantiate a generic.

Syntax

Application

::= Expression Expression

| [ Expression ] NAME [ { Expression NAME } ] [ Expression ]

Examples

1. plain function application: f x

2. template function application: x + y

3. template generic application: x ↔ y

•

Reference expression

Intent

Refer to a variable name (possibly with any generic parameters explicitly instan-
tiated), or a number literal.

Syntax

Reference ::= RefName

| RefName [ Expression { , Expression } ]
| NUMBER

•
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Set extension expression

Intent

Write a set as an explicit list of its elements. (Also known as ‘set display’.)

Syntax

SetExtension ::= { Expression { , Expression } }

Laws

Law 7.5 A set extension has an equivalent set comprehension.

[X ] x1, . . . , xn : X ` {x1, . . . , xn} = { x : X | false ∨ x = x1 ∨ . . . ∨ x = xn }

•

Set comprehension expression

Intent

Define a set in terms of the properties of its elements.

Syntax

SetComprehension ::= { SchemaText [ • Expression ] }

Expanding the SchemaText into its two parts, we see that a set comprehension has
three main components:

{ [ DeclPart ] [ | Predicate ] [ • Expression ] }

The SchemaText declares variables and their types (in its DeclPart) and constrains
their values (in its Predicate part). The Expression is the constructing term, that
constructs the elements that form the set from those variables’ values.

All the parts are optional (except for two special cases noted at the end):
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• If the DeclPart is empty, no new names are declared, so any names used in
the other parts come from the surrounding environment.

• If the Predicate is empty, it is equivalent to true.

• If the Expression is empty, it is equivalent to the characteristic tuple of the
DeclPart .

• If the DeclPart is the only part present, it is not permitted to be a sin-
gle Expression, because {Expression} is viewed as a singleton set exten-
sion. To get a set comprehension of a single declaration expression, write
{ Expression | true }. (ZRM treats { S } as a set comprehension, and
requires {(S )} for a set extension, see §2.4.1.)

• If all the optional parts are missing, all that remains is { }, the empty set.
This is treated as a set extension.

Examples

• { x : Z | x > 0 • 2 ∗ x } = {2, 4, 6, 8, . . .}
• { x : Z • 2 ∗ x } = {. . . ,−4,−2, 0, 2, 4, 6, . . .}
• { x : Z | x > 0 } = {1, 2, 3, 4, 5, . . .}
• { [ x : Z ] | x > 0 • 2 ∗ x } = {2, 4, 6, 8, . . .}
• { [ x : Z ] | x > 0 } = {〈| x == 1 |〉, 〈| x == 2 |〉, 〈| x == 3 |〉, . . .}

Laws

Law 7.6 If the DeclPart is the only part present, the comprehension is equivalent
to the declared set, or Cartesian products of the declared sets. If the Predicate is
missing, it is equivalent to true. If the Expression is missing, it is equivalent to
the characteristic tuple of the Declaration.

[X ] ` { x : X } = X

[X ,Y ,Z ] ` { x : X ; y : Y ; z : Z } = X × Y × Z

[†S ] ` { S • E } = { S | true • E }
[†S ,P ] ` { S | P } = { S | P • χ S }

Law 7.7 x is a member of a set precisely when it is equal to one of the elements
in the set.

[X † S ] x : X ` x ∈ { S • y } ⇔ ( ∃ S • x = y ) [x not declared in S ]
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Law 7.8 Items in the declaration not needed to form the constructing term can
be moved into the predicate and existentially quantified over.

[†S ,T ,P ] ` { S ; T | P • E } = { S | ( ∃T • P ) • E } [T not referenced in E ]

•
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Schema Expressions

SchemaExpression ::= SchemaQuantification

| SchemaPropositional

| SchemaCombination

| SchemaRestriction

| SchemaRenamingExpression

| SchemaConstruction

| BindingConstruction

| BindingExtension

| BindingSelection

The value of a schema expression is the set of all bindings that obey its property.

In ZRM, schemas can be used as predicates and as expressions, but only in the
form of schema references. As mentioned earlier, this restriction is particularly
onerous in proof, because a schema reference cannot be expanded to its definition
whilst remaining syntactically correct.

The restriction can also clutter specifications with intermediate names, introduced
only to provide a name for a schema reference. For example, if there are two
schemas S and T , and their composition is to be used to constrain the predicate
part of a third schema, R, then an auxiliary schema needs to be introduced:

ScompT == S o
9 T

R == [ . . . | P; ScompT ]

With Standard Z, the syntax is more liberal, and so schema expressions can be
used throughout. The above example can be written more simply as

R == [ . . . | P; S o
9 T ]

74
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For example, consider a schema used to define an operation where most of the
state stays unchanged. Suppose we have a schema with many state components:

S == [ x1, . . . , xn : X | . . . ]

and we want to define an operation where only component xi changes, in the way
defined by some predicate P , and all the others remain the same (x ′j = xj , j 6= i).
In Standard Z, we could write

Opi == [ ∆S | P ∧ ΞS \ (xi , x
′
i ) ]

Standard Z still does not provide for user-definable schema operators. Also, the
use of ∆ and Ξ are still naming conventions, not schema operators; we cannot write
Ξ(S \ (xi)).

What is permitted Standard Z by using schema expressions can also be said in
ZRM by some other means, such as those illustrated above. The gain is in brevity
and directness. Many of the ideas are explained in [Valentine 1995].

Schema quantification

Intent

Restrict the signature and bindings of a schema.

Syntax

SchemaQuantification ::= ∀ SchemaText • Expression

| ∃ SchemaText • Expression

| ∃1 SchemaText • Expression

Definition

The type of all the quantifications is the schema type of the Expression with
all the names of the SchemaText hidden. The types of shared names must be
compatible. Standard Z allows there to be names in the SchemaText not present
in the Expression. (ZRM requires all names in the SchemaText to be present in
the Expression.)

existential schema quantification:
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The meaning of ∃ S • T is defined as follows. Let bs be a binding of S hiding
any names that are not in T , with values given in the context of the surrounding
specification.

Then the existential quantification expression is the set of bindings b of the correct
type (as defined earlier), that can be extended with some binding bs to form a
binding in T :

{ b : dom S −C T | ∃ bs : domT C S • bs ∪ b ∈ T }

This definition cannot be expressed in Z itself. We illustrate it in a Z-like notation,
as if we were using a model in which bindings were mappings from names to values.
So we indicate the sets of schema names as dom S and domT , and use domain
restriction to hide certain names. We use b1 ∪ b2 to indicate the binding formed
from combining the bindings b1 and b2; recall from the type condition that in this
case bs and b have no names in common.

unique existential schema quantification:

Using the same notation as above, the unique existential quantification expression
is the set of bindings b of the correct type, that can be extended with precisely one
of the bindings bs to form a binding in T :

{ b : dom S −C T | ∃1 bs : domT C S • bs ∪ b ∈ T }

universal schema quantification:

Using the same notation as above, the universal quantification expression is the
set of bindings b of the correct type, that can be extended with every binding bs

to form a binding in T :

{ b : dom S −C T | ∀ bs : domT C S • bs ∪ b ∈ T }

Examples

1. existential schema quantification is used to hide names, whilst respecting the
constraint.

2. Promotion pattern: GlobalOp == ∃∆Local • ΦUpdate ∧ LocalOp

3. Schema hiding: S \ (x1, . . . , xn) = ∃[ x1 : X1; . . . ; xn : Xn ] • S
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Laws

Law 8.1 The quantified schema expressions can be converted to quantified pred-
icates (where σ is the signature operator, §12)

[†S ,T ] ` ∃ S • T = [ σT \ σS | ∃ S • T ]

[†S ,T ] ` ∃1 S • T = [ σT \ σS | ∃1 S • T ]

[†S ,T ] ` ∀ S • T = [ σT \ σS | ∀ S • T ]

Law 8.2 de Morgan’s laws for schema quantifiers: negation pseudo-distributes
through universal and existential schema quantification. (This law can be used to
define existential schema quantification in terms of universal schema quantification,
or vice versa.)

[†S ,T ] ` ¬ ( ∀ S • T ) ⇔ ( ∃ S • ¬ T )

[†S ,T ] ` ¬ ( ∃ S • T ) ⇔ ( ∀ S • ¬ T )

Law 8.3 Unique existential schema quantification can be written using existential
and universal quantification. (Here it is assumed that S and T contain no dashed
components; if they do, some other decoration should be used.)

[†S ,T ] ` ∃1 S • T = ( ∃ S • T ) ∧ ( ∀ S ′ | T ′ • θS = θS ′ )

•

Schema propositional

Intent

Build schemas from component parts.

Syntax

SchemaPropositional ::= Expression ⇔ Expression

| Expression ⇒ Expression

| Expression ∨ Expression

| Expression ∧ Expression

| ¬ Expression
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Definition

schema conjunction:

The type of the schema conjunction is the union of the types of the two expressions.
The types of shared names must be compatible.

The meaning of S ∧ T is defined as follows. Let bs be a binding of S , and let bt be
a binding of T , with values given in the context of the surrounding specification.
Then the schema conjunction expression is the set of bindings formed from bs and
bt that are type correct:

{ b : σ0(S ; T ) | ∃ bs : S ; bt : T • bs ∪ bt = b }

This definition cannot be expressed in Z itself. We illustrate it in a Z-like notation,
as if we were using a model in which bindings were mappings from names to values.
The operator σ0 is the analogue in this notation of the Z signature operator σ (§12):
here σ0 produces the set of all possible bindings with names drawn from S and
from T . We use b1∪b2 to indicate the binding formed from combining the bindings
b1 and b2; recall from the type condition that in this case any names bs and bt have
in common are type compatible. Unions of bindings with different values for a
given name are excluded, because they are not in b.

schema negation:

The type of the schema negation is the same type as the expression.

The meaning of ¬ S is defined as follows. Let b be all the bindings of S , with values
given in the context of the surrounding specification. Then the schema negation
expression is the set of bindings of the same type as b, but excluding all those in
S :

[†S ] ` { b : σ S | b 6∈ S }

schema disjunction:

Schema disjunction can be defined in terms of conjunction and negation:

[†S ,T ] ` S ∨ T = ¬ (¬ S ∧ ¬ T )

schema implication:

Schema implication cab be defined in terms of disjunction and negation:

[†S ,T ] ` S ⇒ T = ¬ S ∨ T
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schema equivalence:

Schema equivalence is defined in terms of conjunction and implication:

[†S ,T ] ` S ⇔ T = (S ⇒ T ) ∧ (T ⇒ S )

Laws

Law 8.4 The schema negation can be converted to a predicate negation within a
schema. Note this is not simply negation of the predicate part of S : any implicit
predicates in the declaration part are also negated. This often results in a negated
schema (and consequently disjunctions, implications and equivalences) having more
bindings than ‘expected’.

[†S ] ` ¬ S = [ σS | ¬ S ]

Schema-as-Predicate ambiguity

If we have two schemas, S and T , and see a predicate such as S ∧ T , how should
we interpret it? Is it the schema conjunction of S and T , used as a predicate:
‘pred(S

∧
T )’? Or is it the logical conjunction of the predicates S and T : ‘pred S ∧

pred T ’?

In practice, it does not matter which interpretation is used. The Standard Z scope
rules and semantics have been carefully chosen so that, for all logical operators and
their corresponding schema counterparts, the meanings are the same.

•

Schema combination

Intent

Combine two operation schemas.

Syntax

SchemaCombination ::= Expression o
9 Expression

| Expression >> Expression
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Definition

schema composition:

Schema composition S o
9T is designed for use with operation schemas, where dashed

components of S (after states) are matched with undecorated components of T
(before states). The types of corresponding matched components must be the
same. The result is the conjunction of the schemas with the matched components
identified and hidden. Any unmatched components of the same name in S and T
must be of the same type and are merged. If the matched components are x , . . . , z ,
then

[†S ,T ] ` S o
9 T = (S [x0/x

′, . . . , z0/z
′]; T [x0/x , . . . , z0/z ]) \ (x0, . . . , z0)

schema piping:

Schema piping S >> T is designed for use with operation schemas, where compo-
nents of S decorated with ! (outputs) are matched with components of T decorated
with ? (inputs). The types of corresponding matched components must be the
same. The result is the conjunction of the schemas with the matched components
identified and hidden. Any unmatched components of the same name in S and T
must be of the same type and are merged. If the matched components are x , . . . , z ,
then

[†S ,T ] ` S >> T = (S [x0/x !, . . . , z0/z !]; T [x0/x?, . . . , z0/z?]) \ (x0, . . . , z0)

•

Schema restriction

Intent

Restrict the signature of a schema.

Syntax

SchemaRestriction ::= Expression \ ( DeclName { , DeclName } )
| Expression � Expression

| pre Expression
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Definition

schema hiding:

S \ (x1, . . . , xn) has a signature equal to that of S minus the hidden names (the
hidden names must be in the signature of S ). If Xi is the type of xi in the signature
of S , then

[†S ] ` S \ (x1, . . . , xn) = ∃[ x1 : X1; . . . ; xn : Xn ] • S

schema projection:

[†S ,T ] ` S � T = { S ; T • θT }

Projection restricts the schema S ∧ T to the signature of T . It gives the set of
bindings that conform to the signature of T , and whose values obey the constraints
of both S and T .

schema precondition: pre S has the components of S that are decorated with a
′ (after state) or ! (outputs) hidden. If A is the schema that is made from the
signature of these components of S , then

[†S ] ` pre S = ∃A • S

Examples

1. {〈| x == 1; y == 2 |〉, 〈| x == 2; y == 2 |〉} \ (x ) = {〈| y == 2 |〉}
2. pre[ ∆S ; x? : X ; y ! : Y ] = ∃ S ′; y ! : Y • S

•

Schema renaming expressions

Intent

Rename certain components in a schema.
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Syntax

SchemaRenamingExpression

::= Expression [ DeclName / DeclName { , DeclName / DeclName } ]
| Expression STROKE

Definition

schema renaming:

S [xnew/xold , . . . , znew/zold ] must have no duplicate old names, but may have dupli-
cate new names. The old names are replaced by the new names; any declarations
that are merged by repeated new names must have the same type.

schema decoration:

The schema expression has every name renamed by that name with a decoration
stroke added.

S ♥ = S [x♥/x , . . . , z♥/z ]

Here ♥ is a stroke (a ′, ?, !, or subscript digit).

Examples

1. [ x : X ; y : Y | P(x , y) ][z/x ] = [ z : X ; y : Y | P(z , y) ]

2. [ x : X ; y : Y | P(x , y) ][z/x ,w/y ] = [ z : X ; w : Y | P(z ,w) ]

3. [ x , y : X | P(x , y) ][z/x , z/y ] = [ z : X | P(z , z ) ]

4. {〈| x == 1; y == 2 |〉}[z/x ] = {〈| z == 1; y == 2 |〉}
5. [ x : X ; y : Y | P(x , y) ] ′ = [ x ′ : X ; y ′ : Y | P(x ′, y ′) ]

6. {〈| x == 1; y == 2 |〉} ′ = {〈| x ′ == 1; y ′ == 2 |〉}

•



83

Schema construction

Intent

Construct a schema from variable declarations and predicates constraining their
values.

Syntax

SchemaConstruction ::= [ SchemaText ]

The SchemaText is not permitted to be a single expression in this case.

Examples

1. [ x : N | x < 2 ] = {〈| x == 0 |〉, 〈| x == 1 |〉}
2. [ x : X | P ] = { x : X | P • 〈| x == x |〉 }
3. [ x , y : X | P ] = { x , y : X | P • 〈| x == x , y == y |〉 }
4. The empty schema [ ] and its schema negation [ | false ] act like boolean

variables when used as predicates (see §12, Boolean expressions).

5. One use of a schema with an empty declaration part is to name a complicated
predicate, which can then be used elsewhere.

•

Schema binding construction

Intent

Construct a binding from a schema and the values currently in scope. The schema
expression provides the names; the environment provides the values of those names.

Syntax

BindingConstruction ::= θ Expression { STROKE }
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Definition

The value of θE is the binding with names in the signature of the expression, and
values equal to those names. Those values are taken from the environment, and
must be type-compatible with the signature of the expression.

θE = 〈| x == x ; . . . ; z == z |〉

The value of θE ′ is the binding with names in the signature of the expression, and
values equal to those of the decorated names.

θE ′ = 〈| x == x ′; . . . ; z == z ′ |〉

Example

1. Promotion pattern: θLocal = global x?

2. Ξ convention: ΞS == [ ∆S | θS = θS ′ ]

3. The expression is a schema; the binding construction values need not obey
the constraints of that schema, only its type:

S == [ x : N ]

x == −3; x ′ == −5

θS = 〈| x == −3 |〉
θS ′ = 〈| x == −5 |〉

•

Schema binding extension

Intent

Write a single binding as an explicit binding of names to their values. (Isomorphic
to Cartesian tuple expression, §7.)
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Syntax

BindingExtension ::=

〈| DeclName == Expression { ; DeclName == Expression } |〉

Motivation

Consider the schema S == [ a : X × Y ; b : F X | a.1 ∈ b ]. This denotes a
set of bindings, all those values that satisfy the schema constraints (both those
constraints implicit in the declaration, and those explicit in the predicate part).

Assume that we want to define a particular element s of the set of all bindings
given by S . With ZRM we would do this using a µ-expression:

µ s : S | s .a = (x , y) ∧ s .b = {x , z}
µ s : [ S | a = (x , y) ∧ b = {x , z} ]

µ s : [ a : {(x , y)}; b : {{x , z}} ]

With the Standard Z ‘==’ notation, this last variant can be expressed more neatly
as

µ s : [ a == (x , y), b == {x , z} ]

or, slightly more briefly, using the binding notation, as

〈| a == (x , y), b == {x , z} |〉

In specifications, however, explicit bindings are seldom the best way to write such
an expression. For example, t ∈ S , where t is a binding, can equally well be
expressed as ∃ S • T , where T is the conjunct of the equalities corresponding to
t , as in:

〈| a == (x , y), b == {x , z} |〉 ∈ S

∃ S • a = (x , y) ∧ b = {x , z}

The latter form has the advantage that any number of components may be con-
strained, in any way, whereas the former requires them each to be given an explicit
value.

Explicit bindings are useful intermediate objects in formal proofs.
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Example: leap years

The Gregorian calendar, introduced under the authority of Pope Gregory XIII,
replaced the Julian calendar, introduced under the authority of Julius Caesar,
which had used the simpler leap year algorithm of ‘divisible by four’.

The new calendar was adopted at different times throughout the world; in those
parts where it was adopted first, 4th October 1582 (Julian) was followed by 15th
October 1582 (Gregorian). It was introduced in the British Empire in 1752 (the
English monarch had not been on good terms with the Pope in 1582) by which
time an adjustment of 11 days was needed because of counting 1700 as a leap year.
This sparked riots from people who had to pay their next quarter’s rents and taxes
sooner: “give us back our 11 days”. (Popular legend would have us believe that
our forebears rioted because they naively thought that they had had 11 days of
their lives stolen. However, they were not at all naive: they noticed that they had
had some of their money stolen!)

Because of the gap in numbering when the change occurred, and because the change
occurred at different times in different places (Greece, for example, adopted the
new calendar in 1923), calculating dates in the past may require one to specify
which calendar is being used. For example, in 1917 the ‘October Revolution’ in
Russia, still using the Julian calendar, was perceived in western Europe as taking
place in November.

[Reingold & Dershowitz 2001] is a good source of information about the intricacies
of calendars.

According to the Gregorian calendar, a leap year is any year divisible by four,
unless it is divisible by 100, unless it is also divisible by 400.

LeapYear
year : N1

year ∈ ({ n : N • 4 ∗ n } \ { n : N • n ∗ 100 }) ∪ { n : N • n ∗ 400 }

We require year to be positive. There was no year zero: year numbers move
inconveniently from 1 bc directly to ad 1 (the absence of a year zero explains why
the new millennium started in ad 2001).

MONTH ::= jan | feb | mar | apr | may | jun | jly | aug | sep | oct | nov | dec
monthName == 〈jan, feb,mar , apr ,may , jun, jly , aug , sep, oct , nov , dec〉
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Date takes into account the variable number of days in a month, including leap
years:

Date
day : 1 . . 31
month : 1 . . 12
year : N1

∃ daysInMonth == 〈31, if LeapYear then 29 else 28,
31, 30, 31, 30, 31, 31, 30, 31, 30, 31〉 •

day ≤ daysInMonth month

Hence 1995 is not a leap year (not divisible by four), 1996 is leap year (divisible by
four), 1900 is not a leap year (divisible by 100), and 2000 is a leap year (divisible
by 400).

` 〈| day == 29,month == 2, year == 1995 |〉 6∈ Date

` 〈| day == 29,month == 2, year == 1996 |〉 ∈ Date

` 〈| day == 29,month == 2, year == 1900 |〉 6∈ Date

` 〈| day == 29,month == 2, year == 2000 |〉 ∈ Date

If we wished to put the daysInMonth component into the signature, maybe for use
elsewhere, we would have to recast these examples using the existential form:

` ∃Date • day = 29 ∧ month = 2 ∧ year = 2000

•

Binding selection

Intent

Select the value of one component of a binding. (Isomorphic to cartesian tuple
component selection, §7.)
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Syntax

BindingSelection ::= Expression . RefName

Definition

In S .n, S must be a binding, and n must be one of its names. The value of the
resulting expression is the value of that name in the binding.

Examples

1. 〈| x == 2, y == 3 |〉.y = 3

2. 〈| day == 29,month == 2, year == 1995 |〉.year = 1995

3. The expression does not have to be a binding extension (but it must be
binding-valued):

S == [ x , y : N ]

x == 3; y ′ == 5

(θS ).x = 3
(θS ′).y = 5

•
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Type constructors

There are four ways to introduce new types into a Z specification

• given set, including free type

• power set

• Cartesian product

• schema type

Given Set Paragraph

Intent

Introduce a new basic type about which nothing more is (yet) known. Parameterise
the specification by this set.

Syntax

GivenSet ::= [ NAME { , NAME } ]

Examples

1. [ID ,CHAR,NAME ]

•

89
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Free Type Paragraph

Intent

Introduce a new basic type along with some structure.

Syntax

FreeType ::= NAME ::= Branch { | Branch }

{ &
NAME ::= Branch { | Branch } }

Branch ::= DeclName [ 〈〈 Expression 〉〉 ]

Examples

1. enumerated type:

DAY ::= sun | mon | tues | wed | thurs | fri | sat

2. union type:

CARD ::= pips〈〈1 . . 10〉〉 | jack | queen | king

3. simple recursive free type:

TREE ::= leaf | node〈〈TREE × N× TREE 〉〉

4. mutually recursive free type:

DECL ::= decl〈〈ID × EXPR〉〉
&
EXPR ::= letExpr〈〈seqDECL× EXPR〉〉 | num〈〈N〉〉

Laws

Law 9.1 The induction principle, for enumerated types.
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The free type definition

N ::= a1 | . . . | am

is semantically equivalent to

[N ]

a1, . . . , am : N

〈{a1}, . . . , {am}〉 partitionN

The ai are a collection of distinct names of type N (‘no confusion’), and they
together comprise the whole of N (‘no junk’).

Example: The DAY example above is semantically equivalent to

[DAY ]

sun, . . . , sat : DAY

〈{sun}, {mon}, {tues}, {wed}, {thurs}, {fri}, {sat}〉partitionDAY

Law 9.2 The induction principle, for union types.

The free type definition

N ::= a1 | . . . | am | b1〈〈E1〉〉 | . . . | bn〈〈En〉〉

where there is no recursion (the Ei do not refer to N ), is semantically equivalent
to

[N ]

a1, . . . , am : N

b1 : E1 � N ; . . . ; bn : En � N

〈{a1}, . . . , {am}, ran b1, . . . , ran bn〉 partitionN

The ai are a collection of distinct names of type N . The bj are a collection of
injections from expressions to distinct elements of N . Together these elements of
N comprise the whole of N .
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Example: The CARD example above is semantically equivalent to:

[CARD ]

jack , queen, king : CARD
pips : 1 . . 10 � CARD

〈{jack}, {queen}, {king}, ran pips〉partitionCARD

Law 9.3 The induction principle, for simple recursive free types.

The free type definition

N ::= a1 | . . . | am | b1〈〈E1〉〉 | . . . | bn〈〈En〉〉

is semantically equivalent to

[N ]

a1, . . . , am : N

b1 : E1 � N ; . . . ; bn : En � N

disjoint〈{a1}, . . . , {am}, ran b1, . . . , ran bn〉
∀w : P N |

{a1, . . . , am}
∪ b1(| letN == w • E1 |)
∪ . . .
∪ bn(| letN == w • En |)

⊆ w
• w = N

The ai are a collection of distinct names of type N . The bj are a collection of
injections from expressions to distinct elements of N . Together these elements of
N comprise the whole of N .

Example: The TREE example above is semantically equivalent to (after some
simplification):

[TREE ]

leaf : TREE
node : TREE × N× TREE � TREE

disjoint〈{leaf }, rannode〉
∀w : P TREE |

{leaf } ∪ node(| w × N× w |) ⊆ w
• w = TREE
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Law 9.4 The full induction principle, for mutually recursive free types.

The free type definition

N1 ::= a11 | . . . | a1m1 | b11〈〈E11〉〉 | . . . | b1n1〈〈E1n1〉〉
& . . . &
Nr ::= ar1 | . . . | armr | br1〈〈Er1〉〉 | . . . | brnr 〈〈Ernr 〉〉

is semantically equivalent to

[N1, . . . ,Nr ]

a11, . . . , a1m1 : N1

. . .
ar1, . . . , armr : Nr

b11 : E11 � N1; . . . ; b1n1 : E1n1 � N1

. . .
br1 : Er1 � Nr ; . . . ; brnr : Ernr � Nr

disjoint〈{a11}, . . . , {a1m1}, ran b11, . . . , ran b1n1〉
. . .
disjoint〈{ar1}, . . . , {armr}, ran br1, . . . , ran brnr 〉
∀w1 : P N1; . . . ; wr : P Nr |

{a11, . . . , a1m1}
∪ b11(| letN1 == w1; . . . ; letNr == wr • E11 |)
∪ . . .
∪ b1n1(| letN1 == w1; . . . ; letNr == wr • E1n1 |)

⊆ w1

∧ . . . ∧
{ar1, . . . , armr}
∪ br1(| letN1 == w1; . . . ; letNr == wr • E11 |)
∪ . . .
∪ brnr (| letN1 == w1; . . . ; letNr == wr • Ernr |)

⊆ wr

• w1 = N1 ∧ . . . ∧ wr = Nr

Example: The DECL, EXPR example above is semantically equivalent to (after
some simplification):

[DECL,EXPR]
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decl : ID × EXPR � DECL
letExpr : seqDECL× EXPR � EXPR; num : N � EXPR

disjoint〈ran letExpr , rannum〉
∀wd : P DECL; we : P EXPR |

decl(| ID × we |) ⊆ wd

∧ letExpr(| seqwd × we |) ∪ num(| N |) ⊆ we

• wd = DECL ∧ we = EXPR

•

Power set Expression

Intent

The value of a power set expression is the set of all subsets of its argument set.

Syntax

PowerSet ::= P Expression

Examples

1. [X ] ` P ∅[X ] = {∅}
2. ` P{1} = {∅, {1}}
3. ` P{1, 2} = {∅, {1}, {2}, {1, 2}}
4. ` P{1, 2, 3} = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
5. If we want to state in a predicate that a is a set of elements drawn from X ,

we can say either a ⊆ X or a ∈ P X . If we want to declare that a is such a
set, we have notation for the latter option only, a : P X .

6. ` even ∈ P N
7. ` {even, prime} ∈ P P N ; ` {even, odd} ∈ P P N
8. ` {{even, odd}, {prime, composite}} ∈ P P P N

Laws

Law 9.5 A power set is finite precisely when the set is finite.
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[X ] ` finite(P X ) ⇔ finiteX

Law 9.6 The size of a power set of a finite set is 2 raised to the power of the size
of the set.

[X ] a : F X ` #(P a) = 2 ∗∗#a

Law 9.7 The power set of a set a is the set containing all the subsets of a.

[X ] a : P X ` P a = { b : P X | b ⊆ a }

Hence the power set of any set, including the empty set, contains at least one
element, the empty set: ∅ ∈ P a. The power set of any set also contains that set:
a ∈ P a.

Law 9.8 Any element of a subset is an element of the containing set: if a is a
subset of b and x is in a, then x is in b.

[X ] a, b : P X ; x : X | a ∈ P b ∧ x ∈ a ` x ∈ b

Power set does not in general distribute through union.

For example

[X ] x , y : X `
P{x} ∪ P{y} = {∅, {x}} ∪ {∅, {y}} = {∅, {x}, {y}}
∧ P({x} ∪ {y}) = P{x , y} = {∅, {x}, {y}, {x , y}}

Law 9.9 Power set distributes through union precisely when one of the arguments
is the union of all the arguments.

[X ] α : P P X ` ⋃{ a : α • P a } = P(
⋃

α) ⇔ ⋃
α ∈ α

[X ] a, b : P X ` P a ∪ P b = P(a ∪ b) ⇔ a ∪ b ∈ {a, b}

� Law 9.10 Power set distributes through intersection.

[X ] α : P P X ` P(
⋂

α) =
⋂{ a : α • P a }

[X ] a, b : P X ` P(a ∩ b) = P a ∩ P b
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Law 9.11 Hence power set is subset order-preserving (§26). a is a subset of b
precisely when a’s power set is a subset of b’s power set.

[X ] a, b : P X ` a ⊆ b ⇔ P a ⊆ P b

Law 9.12 Specialising the order-preserving law about upper bounds (law 26.36)
to f = P , gives

[X ] α : P P X ` ⋃{ a : α • P a } ⊆ P(
⋃

α)

[X ] a, b : P X ` P a ∪ P b ⊆ P(a ∪ b)

� Law 9.13 Power set never distributes through set difference or symmetric set
difference.

[X ] a, b : P X ` P a \ P b 6= P(a \ b)

[X ] a, b : P X ` P a 	P b 6= P(a 	 b)

•

Cartesian product Expression

Intent

The value of a Cartesian product expression is the set of all tuples of its argument
sets.

Syntax

CartesianProduct ::=

Expression × Expression { × Expression }

The cross product expression must contain at least two sub-expressions.

The Cartesian product construction can be used with any number of components
from two upwards. Each gives a distinct family of constructions, and is not the
same as an iterated use of Cartesian pair. Thus the set of triples a × b× c, the set
of pairs whose second component is a pair a × (b × c), and the set of pairs whose
first component is a pair (a × b) × c, are all distinct from each other, and are all
of different types.
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They are, however, isomorphic, in that it is possible to define a property-preserving
bijection (§21) between the various types. For example, ( λ x : X ; y : Y ; z : Z •
((x , y), z ) ) is a bijection, X × Y × Z �→ (X × Y )× Z . Similar bijections can be
defined for the other cases.

Examples

1. x : X ` {x} ×∅[Y ] = ∅[X × Y ]

2. {x} × {y} = {(x , y)}
3. {x} × {y} × {z} = {(x , y , z )}
4. {x} × {y , y ′} = {(x , y), (x , y ′)}
5. {x} × {y , y ′} × {z} = {(x , y , z ), (x , y ′, z )}
6. {x , x ′} × {y , y ′} = {(x , y), (x , y ′), (x ′, y), (x ′, y ′)}
7. Cartesian pairs are used to model relations (§16) and functions (§21).

Laws about Cartesian pairs

Law 9.14 Laws about the second argument of a Cartesian pair can be derived as
‘duals’ of laws about the first argument, by using the fact that X ×Y is isomorphic
to Y × X under the bijection:

[X ,Y ] ` ( λ x : X ; y : Y • (y , x ) ) ∈ X × Y �→ Y × X

Law 9.15 The Cartesian pair contains all tuples formed from elements of its ar-
gument sets.

[X ,Y ] ` X × Y = { x : X ; y : Y }

This equation could equally well be written as

X × Y = { x : X ; y : Y • (x , y) }

The characteristic tuple, the term after the ‘•’, is usually elided (§7).

Law 9.16 The Cartesian product of two sets is finite precisely when each of its
components sets is finite or if either set is empty.



98 Chapter 9. Type constructors

[X ,Y ] a : P X ; b : P Y `
finite(a × b) ⇔ finite a ∧ finite b ∨ a = ∅ ∨ b = ∅

Law 9.17 The size of a Cartesian product with finite components is the product
of the component sizes.

[X ,Y ] a : F X ; b : F Y ` #(a × b) = #a ∗#b

Law 9.18 The Cartesian pair is empty precisely when at least one of the product
sets is empty.

[X ,Y ] ` X × Y = ∅ ⇔ X = ∅ ∨ Y = ∅

Law 9.19 Cartesian pair distributes through set difference (on both arguments).

[X ,Y ] a, b : P X ` (a \ b)× Y = (a × Y ) \ (b × Y )

Law 9.20 So law 13.45 gives us that Cartesian pair also distributes through set
union, intersection, and symmetric set difference (on both arguments). Cartesian
pair also distributes through generalised union and non-empty generalised inter-
section.

[X ,Y ] α : P1 P X ; b : P Y ` ⋂α × b =
⋂{ a : α • a × b }

[X ,Y ] a, a ′ : P X ; b : P Y ` (a ∩ a ′)× b = (a × b) ∩ (a ′ × b)

[X ,Y ] α : P P X ; b : P Y ` ⋃α × b =
⋃{ a : α • a × b }

[X ,Y ] a, a ′ : P X ; b : P Y ` (a ∪ a ′)× b = (a × b) ∪ (a ′ × b)

[X ,Y ] a, a ′ : P X ; b : P Y ` (a 	 a ′)× b = (a × b)	(a ′ × b)

The intersection distribution does not hold in general for empty α.

For example

[X ,Y ] b : P Y `⋂
∅[P X ] × b = X × b

∧
⋂
{ a : ∅[P X ] • a × b } =

⋂
∅[P(X ×Y )] = X ×Y
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Law 9.21 The distribution properties give that Cartesian pair is subset-order pre-
serving (section 26) on both arguments.

[X ,Y ] a : P X ; b : P Y ` a × b ⊆ X × Y

Law 9.22 Two pairs are equal precisely when their corresponding components are
equal.

[X ,Y ] x , x ′ : X ; y , y ′ : Y ` (x , y) = (x ′, y ′) ⇔ x = x ′ ∧ y = y ′

Laws about Cartesian tuples

All the laws given above for Cartesian pairs generalise to Cartesian tuples of any
number of components, because of the isomorphisms between (X × Y ) × Z and
X × Y × Z , and so on. So, for example, law 9.18 generalises (informally) to

X × . . .× Z = ∅ ⇔ X = ∅ ∨ . . . ∨ Z = ∅

There is no way in Z of formally describing the concept ‘all Cartesian products’, no
way of formalising the ‘. . . ’ above. So Z has no way of making a formal statement
of the complete family of laws. We state the laws for Cartesian pairs above; the
generalisation to arbitrary tuples is clear from the relevant isomorphism.

•

Schema type

Intent

Like Cartesian product, the schema type is also a product type, with any number
of named components from zero upwards. Whereas the Cartesian product can
be thought of as constructing a product by labelling the components with their
position in the product, a schema can be thought of as constructing a product by
labelling the components with names.

Syntax

Schema types are constructed in the various schema expressions defined in §8.
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Laws

There is an isomorphism between schema types (with two or more components)
and Cartesian products. For example, ( λ x : X ; y : Y • 〈| sx == x , sy == y |〉 )
is a bijection, X × Y �→ [ sx : X ; sy : Y ]. Hence laws about Cartesian products
can also be applied to schemas. For example

Law 9.23 The schema analogue of law 9.18 is as follows. The schema type is
empty precisely when at least one of the product sets is empty.

[X ,Y ] ` [ sx : X ; sy : Y ] = ∅ ⇔ X = ∅ ∨ Y = ∅

There is no way in Z of formally describing the concept ‘all schema types’, and
this inability is in some sense even worse than the inability to describe general
Cartesian products. The example law above uses specific component names sx and
sy , and formally there is no implication that the law applies if different component
names are used. However, again we are saved by an isomorphism: [ sx : X ; sy : Y ]
is isomorphic to [ tx : X ; ty : Y ].

So although there is no way of making a formal statement of laws for all schema
types, the generalisation of the Cartesian product laws to arbitrary schemas is clear
from the relevant isomorphism.

We give here some of the more important laws in explicit two-component schema
form.

Law 9.24 The schema analogue of law 9.15 is as follows. The schema type con-
tains all bindings formed from elements of its argument sets.

[X ,Y ] ` [ sx : X ; sy : Y ] = { x : X ; y : Y • 〈| sx == x , sy == y |〉 }

Law 9.25 The schema analogue of law 9.16 is as follows. A schema is finite (is a
finite set of bindings) when each of its component sets is finite or if any component
set is empty.

[X ,Y ] a : P X ; b : P Y `
finite[sx : a; sy : b] ⇔ finite a ∧ finite b ∨ a = ∅ ∨ b = ∅

Law 9.26 The schema analogue of law 9.17 is as follows. The size of an uncon-
strained schema with finite components is the product of the component sizes.
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[X ,Y ] a : F X ; b : F Y ` #[ sx : a; sy : b ] = #a ∗#b

Law 9.27 The schema analogue of law 9.19 is as follows. Schema type distributes
through set difference. (And so law 13.45 gives us that schema type also distributes
through set union, intersection, and symmetric set difference.)

[X ,Y ] a, b : P X ` [ sx : a \ b; y : Y ] = [ sx : a; y : Y ] \ [ sx : b; y : Y ]

•
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Lexis

10.1 Introduction

Standard Z provides a large amount of freedom in defining new names, including
mixing letters and special symbols, and provision for subscripts and superscripts.
We need some recognition that Z, when typeset, uses non-ascii characters such as
Ξ, ⊕, 7�, sub- and super-scripts, and schema boxes.

10.2 Z characters

Standard Z names are built up from Unicode characters [Unicode 1996], called
ZCHARs. There are four classes of ZCHARs, based on Unicode properties. A basic set
of characters is provided, but this set can be extended with any Unicode character
as desired.

• DIGIT: 0 . . 9; extensible with any Unicode character with the Number prop-
erty

• LETTER: all upper and lower case Latin and Greek alphabetic characters, ‘fat’
letters A, Z, and P; extensible with any Unicode character with the Letter
property

• SPECIAL: all of STROKECHAR, WORDGLUE, brackets ( ) [ ] { }, schema box
characters, newline, and space

• SYMBOL: mathematical symbols (all other characters, including any user-
defined ones); extensible with any other Unicode character not already cap-
tured in another class

where the character subclasses are
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• STROKECHAR: dash ′, question mark (or query) ?, and exclamation mark (or
shriek, or pling) !

• WORDGLUE: underscore , begin and end superscript markers ↘ and ↖, and
begin and end subscript markers ↗ and ↙

These ZCHARs are the basic characters used to define Standard Z words. The ISO
Z Standard [ISO-Z 2002] defines certain ascii markups: mappings between strings
of ascii characters and ZCHARs. For example, the LATEX markup defines “\power”
→ ‘P’.

10.3 Z words

ZCHARs are juxtaposed to form names, with certain restrictions. The aim here is
to minimise the amount of white space that needs to be input. We want the three
character string ‘x ’, ‘a’, ‘y ’ to be the single identifier ‘xay ’, but the string ‘x ’, ‘+’,
‘y ’ to be the expression ‘x + y ’. This motivates the separation of characters into
letters and symbols: if a letter occurs next to a symbol, they are assumed to be in
different names. Letters and symbols can be used in the same name by separating
them with a WORDGLUE character. The full syntax for a Standard Z word is:

AlphaNum ::= LETTER | DIGIT

WordPart ::= { AlphaNum } | { SYMBOL }

WordPart1 ::= WORDGLUE | LETTER { AlphaNum } | SYMBOL { SYMBOL }

Word ::= WordPart1 { WORDGLUE WordPart }

That is, a WordPart is a string of alphanumerics or a string of symbols. A Word is
a string of WordParts separated by glue, and a Word cannot start with a DIGIT.

For example:

1. single words with no glue: x , x1, &+=, λS , ∆S , ∃⊕,

2. single words with glue: P x , Px , x + y , 1, 1X , ∃x , x:e, x : e

3. separate words: P x , x+y , ∃ x , x :e

Words can contain subscript digits (since the subcript markers are glue); there is a
potential ambiguity in trailing subscript digits. This is because decoration strokes
are the stroke characters ′ ? !, and also the subscript digits (comprising a begin
subscript marker, a digit, and an end subscript marker). Is a trailing subscript
digit part of the Word, or a stroke? The Standard Z lexis requires trailing subscript
digits to be lexed as strokes, not part of the word. For example:
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1. x1 is the word x and the stroke 1

2. xa0 is the word xa and the stroke 0

3. x0a is the word x0a

4. x0a12 is the word x0a , the stroke 1, and the stroke 2

5. x b0 is the word x b0

Occasionally, this flexibility with subscripts leads to ‘surprises’, requiring additional
white space to separate letters. For example, x1 :X is lexed as the two words x1 :
and X , because the subscript 1 has a preceding ‘begin subscript’, and a following
‘end subscript’ that glues it to the colon symbol; there is no glue between the colon
and the X .

In the following toolkit, we make use of this lexis to define templates for cartesian
square X 2× (§9), relation iteration rn (§31), stream displays n〈a, b, c〉 (§34), etc.

10.4 Newlines and Line breaking

A newline character might be either a soft newline (white space) or a hard newline
(low precedence predicate conjunction). Its context determines which it is.

It must be a soft newline if something is needed before or after it to complete a
phrase:

• before or after an infix token

• after a prefix token or opening bracket

• before a postfix token or closing bracket

Elsewhere it is a hard newline (nothing is needed before or after it).

For example:

1. soft: p NL ∧ q , a + NL b, seq NL X , a NL
∼
, a( NL b), [b NL ]

2. hard: a NL (b), true NL false
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Chapter 11

Sets, Types and Values

11.1 Introduction

Z is a language of predicates about typed sets. Although it can express ideas of
great subtlety, the basic concepts are very simple.

11.2 Z types

Each set in Z may contain elements only of a single homogeneous type. Types are
built up from basic types (given sets) using the power set constructor (the set of
all subsets) or one of the forms of product: Cartesian product and schema type.

Sets can also be defined generically, for example, X ↔ Y , the set of all relations
between X and Y . Consider the case of the natural numbers N, the real numbers
R, and the Z numerical type A, with N ⊆ R ⊆ A. When a generic set is used,
for example, as R ↔ N, its formal generic parameters are instantiated with some
actual sets, here R and N, whose types, here both A, are used to find the actual
type of the instantiated generic set, here P(A× A).

Generic sets can also be defined to accept their parameters in square brackets, for
example ∅[N×P Z]. With these the parameter may instead be supplied implicitly,
with no actual set being provided, provided that the type can be inferred from the
context. In such a case the actual set is assumed to be the largest possible set
of that type. For example, in the predicate ∅ ⊆ N, the empty set is assumed to
have a generic parameter equal to the largest set that makes this predicate type
consistent, namely A.

Types are statically determinable: it is possible to write a type-checker that can
unfailingly and in a finite time check whether type constraints have been observed,
and if so decide the types of all expressions, including the value of all implicit
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instantiations.

11.3 New sets

There are several ways to introduce sets into Z specifications. The simplest is to
declare a given set. Such a declaration implies nothing about the set except that it
exists, though we can add predicates that tell us more about it. Alternatively we
can introduce a set using a ‘free type’ declaration, which is equivalent to a given
set declaration together with predicates that constrain its structure quite tightly.

We can construct new sets and elements from existing sets and elements in a variety
of ways, using for example:

• type constructors, to build new sets directly from existing sets: power set
P X (sets of sets), and products X × Y (sets of tuples) and [ x : X ; y : Y ]
(sets of bindings)

• finite displays, to write down the members of a set explicitly: set display
{x , y , z}, sequence display 〈x , y , z 〉

• comprehensions, to define the members of a set implicitly, as those elements
satisfying some condition: set comprehensions { x , y : X | x 6= y • (x , y , x ) },
λ-expressions λ x : N • x + 1

• schema calculus, to form new schemas (sets of bindings) from old

• selection, to extract part of a product: from a tuple (x , y , z ).2 or from a
binding S .x

• function application, where the supplied argument must occur precisely once
in the domain of the set of pairs modelling the function, and the result is
the corresponding range element. There are several ways of writing function
application, but if f denotes the function and x the argument, then f x ,
adding parentheses if necessary, is always one of them.

11.4 Set membership

Sets are subject to the axiom of extension: ‘two sets are equal if and only if they
have the same members’. So sets are characterised fully by what members they
have; if two sets have the same members, they are the same set. For any set a the
totality of decisions for each candidate member (of the right type), as to whether
it is a member of a, completely encapsulates the identity of a.
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11.5 Structure of the Part

In §12 we describe some useful simple operations. In §13 we define operations for
combining sets. In §14 we define the subset relations on sets. In §15 we define
finiteness.



Chapter 12

Simple operations

Here we provide some initial simple operators.

• underlying type signature, σ

• boolean expressions, B, >, ⊥
• negated core relation predicates, 6∈ , 6=
• Cartesian square, 2×

Type signature

Intent

Obtain the underlying type of a set.

Definition

σ[X ] == λ a : P X • X

Examples

• using σ with a specific generic instantiation results in the instantiating set:
σ[Z]N = Z and σ[[ x : Z ]][ x : N ] = [ x : Z ].

• using σ with an implicit generic instantiation results in the underlying type:
σN = A and σ[ x : N ] = [ x : A ].

• A schema written with its declaration equal to its signature is normalised:
S = [ σS | S ]

•
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Boolean expressions

Intent

Provide a type that can be used for Boolean-valued variables.

Definitions

The empty schema, and its schema negation, are schema expressions that act like
Boolean variables when used as predicates.

> == [ | true ]

⊥ == [ | false ]

B == {>,⊥}

Motivation

If we wish to model the decision as to whether an item has a particular property,
the usual Z style is to define the set of all the items that have the property, and
then to ask whether the item is a member of that set. For example, to determine
if a number n is prime, we ask if n ∈ prime.

Because of this style, Boolean variables (named for the English logician, George
Boole, 1815–1864, who is regarded as the founder of modern symbolic logic) ‘true’
and ‘false’ are not usually used in Z. (See the Modelling membership or flags choice
pattern and the Boolean flag antipattern in [Stepney et al. 2003].) We use member-
ship of the set of values having a particular attribute, rather than having a function
that yields the attribute as a Boolean value (for example, finite prime = false), as
many other notations would do.

However, Z can also be used circumstances other than pure specification. For ex-
ample, consider the translation of another notation to Z, where that other notation
does not share Z’s syntactic distinction between predicates and expressions. Wher-
ever a predicate p is used as a Boolean-valued expression in that language, empty
schemas enable the straightforward translation to [ | p ] in Z. Another example is
refinement toward code, where the code uses a Boolean data type.

The definition of Boolean given here is superior to the occasionally used free type
Boolean ::= False | True, because the definition of its corresponding values true
and false as schemas allows their use as predicates.
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Laws

� Law 12.1 When used as predicates, > and ⊥ act as true and false.

` >
` ¬ ⊥

This law justifies the claim that these expressions can be used as Boolean-valued
variables. So all the predicate laws given in §6 are also valid laws about schema
expressions used as predicates when true and false are replaced with > and ⊥
respectively, the schema-constrained generic are replaced by Boolean-valued vari-
ables, and the logical operators are interpreted as schema calculus operators.

For example, the predicate law of the excluded middle can be written using schema-
constrained generic expressions as

[†P ] ` P ∨ ¬ P

(see §5, Generic conjectures : variant on schema-constrained generics), or using ex-
plicit Boolean-valued variables as

p : B ` p ∨ ¬ p

•

Negated core relation predicates

Intent

Putting a slash through an infix relation to denote its negation is a common math-
ematical convention: a 6R b ⇔ ¬ a R b. Z’s operator template scheme is not
powerful enough to define a general such ‘slash’ operator. So we define explicit
relations for inequality and non-membership, since these arise very commonly in
Z specifications. (The relations = and ∈ are part of the core language.) Other
negated relations could be defined in a similar manner if they were found to be
useful.

Definition

non-membership:

relation ( 6∈ )

6∈ [X ] == { x : X ; a : P X | ¬ x ∈ a }
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inequality:

relation ( 6= )

6= [X ] == { x , y : X | ¬ x = y }

Examples

1. 1 6= 2

2. ¬ a 6= a

3. a 6= b ⇒ b 6= a

4. a 6= b ⇒ a 6∈ {b}

Laws

Law 12.2 Inequality is irreflexive (§24) and symmetric (§24)

[X ] ` ( 6= )[X ] ∈ irreflexiveX ∩ symmetricX

Law 12.3 Inequality and the identity relation (§24) partition the Cartesian square
(§12) of their parameter set.

[X ] ` 〈( 6= )[X ], idX 〉 partitionX 2×

[X ] x , y : X ` x = y ∨ x 6= y

•

Cartesian square

Intent

The Cartesian square of a set is the Cartesian product of that set with itself.

Definition

function ( 2×)
2× [X ] == λ a : P X • a × a

In graph terms, every element is connected to every other element by an arc.
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Examples

X

X

X

X × X

Figure 12.1 Cartesian square example

1. Figure 12.1 shows an example of a Cartesian square. (For an explanation of
our diagramming conventions used here, see appendix A).

2. {x}2× = {(x , x )}
3. {x , y}2× = {(x , x ), (x , y), (y , x ), (y , y)}

Laws

Law 12.4 Cartesian square is a total injection.

[X ] ` X 2× ∈ X � X

Law 12.5 Cartesian square is a reflexive, symmetric, transitive relation.

[X ] ` X 2× ∈ reflexiveX ∩ symmetricX ∩ transitiveX

•
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Basic set operations

In this chapter we define relations and functions that apply to sets of any matching
types.

• empty set: ∅
• union: ( ∪ ),

⋃
• intersection: ( ∩ ),

⋂
• difference: ( \ )

• symmetric difference: ( 	 )

• distribution properties

• closure property

As we noted in §12, rather than using a Boolean-valued function to determine
if an item has a particular property, we can use a set to capture all such items.
Continuing that approach, many of the set operations described in this chapter are
analogues of the core language constructs for combining predicates; for example,
set union — items that have this property or that property — is the analogue of
logical disjunction: if the set p captures those items that have property P , and
the set q captures those with property Q , then p ∪ q captures those with property
P ∨ Q . (The particular analogy is often clear from the set operation’s definition.)
Many of the set laws thus follow directly from the analogous predicate laws.

When we specify a set, we can do so by specifying the properties that all its
elements have. Often it is clearer to specify a quite complicated property in stages.
First specify simple properties, and then combine the simple sets in some manner
to form a set with the desired property. Two sets can be combined to give a third
in different ways:

• Union: the result has all the elements of each; ‘all these properties, or all
those properties, or both’.
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• Intersection: the result has only the common elements of each; ‘all these
properties, and also all those properties’.

• Difference: the result has all the elements of one that are not in the other;
‘all these properties, but not those properties’.

• Symmetric difference: the result has all the elements of each that are not in
the other ‘all these properties, or all those properties, but not both’.

Empty Set

Intent

The simplest set is the empty set, the set with no elements. Z is a typed language,
so the empty set is generic in its type.

Definition

Empty set:

∅[X ] == { x : X | false }

The empty set is the set analogue of the predicate false; the empty set captures
those items that have the property false.

Laws

Law 13.1 No element is a member of the empty set. A set is not empty precisely
when it has at least one element.

[X ] x : X ` x 6∈ ∅
[X ] ` X 6= ∅ ⇔ ( ∃ x : X • true )

Law 13.2 An empty set is a subset of every set of that type. The only subset of
the empty set is itself.

[X ] ` ∅ ⊆ X

[X ] | X ⊆ ∅ ` X = ∅

•
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Set union

Intent

The union of two sets is a set that has all the elements of both. The generalised
union of an arbitrary number of sets is a set that has all the elements of all the
sets.

Definition

Set union:

function 30 leftassoc ( ∪ )

∪ [X ] == λ a, b : P X • { x : X | x ∈ a ∨ x ∈ b }

The set formed from the union of a and b has precisely those elements that are
elements of a or of b or of both. Set union is the set analogue of logical disjunction:
if the set p captures those items that have property P , and the set q captures those
with property Q , then p ∪ q captures those with property P ∨ Q .

Generalised set union:⋃
[X ] == λ α : P P X • { x : X | ( ∃ a : α • x ∈ a ) }

The set formed from the generalised union of a set of sets has precisely those
elements that are elements of at least one of the constituent sets. Generalised set
union is the set analogue of existential quantification.

We can define a generalised union this way, on a set of sets, precisely because set
union is associative, commutative and idempotent (see the section on laws below).
Later we define ways of distributing a binary operation over a set when it does
not have all these properties (when is not idempotent, so that repeated elements
need to be considered, in §22; when additionally it is not commutative, so that the
order of application needs to be considered, in §38).

Examples

1. Figure 13.1 shows examples of set union.

2. ` {1, 3} ∪ {2, 3} = {1, 2, 3}
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X

a b

X

a b

dc

Figure 13.1 Venn diagrams of union a ∪ b or
⋃
{a, b}, and of union a ∪ b ∪ c ∪ d or⋃

{a, b, c, d}.

3. The domain of the exponential function is defined as the union of three parts
` dom( ∗∗ ) = ({0} × R+) ∪ (R± × Z) ∪ (R+ × R)

4. We can ‘update’ a relation r : X ↔ Y (§16) by adding a new pair
r ′ = r ∪ {x 7→ y}

5. [X ] a : P X ` ⋃{a} = a

6. [X ] a, b : P X ` ⋃{a, b} = a ∪ b

7. If we have a function that maps labels to sets of things, f : L 7→ P X , we can
require that the particular sets together exhaust the set X by imposing the
condition⋃

(ran f ) = X

Laws

Law 13.3 Set union and generalised union are total surjections (§21).

[X ] ` ( ∪ )[X ] ∈ (P X )2× →→ P X

[X ] ` ⋃[X ] ∈ P P X →→ P X

Law 13.4 Set union is closed, commutative and associative, and has the empty set
as an identity element. Hence it forms an abelian monoid (§23) over sets. Similarly
for finite sets (§15).

[X ] a : P X ` ∃AbelianMonoid[P X ] • g = P a ∧ ( � ) = ( ∪ ) ∧ e = ∅
[X ] a : P X ` ∃AbelianMonoid[P X ] • g = F a ∧ ( � ) = ( ∪ ) ∧ e = ∅

Law 13.5 As a consequence of associativity and idempotence (law 13.46), set
union and generalised union combine thus:
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[X ] α : P P X ; b : P X ` ⋃α ∪ b =
⋃{ a : α • a ∪ b }

� Law 13.6 Generalised union of a set comprehension can be reduced to a set
comprehension.

[X ,Y ] α : P P X ; f : P X → P Y `⋃{ a : α • f a } = { y : Y | ( ∃ a : α • y ∈ f a ) }

� Law 13.7 Nested generalised unions can be flattened.

[X ,Y ,Z ] α : P P X ; β : P P Y ; f : P X × P Y → P Z `⋃{ a : α • ⋃{ b : β • f (a, b) } } =
⋃{ a : α; b : β • f (a, b) }

Law 13.8 Every element of a generalised union is disjoint from some set b precisely
when the union itself is disjoint from b.

[X ] α : P P X ; b : P X ` ( ∀ a : α • a ∩ b = ∅ ) ⇔ ⋃
α ∩ b = ∅

� Law 13.9 Intersection distributes through set union.

[X ] α : P P X ; β : P P X ` ⋃α ∩ ⋃ β =
⋃{ a : α; b : β • a ∩ b }

[X ] a, a ′, b : P X ` (a ∪ a ′) ∩ b = (a ∩ b) ∪ (a ′ ∩ b)

Figure 13.2 illustration of law 13.9: intersection distributes through set union
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Law 13.10 Law 13.9 and law 14.11 give us that set union is subset order-preserving.

[X ] a, a ′, b : P X | a ⊆ a ′ ` a ∪ b ⊆ a ′ ∪ b

Figure 13.3 illustration of law 13.10: union is subset order preserving

� Law 13.11 Generalised union distributes through union.

[X ] A : P P P X ` ⋃(
⋃

(| A |)) =
⋃

(
⋃

A)

[X ] α, β : P P X ` ⋃α ∪ ⋃ β =
⋃

(α ∪ β)

So when using successive generalised unions to flatten sets of sets it does not change
the result if the order of flattening is from the outside inwards, or from the inside
outwards.

For example:

A : P P P Z | A = {{prime, even}, {odd}} `⋃
(
⋃

A)
=
⋃

(
⋃
{{prime, even}, {odd}})

=
⋃

({prime, even} ∪ {odd})
=
⋃
{prime, even, odd}

= prime ∪ even ∪ odd
∧
⋃

(
⋃

(| A |))
=
⋃

(
⋃

(| {{prime, even}, {odd}} |))
=
⋃
{
⋃
{prime, even},

⋃
{odd}}

=
⋃
{prime ∪ even, odd}

= prime ∪ even ∪ odd

Law 13.12 Law 13.11 and law 14.11 give us that generalised union is subset order-
preserving (§26).

[X ] α, β : P P X | α ⊆ β ` ⋃α ⊆ ⋃
β
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Law 13.13 Specialising law 14.12 to f =
⋃

gives

[X ] A : P P P X ` ⋃(
⋂

A) ⊆ ⋂
(
⋃

(| A |))
[X ] α, β : P P X ` ⋃(α ∩ β) ⊆ ⋃

α ∩ ⋃ β

� Law 13.14 Generalised union distributes through intersection when all distinct
elements are pairwise disjoint.

[X ] A : P P P X | ( ∀ a, b :
⋃

A | a 6= b • a ∩ b = ∅ ) `⋃
(
⋂

A) =
⋂

(
⋃

(| A |))
[X ] α, β : P P X | ( ∀ a, b : α ∪ β | a 6= b • a ∩ b = ∅ ) `⋃

(α ∩ β) =
⋃

α ∩ ⋃ β

Generalised union does not distribute through intersection in general.

For example, consider

[X ] x , y , z : X ; A : P P P X | A = {{{x}, {x , y}}, {{x}, {y}, {x , z}}} `⋃
(
⋂

A) =
⋃
{{x}} = {x}

∧
⋂

(
⋃

(| A |)) =
⋂
{{x , y}, {x , y , z}} = {x , y}

Law 13.15 Generalised union of the power set restores the original set.

[X ] ` ⋃(P X ) = X

Law 13.16 If α is a set of sets, then it is contained in the power set of its own
generalised union.

[X ] α : P P X ` α ⊆ P(
⋃

α)

The previous two laws bring out the way generalised union is in some sense the
inverse of power set.

Law 13.17 Generalised union of the empty set of sets is empty.

[X ] ` ⋃∅[P X ] = ∅[X ]

The generalised union of the empty set of sets can be explained as follows: gen-
eralised union is defined in terms of an existential quantification, which is false
over an empty set (‘there is a pink unicorn’ is false), so there are no elements
satisfying the condition, and

⋃∅ = ∅. Contrast this with generalised intersection
(law 13.26).
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Law 13.18 A union is empty precisely when each set in the union is empty.

[X ] α : P P X ` ⋃α = ∅ ⇔ ( ∀ a : α • a = ∅ )

•

Set intersection

Intent

The intersection of two sets is a set that has the elements common to both. The
generalised intersection of an arbitrary number of sets is a set that has the elements
common to all.

Definition

Set intersection:

function 40 leftassoc ( ∩ )

∩ [X ] == λ a, b : P X • { x : X | x ∈ a ∧ x ∈ b }

The set formed from the intersection of a and b has precisely those elements that are
elements of a and of b. Set intersection is the set analogue of logical conjunction; if
the set p captures those items that have property P , and the set q captures those
with property Q , then p ∩ q captures those with property P ∧ Q .

Notice that the precedence of ∩ is higher than that of ∪, following the fact that
the precedence of ∧ is higher than that of ∨.

Generalised set intersection:⋂
[X ] == λ α : P P X • { x : X | ( ∀ a : α • x ∈ a ) }

The set formed from the generalised intersection of a set of sets has precisely those
elements that are elements of every one of the constituent sets. Generalised set
intersection is the set analogue of universal quantification.
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Examples

X

a b

X

a b

dc

Figure 13.4 Venn diagrams of intersection a∩b or
⋂
{a, b}, and of intersection a∩b∩c∩d

or
⋂
{a, b, c, d}.

1. Figure 13.4 shows examples of set intersection.

2. ` {1, 3} ∩ {2, 3} = {3}
3. [X ] a, b : P X ` ⋂{a, b} = a ∩ b

4. ` ⋂{{2, 3, 4}, {1, 3, 5}, {2, 3}} = {3}
5. [X ] x , y : X ` ⋂{{x , y}} = {x , y}
6. We define a total injection (§21) to be a function that is both total and an

injection
X � Y == (X → Y ) ∩ (X 7� Y )

7. We define a finite sequence (§34) to be both a sequence and finite
seqX == sequenceX ∩ (N 7 7→ X )

8. We define the finite subsets of a set (§15) to be the smallest set that both
contains ∅ and is closed under union with singletons
F X ==

⋂{ a : P P X | ∅ ∈ a ∧ ( ∀ b : a; x : X • b ∪ {x} ∈ a ) }
9. We define the transitive closure of a relation (§24) to be the smallest transitive

relation containing r
[X ] r : X ↔ X ` r+ =

⋂{ t : transitiveX | r ⊆ t }

Laws

Law 13.19 Set intersection and generalised intersection are total surjections (§21).

[X ] ` ( ∩ )[X ] ∈ (P X )2× →→ P X

[X ] ` ⋂[X ] ∈ P P X →→ P X
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Law 13.20 Set intersection is closed, commutative and associative, and has the
generic parameter set as its identity element. Hence it forms an abelian monoid
(§23) over sets. Similarly for finite sets (§15).

[X ] a : P X ` ∃AbelianMonoid[P X ] • g = P a ∧ ( � ) = ( ∩ ) ∧ e = a

[X ] a : P X ` ∃AbelianMonoid[P X ] • g = F a ∧ ( � ) = ( ∩ ) ∧ e = a

Law 13.21 As consequence of associativity and idempotence (law 13.46), set in-
tersection and generalised intersection combine thus:

[X ] α : P P X ; b : P X ` ⋂α ∩ b =
⋂{ a : α • a ∩ b }

� Law 13.22 Generalised intersection of a set comprehension can be reduced to a
set comprehension.

[X ,Y ] α : P P X ; f : P X → P Y `⋂{ a : α • f a } = { y : Y | ( ∀ a : α • y ∈ f a ) }

� Law 13.23 Nested generalised intersections can be flattened.

[X ,Y ,Z ] α : P P X ; β : P P Y ; f : P X × P Y → P Z `⋂{ a : α • ⋂{ b : β • f (a, b) } } =
⋂{ a : α; b : β • f (a, b) }

� Law 13.24 Union distributes through set intersection.

[X ] α, β : P P X ` ⋂α ∪ ⋂ β =
⋂{ a : α; b : β • a ∪ b }

[X ] a, a ′, b : P X ` (a ∩ a ′) ∪ b = (a ∪ b) ∩ (a ′ ∪ b)

Law 13.25 Hence law 14.11 gives us that set intersection is subset order-preserving.

[X ] a, a ′, b : P X | a ⊆ a ′ ` a ∩ b ⊆ a ′ ∩ b

Law 13.26 Generalised intersection of the empty set of sets is the whole parameter
set of the union.
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Figure 13.5 illustration of law 13.24: union distributes through set intersection

Figure 13.6 illustration of law 13.25: intersection is subset order preserving

[X ] ` ⋂[X ]∅ = X

The generalised intersection of the empty set of sets can be explained as follows:
generalised intersection is defined in terms of a universal quantification, which
is true over an empty set (‘all unicorns are pink’ is true), so all elements of

⋂
’s

parameter satisfy the condition, and so
⋂

[X ]∅ = X . Contrast this with generalised
union (law 13.17).

Law 13.27 If x is in a which is disjoint from b, then x is not in b.

[X ] x : X ; a, b : P X | x ∈ a ∧ a ∩ b = ∅ ` x 6∈ b

� Law 13.28 Generalised intersection pseudo-distributes through union.

[X ] A : P P P X ` ⋂(
⋃

A) =
⋂

(
⋂

(| A |))
[X ] α, β : P P X ` ⋂(α ∪ β) =

⋂
α ∩ ⋂ β
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For example:

[X ] x , y , z : X ; A : P P P X | A = {{{x}, {x , y}}, {{x , y , z}, {x , z}}} `⋂
(
⋃

A) =
⋂
{{x}, {x , y}, {x , y , z}, {x , z}} = {x}

∧
⋂

(
⋂

(| A |)) =
⋂
{{x}, {x , z}} = {x}

Law 13.29 Hence law 13.44 gives us that generalised intersection is subset order-
reversing (§26).

[X ] α, β : P P X | α ⊆ β ` ⋂ β ⊆ ⋂
α

Law 13.30 Specialising law 14.15 to f =
⋂

gives

[X ] A : P P P X ` ⋃(
⋂

(| A |)) ⊆ ⋂
(
⋂

A)

[X ] α, β : P P X ` ⋂α ∪ ⋂ β ⊆ ⋂
(α ∩ β)

Generalised intersection does not in general pseudo-distribute through intersection.

For example, consider:

[X ] x , y , z : X ; A : P P P X | A = {{{x}, {x , y}}, {{x , y}, {x , z}}} `⋂
(
⋂

A) =
⋂
{{x , y}} = {x , y}

∧
⋃

(
⋂

(| A |)) =
⋃
{{x}} = {x}

•

Set difference

Intent

The difference of two sets has just those elements that are in the first but not the
second of the sets.

Definition

Set difference:

function 30 leftassoc ( \ )

\ [X ] == λ a, b : P X • { x : X | x ∈ a ∧ x 6∈ b }

The difference of a and b is a set that has precisely those elements that are elements
of a but not of b. If a is put equal to X ’s type, we specialise set difference to set
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complement with respect to X ’s type. Such set complement is the set analogue
of (unary) logical negation; if the set X captures all items of the correct type (all
items that have property true), and the set q captures those with property Q , then
X \ q captures those with property ¬ Q .

Examples

X

a b

X

a b

dc

Figure 13.7 Venn diagrams of set difference a \ b, and of difference a \ b \ c \ d .

1. Figure 13.7 shows an example of set difference.

2. ` {1, 3} \ {2, 3} = {1}
3. ` {1, 3} \ {1, 3} = ∅
4. ` {1, 3} \ {2} = {1, 3}
5. If we have a set of all items of interest, all , and a distinguished subset of it,

special , then the non-special items are
ordinary == all \ special

6. The domain of the logarithmic function log (§33) includes R+ \ {1}
7. An odd number is an integer that is not even

even == { i : Z • 2 ∗ i }
odd == Z \ even

8. A prime number is a number that is not composite
N2 == N \ {0, 1}
prime == N2 \ composite

Laws

Law 13.31 Set difference is a total surjection (§21).

[X ] ` ( \ )[X ] ∈ (P X )2× →→ P X
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Law 13.32 Two sets are disjoint precisely when one is a subset of the other’s
complement. Then set subtraction leaves the set unchanged.

[X ] a, b : P X ` a ∩ b = ∅ ⇔ a ⊆ X \ b

[X ] a, b : P X ` a ∩ b = ∅ ⇔ a \ b = a

Law 13.33 Set difference is not commutative.

[X ] a, b : P X ` a \ b = b \ a ⇔ a = b

Law 13.34 Set difference is not associative (figure 13.8).

[X ] a, b, c : P X ` a \ (b \ c) = (a \ b) \ c ⇔ a ∩ c = ∅
[X ] a, b, c : P X ` a \ (b \ c) = (a \ b) ∪ (a ∩ c)

[X ] a, b, c : P X ` (a \ b) \ c = a \ (b ∪ c) = (a \ b) ∩ (a \ c)

X

a b

X

a b

dc

X

a b

c X

a b

c

Figure 13.8 Illustration of law 13.34: set difference is not associative: a \ (b \ c) and
(a \ b) \ c

Law 13.35 For set difference, the empty set is a right identity and left zero.

[X ] ` X \ X = ∅
[X ] ` X \∅ = X

[X ] ` ∅ \ X = ∅

Law 13.36 Set difference distributes through union on the left, and through in-
tersection on the left when the collection of sets is non-empty.
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Figure 13.9 illustration of law 13.36a: set difference distributes through union on left

[X ] α : P P X ; b : P X ` ⋃{ a : α • a \ b } =
⋃

α \ b

[X ] a, a ′, b : P X ` (a \ b) ∪ (a ′ \ b) = (a ∪ a ′) \ b

[X ] α : P1 P X ; b : P X ` ⋂α \ b =
⋂{ a : α • a \ b }

[X ] a, a ′, b : P X ` (a ∩ a ′) \ b = (a \ b) ∩ (a ′ \ b)

Figure 13.10 illustration of law 13.36b: set difference distributes through intersection
on left
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The intersection law does not hold in general for an empty collection of sets:

[X ] b : P X `⋂∅ \ b = X \ b

∧ ⋂{ a : ∅[P X ] • a \ b } =
⋂∅ = X

Law 13.37 Set difference pseudo-distributes through union on the right, and through
intersection on the right when the collection of sets is non-empty.

[X ] a : P X ; β : P P X ` ⋃{ b : β • a \ b } = a \ ⋂ β

[X ] a, b, b ′ : P X ` (a \ b) ∪ (a \ b ′) = a \ (b ∩ b ′)

Figure 13.11 illustration of law 13.37a: set difference pseudo-distributes through union
on right

[X ] a : P X ; β : P1 P X ` a \ ⋃ β =
⋂{ b : β • a \ b }

[X ] a, b, b ′ : P X ` a \ (b ∪ b ′) = (a \ b) ∩ (a \ b ′)

The intersection law does not hold in general for an empty collection of sets:

[X ] a : P X `
a \ ⋃∅ = a \∅ = a

∧ ⋂{ b : ∅[P X ] • a \ b } =
⋂∅ = X

If in the pseudo-distributive laws we put a equal to X ’s type, thereby specialising
set difference to set complement with respect to X ’s type, we get de Morgan’s laws.
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Figure 13.12 illustration of law law 13.37b: set difference pseudo-distributes through
intersection on right

Law 13.38 The distributive law gives us that set difference is subset order-preserving
on its first argument; the pseudo-distributive law gives us that set difference is sub-
set order-reversing on its second argument.

[X ] a, a ′, b : P X | a ⊆ a ′ ` a \ b ⊆ a ′ \ b

[X ] a, b, b ′ : P X | b ⊆ b ′ ` a \ b ′ ⊆ a \ b

Law 13.39 Set difference has some more pseudo-distributive properties:

[X ] a, b, c : P X ` (a \ b) ∩ c = (a ∩ c) \ b = a ∩ (c \ b)

[X ] a, b, c : P X ` (a \ b) ∪ c = (a ∪ c) \ (b \ c)

•

Symmetric set difference

Intent

The symmetric difference (sometimes called symmetric sum) of two sets has just
those elements that are in precisely one of the sets.
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Definition

Symmetric set difference:

function 30 leftassoc ( 	 )

	 [X ] == λ a, b : P X • { x : X | ¬ (x ∈ a ⇔ x ∈ b) }

The symmetric difference of a and b is a set that has precisely those elements
that are elements of a or of b but not of both. Symmetric set difference is the
set analogue of ‘exclusive or’ (which does not occur as a primitive construct in
the core language); if the set p captures those items that have property P , and
the set q captures those with property Q , then p	 q captures those with property
¬ (P ⇔ Q).

Examples

X

a b

X

a b

dc

Figure 13.13 Venn diagrams of symmetric set difference, a 	 b and a 	 b	 c	 d .

1. Figure 13.13 shows examples of symmetric set difference.

2. ` {1, 3}	{2, 3} = {1, 2}
3. ` {1, 3}	{1, 3} = ∅
4. ` {1, 3}	{2} = {1, 2, 3}

Laws

Law 13.40 Symmetric set difference is a total surjection (§21).

[X ] ` ( 	 )[X ] ∈ (P X )2× →→ P X
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Law 13.41 Symmetric set difference is the difference of the union and the inter-
section, and the union of the differences.

[X ] a, b : P X ` a 	 b = (a ∪ b) \ (a ∩ b) = (a \ b) ∪ (b \ a)

Law 13.42 Symmetric set difference is closed, commutative and associative, has
the empty set as its identity element, and the identity function as its inverse. Hence
it forms an abelian group (§23) over sets. Similarly for finite sets (§15).

[X ] a : P X ` ∃AbelianGroup[P X ] •
g = P a ∧ ( � ) = ( 	 ) ∧ e = ∅ ∧ inv = id P a

[X ] a : P X ` ∃AbelianGroup[P X ] •
g = F a ∧ ( � ) = ( 	 ) ∧ e = ∅ ∧ inv = id F a

Law 13.43 Distributive and pseudo-distributive properties of symmetric set dif-
ference:

[X ] a, a ′, b : P X ` (a 	 a ′) ∩ b = (a ∩ b)	(a ′ ∩ b)

[X ] a, a ′, b : P X ` (a 	 a ′) ∪ b = (a ∪ b)	(a ′ \ b)

[X ] a, a ′, b : P X ` b \ (a 	 a ′) = (b \ a)	(b ∩ a ′)

[X ] a, a ′, b : P X ` (a 	 a ′) \ b = (a \ b)	(a ′ \ b)

•

Distribution properties

Intent

To show the interdependencies among the various set distribution laws.

Laws

� Law 13.44 If a total operation on sets distributes through set difference, then
it distributes through intersection, union, and symmetric difference.

[X ,Y ] f : P X → P Y ; a, b : P X | ∀ a ′, b ′ : P X • f (a ′ \ b ′) = f a ′ \ f b ′ `
f (a ∩ b) = f a ∩ f b
∧ f (a ∪ b) = f a ∪ f b
∧ f (a 	 b) = f a 	 f b
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Law 13.45 If a function distributes through symmetric set difference and also
through union or intersection, then it distributes through all four set operations.

[X ,Y ] f : P X → P Y ; a, b : P X |
∀ a ′, b ′ : P X • f (a ′	 b ′) = f a ′	 f b ′ ∧ f (a ′ ∪ b ′) = f a ′ ∪ f b ′ `

f (a ∩ b) = f a ∩ f b
∧ f (a \ b) = f a \ f b

[X ,Y ] f : P X → P Y ; a, b : P X |
∀ a ′, b ′ : P X • f (a ′	 b ′) = f a ′	 f b ′ ∧ f (a ′ ∩ b ′) = f a ′ ∩ f b ′ `

f (a ∪ b) = f a ∪ f b
∧ f (a \ b) = f a \ f b

Examples

1. an operation that distributes through 	 but not through the other set oper-
ations is given by the function f where
[X ] c : F1 X ; f == λ a : P X • { x : N | x = #(c ∩ a) mod 2 = 1 }

2. an operation that distributes through ∪ and ∩ but not through the other set
operations is given by the function f where
[X ] c : P1 X ; f == λ a : P X • c

3. an operation that distributes through ∩ but not through the other set oper-
ations is given by P.

4. an operation that distributes through ∪ but not through the other set oper-
ations is given by the function
f [X ] == λ a : P X • {b : P X | a ∩ b 6= ∅}

5. a total set to set operation that does not distribute through any of the four

set operations is given by the function
→
# (§30).

•
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Closure property

Intent

If we start with any two sets of the same type, any expression involving those
sets and any number of uses of the four operations ∪,∩, \,	 can be simplified to
an expression using at most one operation. (There is no corresponding law if we
restrict ourselves to just the three operations ∪, ∩ and \.)

Laws

Law 13.46 Given any two starting sets of the same type, we can generate a finite
set of sets closed under the four operations ∪,∩, \,	.

[X ] a, b : P X ; α : P P X | α = {∅, a, b, a ∩ b, a ∪ b, a \ b, b \ a, a 	 b} `
∀ c, d : α • {c ∩ d , c ∪ d , c \ d , c	 d} ⊆ α

It is useful to present all the possibilities by using four 8 × 8 tables (one for each
operator). The first argument is down the side, the second argument along the top.
Three of the operators are commutative, so only half the table need be shown.

∪ ∅ a b a ∪ b a ∩ b a \ b b \ a a 	 b
∅ ∅ a b a ∪ b a ∩ b a \ b b \ a a 	 b
a − a a ∪ b a ∪ b a a a ∪ b a ∪ b
b − − b a ∪ b b a ∪ b b a ∪ b

a ∪ b − − − a ∪ b a ∪ b a ∪ b a ∪ b a ∪ b
a ∩ b − − − − a ∩ b a b a ∪ b
a \ b − − − − − a \ b a 	 b a 	 b
b \ a − − − − − − b \ a a 	 b
a 	 b − − − − − − − a 	 b
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∩ ∅ a b a ∪ b a ∩ b a \ b b \ a a 	 b
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
a − a a ∩ b a a ∩ b a \ b ∅ a \ b
b − − b b a ∩ b ∅ b \ a b \ a

a ∪ b − − − a ∪ b a ∩ b a \ b b \ a a 	 b
a ∩ b − − − − a ∩ b ∅ ∅ ∅
a \ b − − − − − a \ b ∅ a \ b
b \ a − − − − − − b \ a b \ a
a 	 b − − − − − − − a 	 b

\ ∅ a b a ∪ b a ∩ b a \ b b \ a a 	 b
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
a a ∅ a \ b ∅ a \ b a ∩ b a a ∩ b
b b b \ a ∅ ∅ b \ a b a ∩ b a ∩ b

a ∪ b a ∪ b b \ a a \ b ∅ a 	 b b a a ∩ b
a ∩ b a ∩ b ∅ ∅ ∅ ∅ a ∩ b a ∩ b a ∩ b
a \ b a \ b ∅ a \ b ∅ a \ b ∅ a \ b ∅
b \ a b \ a b \ a ∅ ∅ b \ a b \ a ∅ ∅
a 	 b a 	 b b \ a a \ b ∅ a 	 b b \ a a \ b ∅

	 ∅ a b a ∪ b a ∩ b a \ b b \ a a 	 b
∅ ∅ a b a ∪ b a ∩ b a \ b b \ a a 	 b
a − ∅ a 	 b b \ a a \ b a ∩ b a ∪ b b
b − − ∅ a \ b b \ a a ∪ b a ∩ b a

a ∪ b − − − ∅ a 	 b b a a ∩ b
a ∩ b − − − − ∅ a b a ∪ b
a \ b − − − − − ∅ a 	 b b \ a
b \ a − − − − − − ∅ a \ b
a 	 b − − − − − − − ∅

We can use these tables to read off many properties of the appropriate set opera-
tions. For example, we see that set union and intersection are idempotent (since we
can read off that a ∪ a = a and a ∩ a = a), but that set difference and symmetric
set difference are not.

•



Chapter 14

Subsets

In this chapter we define relations and functions that apply to sets of any matching
types.

• subset: ( ⊆ )

• proper subset: ( ⊂ )

• non-empty subsets: P1 X

• distributive laws

In following chapters we go on to define relations and functions on sets of pairs
and other more complex structures.

Subset

Intent

The subset relations tell us when one set is wholly contained in another.

Definition

Subset:

relation ( ⊆ )

⊆ [X ] == { a, b : P X | a ∈ P b }

a is a subset of b precisely when it is a member of the power set of b. The subset
relation is the set analogue of logical implication; if the set p captures those items
that have property P , and the set q captures those with property Q , then p ⊆ q
expresses the property P ⇒ Q .

137
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Examples

X

a

b

X

a b

X

a b

dc

c
d

x
y z

Figure 14.1 Venn diagram of subset relations: c ⊆ a, ¬ c ⊆ b, c ⊂ d

1. Figure 14.1 shows examples of the subset relation.

2. ` {1} ⊆ {1, 3} ⊆ {1, 2, 3}
3. ` prime ⊆ N
4. ` ¬ {2} ⊆ {1, 3}
5. ` ¬ {1, 3} ⊆ {2, 3}
6. ` ¬ prime ⊆ odd

Laws

Law 14.1 a is a subset of b precisely when every element of a is also an element
of b.

[X ] a, b : P X ` a ⊆ b ⇔ ( ∀ x : a • x ∈ b )

Law 14.2 A set is a subset precisely when it is an identity for union. A set is a
subset precisely when it is a fixed point for intersection. A set is a subset precisely
when the difference is the empty set.

[X ] a, b : P X ` a ⊆ b ⇔ a ∪ b = b

[X ] a, b : P X ` a ⊆ b ⇔ a ∩ b = a

[X ] a, b : P X ` a ⊆ b ⇔ a \ b = ∅

Law 14.3 Subset is reflexive (every set is a subset of itself, a ⊆ a), antisymmetric
(two distinct sets cannot each be a subset of the other, a ⊆ b ∧ b ⊆ a ⇔ a = b),
and transitive (a ⊆ b ⊆ c ⇒ a ⊆ c). Hence the subset relation forms an order on
sets (§26).
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[X ] ` ( ⊆ )[X ] ∈ reflexiveOrder P X

Law 14.4 Subset has generalised intersection as its greatest lower bound (§26),
and generalised union as its least upper bound.

[X ] ` glb( ⊆ )[X ] =
⋂

[X ] ` lub( ⊆ )[X ] =
⋃

Law 14.5 The law about the lub (law 26.28) can be specialised for the subset
order; a set has each member of a collection of sets as a subset precisely when it
has their union as a subset (figure 14.2).

[X ] α : P P X ; b : P X ` ( ∀ a : α • a ⊆ b ) ⇔ ⋃
α ⊆ b

[X ] a, a ′, b : P X ` a ⊆ b ∧ a ′ ⊆ b ⇔ a ∪ a ′ ⊆ b

X

a

b

X

a

b

X

a
b

c
d

x
y z

a'
b'

Figure 14.2 Illustration of the specialisation of the laws about lub and glb to the subset
order. Law 14.5: a ⊆ b ∧ a ′ ⊆ b ⇔ a ∪a ′ ⊆ b and law 14.6: a ⊆ b ∧ a ⊆ b ′ ⇔ a ⊆ b ∩ b ′

Law 14.6 The law about the glb (law 26.28) can be specialised for the subset
order; a set is a subset of each member of a collection of sets precisely when it is
a subset of their intersection (figure 14.2).

[X ] a : P X ; α : P P X ` ( ∀ b : α • a ⊆ b ) ⇔ a ⊆ ⋂
α

[X ] a, b, b ′ : P X ` a ⊆ b ∧ a ⊆ b ′ ⇔ a ⊆ b ∩ b ′

•
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Proper subset

Intent

The proper subset relations tell us when one set is wholly contained in another,
and is not identical.

Definition

Proper subset:

relation ( ⊂ )

⊂ [X ] == ( ⊆ )[X ] ∩ ( 6= )

a is a proper subset of b precisely when it is a subset of b and distinct from b; if
every element of a is also a member of b and there is some member of b that is
not a member of a.

Examples

1. #{x , z} = 2 ⇒ {x} ⊂ {x , z}
2. ∅ ⊂ {x , z}
3. prime ⊂ N
4. ¬ {x , z} ⊂ {x , z}

Laws

Law 14.7 a is a proper subset of b precisely when a is a subset of b, but b is not
a subset of a

[X ] a, b : P X ` a ⊂ b ⇔ a ⊆ b ∧ ¬ b ⊆ a

[X ] a, b : P X ` a ⊂ b ⇔ a ⊆ b ∧ ( ∃ x : b • x 6∈ a )

Law 14.8 Proper subset is irreflexive (no set is a proper subset of itself), anti-
symmetric (two distinct sets cannot each be a proper subset of the other), and
transitive (a ⊂ b ⊂ c ⇒ a ⊂ c). Hence the proper subset relation forms an order
on sets (§26).
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[X ] ` ( ⊂ )[X ] ∈ irreflexiveOrder P X

Law 14.9 An empty set is a proper subset of precisely the non-empty sets of its
type.

[X ] ` ∅ ⊂ X ⇔ X 6= ∅

•

Non-empty subsets

Intent

When we declare a : P X , we are saying that the set a is some subset of X . The
case where we also want to have a non-empty, a 6= ∅, is sufficiently common that
there is special notation for it, a : P1 X .

Discussion

There are many cases where we wish to exclude the empty set from consideration
(for example, non-empty finite sets, non-empty sequences). We would like to be
able to define a general mechanism for doing this.

If we were to define a postfix operator, to mimic the conventional use of notation
such as seq1 X , we would have to write (seqX )1. A prefix notation would allow us
to write 1 seqX , associating the ‘non-empty’ symbol more closely with the relevant
operator. However, neither of these is close enough to the familiar conventional
notation, so we choose instead to define explicitly name1 == name \ {∅} for each
name where we wanta non-empty variant.

Even if we were to define a general non-emptiness operator, non-empty subsets
P1 could not be defined using it, because P is a core-language element, not a
constructed element: P1 is a single name; 1 P would be syntactically incorrect.

Definition

Non-empty subsets:

P1 X == P X \ {∅}
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Examples

1. P1 ∅[X ] = ∅
2. P1{x} = {{x}}
3. P1{x , y} = {{x}, {y}, {x , y}}
4. P1{x , y , z} = {{x}, {y}, {z}, {x , y}, {x , z}, {y , z}, {x , y , z}}
5. If we want to state in a predicate that a is a non-empty set of elements drawn

from X , we can say either ∅ 6= a ⊆ X or a ∈ P1 X .

Laws

Law 14.10 P1 X is empty precisely when X is empty; P1 X contains X precisely
when X is not empty.

[X ] ` X = ∅ ⇔ P1 X = ∅
[X ] ` X 6= ∅ ⇔ X ∈ P1 X

•

Distribution property

Laws

Law 14.11 A function that distributes through union or intersection is subset-
order preserving.

[X ,Y ] a, b : P X ; f : P X → P Y |
( ∀ a ′, b ′ : P X • f a ′ ∩ f b ′ = f (a ′ ∩ b ′) )
∨ ( ∀ a ′, b ′ : P X • f a ′ ∪ f b ′ = f (a ′ ∪ b ′) ) `

a ⊆ b ⇔ f a ⊆ f b

Law 14.12 A subset-order-preserving map applied to unions and intersections of
sets gives wider bounds than unions and intersections of the image of the set
through the map (law 26.36).

[X ,Y ] α : P P X ; f : P X → P Y | ( ∀ a, b : P X | a ⊆ b • f a ⊆ f b ) `⋃
(f (| α |)) ⊆ f (

⋃
α)

∧ f (
⋂

α) ⊆ ⋂
(f (| α |))
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[X ,Y ] a, b : P X ; f : P X → P Y | ( ∀ a ′, b ′ : P X | a ′ ⊆ b ′ • f a ′ ⊆ f b ′ ) `
f a ∪ f b ⊆ f (a ∪ b)
∧ f (a ∩ b) ⊆ f a ∩ f b

Law 14.13 As a direct consequence of the previous two laws, if a function dis-
tributes through set union, then there is a corresponding subset law for intersec-
tion; if a function distributes through set intersection, then there is a corresponding
subset law for union.

[X ,Y ] f : P X → P Y ; α : P P X | ∀α′ : P P X • f (
⋃

α′) =
⋃

(f (| α′ |)) `
f (
⋂

α) ⊆ ⋂
(f (| α |))

[X ,Y ] f : P X → P Y ; a, b : P X | ∀ a ′, b ′ : P X • f (a ′ ∪ b ′) = f a ′ ∪ f b ′ `
f (a ∩ b) ⊆ f a ∩ f b

[X ,Y ] f : P X → P Y ; α : P P X | ∀α′ : P P X • f (
⋂

α′) =
⋂

(f (| α′ |)) `⋃
(f (| α |)) ⊆ f (

⋃
α)

[X ,Y ] f : P X → P Y ; a, b : P X | ∀ a ′, b ′ : P X • f (a ′ ∩ b ′) = f a ′ ∩ f b ′ `
f a ∪ f b ⊆ f (a ∪ b)

Law 14.14 A function that pseudo-distributes through union or intersection is
subset order-reversing.

[X ,Y ] a, b : P X ; f : P X → P Y |
( ∀ a ′, b ′ : P X • f a ′ ∩ f b ′ = f (a ′ ∪ b ′) )
∨ ( ∀ a ′, b ′ : P X • f a ′ ∪ f b ′ = f (a ′ ∩ b ′) ) `

a ⊆ b ⇔ f b ⊆ f a

Law 14.15 A subset-order-reversing map applied to unions and intersections of
sets gives wider bounds than intersections and unions of the image of the set
through the map (law 26.39).

[X ,Y ] α : P P X ; f : P X → P Y | ( ∀ a, b : P X | a ⊆ b • f b ⊆ f a ) `
f (
⋃

α) ⊆ ⋂
(f (| α |))

∧ ⋃(f (| α |)) ⊆ f (
⋂

α)

[X ,Y ] a, b : P X ; f : P X → P Y | ( ∀ a ′, b ′ : P X | a ′ ⊆ b ′ • f b ′ ⊆ f a ′ ) `
f (a ∪ b) ⊆ f a ∩ f b
∧ f a ∪ f b ⊆ f (a ∩ b)

•
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Finiteness

Often in Z work, and particularly in general algebraic developments like those in
this catalogue, we neither know nor need to know very much about the sets we use.
The best practice is to make the minimum of assumptions, as this assists clarity
and allows the greatest possibility of reuse of the structures we develop. In general
a set may be finite, which we know if we have equated it to a finite display, or it
may be countably infinite, like N, the set of natural numbers, or it may be infinite
and uncountable, like P N or R. To say that a set is uncountable means that it is
not possible to make a list of its members, not even an infinite list. Particular sets
of interest are usually finitely describable, but this does not make them finite or
countable as sets.

In certain special cases, however, it may be useful, or necessary, to require a set
to be finite. For example, a recursive definition that consists of a base case, plus
a case that splits a set into two smaller ones, may be well-founded only when the
set is finite, so that splitting it in two eventually reduces it to the base case.

• finite subsets: F X

• non-empty finite subsets: F1 X

• finiteness: (finite )

Finite sets

Intent

Require a set to be finite.

Definitions

144
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Finite subsets:

generic (F )

F X ==
⋂{ a : P P X | ∅ ∈ a ∧ ( ∀ b : a; x : X • b ∪ {x} ∈ a ) }

The set of finite subsets is the smallest set that both contains the empty set and
is closed under union with singleton sets.

Consider the following. Let us work within an (infinite) generic set X . Let a be
the set of finite subsets of X . We know that ∅ is finite, so we have ∅ ∈ a. We
can be sure that if b is a finite set, and we take the union with a new (or existing)
element, the result will be a finite set, so we have ∀ b : a; x : X • b ∪ {x} ∈ a.
Finally we assert that every finite set can be produced in this way, so that we can
take the generalised intersection of all sets that have these two properties, and this
defines F X .

Non-empty finite subsets:

F1 X == F X \ {∅}

The set of non-empty finite subsets excludes the empty set.

Finiteness predicate:

relation (finite )

finite [X ] == F X

For any set a the predicate finite a is true precisely when a is finite.

Examples

1. the empty set is finite: [X ] ` finite ∅[X ]

2. any singleton set is finite: [X ] x : X ` finite{x}
3. ` ¬ finite N1

Laws

Law 15.1 induction principle: if a property of a set holds for ∅, and is preserved
through union with single elements, it holds for all finite sets. This principle follows
directly from the definition. It can be used in the proofs of most of the laws below.
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[X ] a : F X ` ∀A : P P a | ∅ ∈ A ∧ ( ∀α : A; x : a • α ∪ {a} ∈ A ) • a ∈ A

Law 15.2 The intersection of a finite set with any set is finite (see also law 30.21).

[X ] a, b : P X ` F(a ∩ b) = F a ∩ P b

[X ] a : P X ; b : F X ` finite(a ∩ b)

Law 15.3 The union of a finite collection of finite sets is finite.

[X ] α : F F X ` finite(
⋃

α)

Law 15.4 Subtracting a finite set from an infinite set leaves an infinite set.

[X ] a : P X ; b : F X | ¬ finite a ` ¬ finite(a \ b)

[X ] a : P X ; b : F X | finite(a \ b) ` finite a

Law 15.5 Any subset of a finite set is finite (see also law 30.22).

[X ] a : P X ; b : F X | a ⊆ b ` finite a

Law 15.6 If a set is finite, there is no surjection (§21) onto it from a proper subset
of itself. With a finite set, a proper subset is always smaller.

[X ] a : P X ; b : F X | a ⊂ b ` a 7→→ b = ∅

A surjection onto an infinite set can have a domain that is a proper subset of the
range.

For example, the function halve : even →→ N, that integer-divides its even argument
by 2, has ran halve = N and dom halve = even ⊂ N.

Law 15.7 Pigeonhole principle: if a set is finite, all its total homogeneous injec-
tions (§21) are necessarily surjections, and vice versa. Equivalently, if a set is finite,
the range of all total homogeneous injections is the same as the domain.

[X ] | finiteX ` X � X = X →→ X

[X ] f : X � X | finiteX ` ran f = X
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The fact that, for a finite set, a total injection onto itself is necessarily a surjection
is used in some theorems in number theory.

A total homogenous injection on an infinite set can have a range that is a proper
subset of the domain.

For example, the function double : N � N, that multiplies its argument by 2, has
dom double = N and ran double = even ⊂ N.

Law 15.8 A set is finite precisely when there is a surjection onto it from another
finite set.

[X ,Y ] ` F X = { b : P X | ∃ c : F Y • c 7→→ b 6= ∅ }

Law 15.9 A set is finite precisely when there is a bijection (§21) to it from an
initial segment of the natural numbers (§29).

[X ] ` F X = { b : P X | ∃ n : N • 1 . . n �→ b 6= ∅ }

The n in the bijection above is the size of the set. There may be a bijection from
all the natural numbers to an infinite set, in which case the infinite set is countable.

For example, the prime numbers, the integers Z, and the rationals Q, are countable
sets.

There may be no such bijection, in which case the infinite set is uncountable.

For example, the power set of the natural numbers P N, and the reals R, are un-
countable sets.

•
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Part IV

Binary relations





Chapter 16

Relations

A relation encapsulates the information as to whether two or more objects, taken
together, have a particular property. The convention in Z, when describing which
elements have some property, is to define the set of all elements that have the
property. Similarly, the usual model of a relation is the set of ordered tuples that
have the property of interest. Although one can work with tuples of any size, a
common way in Z is to build up whatever is required in terms of binary relations,
where the tuples are then ordered pairs.

• first and second components: first, second

• relation: X ↔ Y

• finite relations: X 7 7↔ Y

• maplet: ( 7→ )

• inverse: ( ∼)

• dual laws

Such relations are just sets of pairs, so all the set operations introduced in the
previous part are also applicable.

Tuple component selection

Intent

We can access the components of a tuple using a Z core language construct:

p = (x , y); p.1 = x ; p.2 = y ; p = (p.1, p.2)
q = (x , y , z ); q .1 = x ; q .2 = y ; q .3 = z ; q = (q .1, q .2, q .3)

For the common case of selection of components of a pair, we define first and
second , which allow selection to be applied and composed.

151
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Definition

first and second components:

first[X ,Y ] == λ p : X × Y • p.1

second[X ,Y ] == λ p : X × Y • p.2

Examples

1. the image of a relation through first is its domain
first(| r |) = dom r

2. If we have a relation to pairs of items, r : Z ↔ X × Y , then we can split it
to form relations to the first of the pair and to the second of the pair
r = {z1 7→ (x1, y1), . . . , zn 7→ (xn , yn)}
r o

9 first = {z1 7→ x1, . . . , zn 7→ xn}
r o

9 second = {z1 7→ y1, . . . , zn 7→ yn}

Laws

Law 16.1 first and second are total surjections (§21).

[X ,Y ] ` first[X ,Y ] ∈ X × Y →→ X

[X ,Y ] ` second[X ,Y ] ∈ X × Y →→ Y

Law 16.2 Any pair is fully characterised by its first and second components.

[X ,Y ] p : X × Y ` p = (first p, second p)

•

Relation notation

Intent

Sets of pairs used as relations are so commonly used in Z specifications that there
is a special infix notation for them.
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Definition

relation:

generic 5 rightassoc ( ↔ )

X ↔ Y == P(X × Y )

Examples

1. {(x1, y1), (x1, y2), (x3, y2), (x5, y6)} ∈ X ↔ Y

2. the full relation: X × Y ∈ X ↔ Y

3. the empty relation: ∅[X × Y ] ∈ X ↔ Y

4. that the relation constructor distributes through non-empty generalised in-
tersection, but not through the other set operators, can be readily deduced
from the distributive properties of power set and Cartesian product.

[X ,Y ] a, a ′ : P X ; b : P Y ` (a ∩ a ′) ↔ b = a ↔ b ∩ a ′ ↔ b

•

Finite relations

Intent

Define explicitly finite relations.

Definition

finite relations:

generic 5 rightassoc ( 7 7↔ )

X 7 7↔ Y == F(X × Y )

Laws

Law 16.3 A relation is finite precisely when its domain and range are finite.

[X ,Y ] r : X ↔ Y ` r ∈ X 7 7↔ Y ⇔ finite dom r ∧ finite ran r

•
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Maplet notation

Intent

The maplet notation is syntactic sugar for a particular element of a relation, a
pair. It can be used as emphasis, to draw attention to the fact that a particular
pair is being considered to be an element of a relation, and to reduce cluttering
parentheses.

Definition

maplet:

function 10 leftassoc ( 7→ )

7→ [X ,Y ] == λ x : X ; y : Y • (x , y)

Examples

1. x 7→ y = (x , y)

2. {x1 7→ y1, x1 7→ y2, x3 7→ y2, x5 7→ y6} = {(x1, y1), (x1, y2), (x3, y2), (x5, y6)}

•

Relational inverse

Intent

Relational inverse swaps the components of the pairs.

Definition

inverse:

function ( ∼)
∼ [X ,Y ] == λ r : X ↔ Y • { p : r • p.2 7→ p.1 }
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Examples

r

X

Y

Y

X

r ~

Figure 16.1 An example of relational inverse.

1. Figure 16.1 shows an example of relational inverse.

2. {x 7→ y}∼ = {y 7→ x}
3. {x1 7→ y1, x1 7→ y2, x3 7→ y2, x5 7→ y6}∼

= {y1 7→ x1, y2 7→ x1, y2 7→ x3, y6 7→ x5}

Laws

Law 16.4 Relational inverse is a bijection (§21).

[X ,Y ] ` ( ∼)[X ,Y ] ∈ (X ↔ Y ) �→ (Y ↔ X )

Law 16.5 Inverting twice restores the original relation.

[X ,Y ] r : X ↔ Y ` r∼∼ = r

� Law 16.6 The complement of the inverse is the inverse of the complement.

[X ,Y ] r : X ↔ Y ` (Y × X ) \ r∼ = ((X × Y ) \ r)∼

� Law 16.7 Relational inverse distributes through generalised union and gener-
alised intersection.
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[X ,Y ] ρ : P(X ↔ Y ) ` ⋃{ r : ρ • r∼ } = (
⋃

ρ)∼

[X ,Y ] r , s : X ↔ Y ` r∼ ∪ s∼ = (r ∪ s)∼

[X ,Y ] ρ : P(X ↔ Y ) ` (
⋂

ρ)∼ =
⋂{ r : ρ • r∼ }

[X ,Y ] r , s : X ↔ Y ` (r ∩ s)∼ = r∼ ∩ s∼

� Law 16.8 Relational inverse distributes through set diffference.

[X ,Y ] r , s : X ↔ Y ` (r \ s)∼ = r∼ \ s∼

Law 16.9 As a corollary of laws 16.8 and 16.7, with law 13.45, inverse distributes
through symmetric set difference.

[X ,Y ] r , s : X ↔ Y ` (r 	 s)∼ = r∼	 s∼

Law 16.10 As a corollary of law 26.37 specialised to subsets, along with law 16.8,
relational inverse is subset order-preserving.

[X ,Y ] r , s : X ↔ Y | r ⊆ s ` r∼ ⊆ s∼

•

Deriving dual laws

Intent

Many of the operators defined below occur in dual pairs, one about the source set,
and the other about the target set, and a law relating them using relational inverse.
In such a case it is possible to derive a set of laws about the target set from those
about the source set and the inverse law; hence only source set laws are given.

Derivation

For example, assume we have a pair of dual operators, source operator fs and target
operator ft defined thus:

[X ,Y ]
fs : (X ↔ Y )× P X → P Y
ft : (X ↔ Y )× P Y → P X

. . .
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Assume that these operators are related by relational inverse as

[X ,Y ] r : X ↔ Y ; a : P X ` ∃G : P X 7→ P Y • fs(r
∼, a) = G(ft(r , a))

Then any law about fs such as

[X ,Y ] r : X ↔ Y ; a : P X ` P(fs(r , a), r , a)

can be translated into a dual law about ft as follows. The names in the above law
are arbitrary, so we can rewrite by swapping the names X as Y , and renaming r
as r∼, a as b.

[X ,Y ] r : X ↔ Y ; b : P Y ` P(fs(r
∼, b), r∼, b)

Finally, use the inverse law linking the operators to substitute for (some) occur-
rences of r∼ to get the dual form of the law about ft .

[X ,Y ] r : X ↔ Y ; b : P Y ` P(G(ft(r , b)), r∼, b)

•
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Domain and Range of relations

Domain and range

Intent

The domain of a relation is all those elements of the source set participating in the
relation. Similarly the range is all those elements in the relation’s target set.

Definition

domain and range:

dom[X ,Y ] == λ r : X ↔ Y • { p : r • p.1 }
ran[X ,Y ] == λ r : X ↔ Y • { p : r • p.2 }

The domain and range functions extract the set of first elements of all the pairs,
and the set of second elements, respectively.

Examples

1. Figure 17.1 shows an example of domain and range.

2. dom{x1 7→ y1, x1 7→ y2, x3 7→ y2, x5 7→ y6} = {x1, x3, x5}
ran{x1 7→ y1, x1 7→ y2, x3 7→ y2, x5 7→ y6} = {y1, y2, y6}

3. The domain of a sequence (§34) is a prefix of the positive numbers
dom〈a, b, c, d〉 = 1 . . 4

Laws

Law 17.1 Range laws can be derived as ‘duals’ of domain laws, by using
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dom  r

r
Y

X

ran  r

Figure 17.1 An example of the domain and range of a relation.

[X ,Y ] r : X ↔ Y ` dom(r∼) = ran r

Law 17.2 dom and ran are total surjections (§21).

[X ,Y ] ` dom[X ,Y ] ∈ (X ↔ Y ) →→ P X

[X ,Y ] ` ran[X ,Y ] ∈ (X ↔ Y ) →→ P Y

� Law 17.3 dom and ran distribute through generalised union.

[X ,Y ] ρ : P(X ↔ Y ) ` ⋃(dom(| ρ |)) = dom(
⋃

ρ)

[X ,Y ] r , s : X ↔ Y ` dom r ∪ dom s = dom(r ∪ s)

[X ,Y ] ρ : P(X ↔ Y ) ` ⋃(ran(| ρ |)) = ran(
⋃

ρ)

[X ,Y ] r , s : X ↔ Y ` ran r ∪ ran s = ran(r ∪ s)

Law 17.4 As a corollary of law 26.37 specialised to subsets, along with law 17.3,
dom is subset order-preserving.

[X ,Y ] r , s : X ↔ Y | r ⊆ s ` dom r ⊆ dom s

[X ,Y ] r , s : X ↔ Y | r ⊆ s ` ran r ⊆ ran s

Law 17.5 Domain does not in general distribute through intersection. It dis-
tributes only when the relations are compatible (§20). Range does not in general
distribute through intersection. It distributes only when the relations agree on
their common ranges.
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[X ,Y ] r , s : X ↔ Y ` dom(r ∩ s) ⊆ dom r ∩ dom s

[X ,Y ] r , s : X ↔ Y | r ≈ s ` dom(r ∩ s) = dom r ∩ dom s

[X ,Y ] r , s : X ↔ Y ` ran(r ∩ s) ⊆ ran r ∩ ran s

[X ,Y ] r , s : X ↔ Y | s B ran r = r B ran s ` ran(r ∩ s) = ran r ∩ ran s

� Law 17.6 Domain does not in general distribute through set difference. It dis-
tributes only when the domain of the difference does not overlap the domain of the
second relation.

[X ,Y ] r , s : X ↔ Y ` dom r \ dom s = dom(r \ s) \ dom s

[X ,Y ] r , s : X ↔ Y | disjoint〈dom(r \ s), dom s〉 ` dom r \ dom s = dom(r \ s)

Law 17.7 The domain and range of a relation are empty precisely when the rela-
tion is empty.

[X ,Y ] r : X ↔ Y ` r = ∅ ⇔ dom r = ∅
[X ,Y ] r : X ↔ Y ` r = ∅ ⇔ ran r = ∅

Law 17.8 The domain of the full relation is the entire source set.

[X ,Y ] ` dom(X × Y ) = X

[X ,Y ] ` ran(X × Y ) = Y

•
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Relation restriction

This chapter introduces some notaton for subsetting (binary) relations.

• domain restriction and subtraction: ( C ), ( −C )

• range restriction and subtraction: ( B ), ( −B )

Domain restriction

Intent

We can build a subset of a relation by considering it on only some subset of its
domain.

Definition

domain restriction:

function 65 rightassoc ( C )

C [X ,Y ] == λ a : P X ; r : X ↔ Y • { p : r | p.1 ∈ a }

Domain restriction, aCr , gives a relation the same as r on a, and empty elsewhere.
a need not be a subset of dom r .

domain subtraction:

function 65 rightassoc ( −C )

−C [X ,Y ] == λ a : P X ; r : X ↔ Y • { p : r | p.1 6∈ a }

Domain subtraction, a −C r , gives a relation that is empty on a, and the same as r
elsewhere.

161
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Examples

a

Y

X
a

Y

X

Figure 18.1 An example of domain restriction and subtraction.

1. Figure 18.1 shows an example of restriction.

2. r = {x1 7→ y1, x1 7→ y2, x3 7→ y2, x5 7→ y6} ∧ #{x1, x3, x5} = 3
{x1, x5}C r = {x1 7→ y1, x1 7→ y2, x5 7→ y6}
{x1, x5} −C r = {x3 7→ y2}

3. We can restrict the addition operator to just non-zero natural numbers
N2×

1 C ( + )

4. We can extract an interesting subrelation, involving only children’s seating,
where seating : PERSON ↔ SEAT , and children : P PERSON
children C seating

5. We can restrict a sequence s to its first n elements
(1 . . n) C s

6. We can extract a subsequence from a sequence s
squash(a C s)

7. We can update a relation by removing a single element from its domain
r ′ = {x} −C r

Laws

Law 18.1 Restriction and subtraction are total surjections (§21).

[X ,Y ] ` ( C )[X ,Y ] ∈ P X × (X ↔ Y ) →→ (X ↔ Y )

[X ,Y ] ` ( −C )[X ,Y ] ∈ P X × (X ↔ Y ) →→ (X ↔ Y )
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Law 18.2 Subtraction is the complement of restriction.

[X ,Y ] a : P X ; r : X ↔ Y ` a −C r = (X \ a) C r

Law 18.3 Restriction and subtraction together partition a relation.

[X ,Y ] a : P X ; r : X ↔ Y ` 〈a C r , a −C r〉 partition r

Law 18.4 Domain restriction can be written as set intersection; domain subtrac-
tion can be written as set difference.

[X ,Y ] a : P X ; r : X ↔ Y ; b : P Y | ran r ⊆ b ` a C r = r ∩ (a × b)

[X ,Y ] a : P X ; r : X ↔ Y ; b : P Y | ran r ⊆ b ` a −C r = r \ (a × b)

� Law 18.5 Restriction distributes through generalised union on both its argu-
ments.

[X ,Y ] α : P P X ; ρ : P(X ↔ Y ) ` ⋃{ a : α; r : ρ • a C r } =
⋃

α C
⋃

ρ

[X ,Y ] a, b : P X ; r : X ↔ Y ` (a C r) ∪ (b C r) = (a ∪ b) C r

[X ,Y ] a : P X ; r , s : X ↔ Y ` (a C r) ∪ (a C s) = a C (r ∪ s)

� Law 18.6 Restriction distributes through non-empty intersection on both its
arguments.

[X ,Y ] α : P1 P X ; ρ : P1(X ↔ Y ) ` ⋂α C
⋂

ρ =
⋂{ a : α; r : ρ • a C r }

[X ,Y ] a, b : P X ; r , s : X ↔ Y ` (a ∩ b) C (r ∩ s) = (a C r) ∩ (b C s)

Law 18.7 As a corollary of law 26.37 specialised to subsets, along with law 18.6,
restriction is subset order-preserving on both its arguments.

[X ,Y ] a, b : P X ; r , s : X ↔ Y | a ⊆ b ∧ r ⊆ s ` a C r ⊆ b C s

� Law 18.8 Subtraction pseudo-distributes through union on its set argument,
and distributes through union on its relation argument.

[X ,Y ] α : P P X ; ρ : P(X ↔ Y ) ` ⋃{ a : α; r : ρ • a −C r } =
⋂

α−C ⋃
ρ

[X ,Y ] a, b : P X ; r : X ↔ Y ` (a −C r) ∪ (b −C r) = (a ∩ b)−C r

[X ,Y ] a : P X ; r , s : X ↔ Y ` (a −C r) ∪ (a −C s) = a −C (r ∪ s)
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� Law 18.9 Subtraction pseudo-distributes through non-empty intersection on its
set argument, and distributes through non-empty intersection on its relation argu-
ment.

[X ,Y ] α : P1 P X ; ρ : P1(X ↔ Y ) ` ⋃α−C ⋂
ρ =

⋂{ a : α; r : ρ • a −C r }
[X ,Y ] a, b : P X ; r : X ↔ Y ` (a ∪ b)−C r = (a −C r) ∩ (b −C r)

[X ,Y ] a : P X ; r , s : X ↔ Y ` a −C (r ∩ s) = (a −C r) ∩ (a −C s)

Law 18.10 As a corollary of law 26.40 specialised to subsets, along with law 18.9,
restriction is subset order-reversing on its set argument. As a corollary of law 26.37
specialised to subsets, along with law 18.9, restriction is subset order-preserving
on its relation argument.

[X ,Y ] a, b : P X ; r , s : X ↔ Y | a ⊆ b ∧ r ⊆ s ` b −C r ⊆ a −C s

� Law 18.11 If a binary function distributes through restriction on its relation
argument, then it also distributes through subtraction.

[X ,Y ] f : (X ↔ Y )2× → (X ↔ Y ); a : P X ; r , s : X ↔ Y |
∀ a ′ : P X ; r ′, s ′ : X ↔ Y • a ′ C f (r ′, s ′) = f (a ′ C r ′, a ′ C s ′) `

a −C f (r , s) = f (a −C r , a −C s)

� Law 18.12 A restricted relation is a subset of the relation. Equality with the
empty set holds precisely when the domain restricting set is disjoint from the
domain. Equality with r holds precisely when the domain restricting set is bigger
than the domain.

[X ,Y ] a : P X ; r : X ↔ Y ` a C r ⊆ r

[X ,Y ] a : P X ; r : X ↔ Y ` a C r = ∅ ⇔ a ∩ dom r = ∅
[X ,Y ] a : P X ; r : X ↔ Y ` a C r = r ⇔ dom r ⊆ a

Law 18.13 A subtracted relation is a subset of the relation. Equality with the
empty set holds precisely when the domain subtracting set is bigger than the
domain. Equality with r holds precisely when the domain subtractset is disjoint
from the domain.

[X ,Y ] a : P X ; r : X ↔ Y ` a −C r ⊆ r

[X ,Y ] a : P X ; r : X ↔ Y ` a −C r = ∅ ⇔ dom r ⊆ a

[X ,Y ] a : P X ; r : X ↔ Y ` a −C r = r ⇔ a ∩ dom r = ∅
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� Law 18.14 The part of the restricting or subtracting set outside the domain of
the relation has no effect.

[X ,Y ] a : P X ; r : X ↔ Y ` a C r = (a ∩ dom r) C r

[X ,Y ] a : P X ; r : X ↔ Y ` a −C r = (a ∩ dom r)−C r

� Law 18.15 Restricting twice is equivalent to restricting to the intersection; sub-
tracting twice is equivalent to subtracting the union; restricting and subtracting is
equivalent to restricting to the difference.

[X ,Y ] a, b : P X ; r : X ↔ Y ` a C b C r = (a ∩ b) C r

[X ,Y ] a, b : P X ; r : X ↔ Y ` a −C b −C r = (a ∪ b)−C r

[X ,Y ] a, b : P X ; r : X ↔ Y ` a C b −C r = b −C a C r = (a \ b) C r

Law 18.16 The domain of a restricted relation is the intersection of the original
domain and the restriction set; the domain of subtracted relation is the difference
of the original domain and the restriction set.

[X ,Y ] a : P X ; r : X ↔ Y ` dom(a C r) = a ∩ dom r

[X ,Y ] a : P X ; r : X ↔ Y ` dom(a −C r) = dom r \ a

Law 18.17 The range of a restricted relation is the image of the restriction set;
it is also the range of the original relation less the upper shadow of the restriction
set. The range of a subtracted relation is the image of all but the restriction set.

[X ,Y ] a : P X ; r : X ↔ Y ` ran(a C r) = r(| a |)
[X ,Y ] a : P X ; r : X ↔ Y ` ran(a −C r) = ran r \ upperShadow r a

[X ,Y ] a : P X ; r : X ↔ Y ` ran(a −C r) = r(| dom r \ a |)

•
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Range restriction

Intent

We can build a subset of a relation by considering it on only some subset of its
range.

Definition

range restriction:

function 60 leftassoc ( B )

B [X ,Y ] == λ r : X ↔ Y ; b : P Y • { p : r | p.2 ∈ b }

Range restriction, r B b, gives a relation the same as r on b, and empty elsewhere.
b need not be a subset of ran r .

range subtraction:

function 60 leftassoc ( −B )

−B [X ,Y ] == λ r : X ↔ Y ; b : P Y • { p : r | p.2 6∈ b }

Range subtraction, r −B b, gives a relation that is empty on b, and the same as r
elsewhere.

Examples

b

Y

X

Y

X

b

Figure 18.2 An example of range subtraction and restriction.
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1. r = {x1 7→ y1, x1 7→ y2, x3 7→ y2, x5 7→ y6} ∧ #{y1, y2, y6} = 3
r B {y2} = {x1 7→ y2, x3 7→ y2}
r −B {y2} = {x1 7→ y1, x5 7→ y6}

2. We can filter a set of items from a sequence s
squash(s B b)

3. We can extract an interesting subrelation, involving only non-first class seat-
ing, where seating : PERSON ↔ SEAT , and firstClass : P SEAT
seating −B firstClass

Laws

Law 18.18 Range restriction laws can be derived as ‘duals’ of domain restriction
laws, by using

[X ,Y ] a : P X ; r : X ↔ Y ` r∼ B a = (a C r)∼

[X ,Y ] a : P X ; r : X ↔ Y ` r∼ −B a = (a −C r)∼

The dual laws are not stated explicitly here.

Law 18.19 Brackets are not necessary when restricting both domain and range.
(They have different precedences only because they have different associativities.)

[X ,Y ] a : P X ; r : X ↔ Y ; b : P Y ` (a C r) B b = a C (r B b) = a C r B b

[X ,Y ] a : P X ; r : X ↔ Y ; b : P Y ` (a C r)−B b = a C (r −B b) = a C r −B b

[X ,Y ] a : P X ; r : X ↔ Y ; b : P Y ` (a −C r) B b = a −C (r B b) = a −C r B b

[X ,Y ] a : P X ; r : X ↔ Y ; b : P Y ` (a −C r)−B b = a −C (r −B b) = a −C r −B b

Law 18.20 Domain and range restriction together act as set intersection.

[X ,Y ] a : P X ; r : X ↔ Y ; b : P Y ` a C r B b = r ∩ (a × b)

•
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Images, bounds, shadows

• upper and lower image

• upper and lower bound

• upper and lower shadow

• upper and lower singleton image

Upper and lower image

Intent

Image can be thought of as ‘relational application’; applying a relation to a set,
to yield the image set. Compare this with functional application, which applies a
function to an element, to yield the image element (law 21.2).

Definition

upper image:

upperImage[X ,Y ] == λ r : X ↔ Y • λ a : P X • { y : Y | ∃ x : a • x 7→ y ∈ r }

The upper image of a set a through a relation r is the set of those range elements
of r that are related to some element in a by r .

lower image:

lowerImage[X ,Y ] == λ r : X ↔ Y • λ b : P Y • { x : X | ∃ y : b • x 7→ y ∈ r }

The lower image of a set b through a relation r is the set of those domain elements
of r that are related to some element in b by r .

168
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Upper image is more familiarly written in Z as relational image, r(| a |). In ZRM
this is an undefinable kind of symbol that must be hardwired into Z’s syntax; in
Standard Z it is definable with an operator template paragraph.

relational image:

function ( (| |))
(| |) [X ,Y ] == λ r : X ↔ Y ; a : P X • upperImage r a

Examples

a

Y

X

upperImage  r a
=

r (| a  |)

lowerImage  r b

Y

X

b

Figure 19.1 An example of upper image (relational image) and lower image.

1. r = {x1 7→ y1, x1 7→ y2, x3 7→ y2, x5 7→ y6}
r(| {x1, x3} |) = {y1, y2}

2. Consider a register that relates houses to those people who own the house:
owns : HOUSE ↔ PERSON

We can extract everyone who owns the house chezNous:
upperImage owns {chezNous}; or equivalently as owns(| {chezNous} |)

We can extract every house owned by the person fred :
lowerImage owns {fred}

Laws

Law 19.1 Lower image laws can be derived as ‘duals’ of upper image laws, and
vice versa, by using
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[X ,Y ] a : P X ; r : X ↔ Y ` lowerImage(r∼)a = upperImage r a = r(| a |)
[X ,Y ] r : X ↔ Y ; b : P Y ` lowerImage r b = upperImage(r∼)b = (r∼)(| b |)

Law 19.2 Image is a total function. The uncurried form (| |) is a total surjection
(§21).

[X ,Y ] ` upperImage[X ,Y ] ∈ (X ↔ Y ) → P X → P Y

[X ,Y ] ` ( (| |))[X ,Y ] ∈ (X ↔ Y )× P X →→ P Y

Law 19.3 The upper image of a function reduces to

[X ,Y ] a : P X ; f : X 7→ Y ` f (| a |) = { x : a ∩ dom f • f x }

� Law 19.4 Image distributes through union on its set and relation argument.

[X ,Y ] ρ : P(X ↔ Y ); α : P P X ` ⋃{ r : ρ; a : α • r(| a |) } =
⋃

ρ(| ⋃α |)
[X ,Y ] a, b : P X ; r : X ↔ Y ` r(| a |) ∪ r(| b |) = r(| a ∪ b |)
[X ,Y ] a : P X ; r , s : X ↔ Y ` r(| a |) ∪ s(| a |) = (r ∪ s)(| a |)

Law 19.5 As a corollary of law 26.37 specialised to subsets, along with law 19.4,
image is subset order-preserving on its relation argument and on its set argument.

[X ,Y ] a, b : P X ; r , s : X ↔ Y | a ⊆ b ∧ r ⊆ s ` r(| a |) ⊆ s(| b |)

� Law 19.6 Lower image distributes through intersection on its set argument if
the relation is a function (§21).

[X ,Y ] f : X 7→ Y ; a, b : P Y `
lowerImage f (a ∩ b) = lowerImage f a ∩ lowerImage f b

� Law 19.7 The part of a contained in the domain of relation r is contained in
the lower image of its upper image through r .

The part of b contained in the range of relation r is contained in the upper image
of its lower image through r . Equality holds when r is a function (§21).

[X ,Y ] a : P X ; r : X ↔ Y ` a ∩ dom r ⊆ lowerImage r(r(| a |))
[X ,Y ] r : X ↔ Y ; b : P Y ` b ∩ ran r ⊆ r(| lowerImage r b |)
[X ,Y ] f : X 7→ Y ; b : P Y ` b ∩ ran f = f (| lowerImage f b |)
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� Law 19.8 Upper image of a domain restricted relation is the same as upper
image through the restricted set.

[X ,Y ] a, b : P X ; r : X ↔ Y ` (a C r)(| b |) = r(| a ∩ b |) = (b C r)(| a |)
[X ,Y ] a, b : P X ; r : X ↔ Y ` (a −C r)(| b |) = r(| b \ a |)

� Law 19.9 Upper image of a range restricted relation is the same as the upper
image, restricted.

[X ,Y ] a : P X ; b : P Y ; r : X ↔ Y ` (r B b)(| a |) = r(| a |) ∩ b

[X ,Y ] a : P X ; b : P Y ; r : X ↔ Y ` (r −B b)(| a |) = r(| a |) \ b

� Law 19.10 Domain restriction by a set is a subset of range restriction by the up-
per image of that set; domain subtraction by a set is a superset of range subtraction
by the upper image of that set.

[X ,Y ] r : X ↔ Y ; a : P X ` a C r ⊆ r B r(| a |)
[X ,Y ] r : X ↔ Y ; a : P X ` r −B r(| a |) ⊆ a −C r

Law 19.11 The upper image of r through the relation first is the domain of r ;
the upper image of r through the relation second is the range of r .

[X ,Y ] r : X ↔ Y ` first(| r |) = dom r

[X ,Y ] r : X ↔ Y ` second(| r |) = ran r

•

Upper and lower bound

Intent

The bound gives the range values which correspond to all domain values in the set
a (contrast this with the image, which gives the range values which correspond to
some domain value in the set a.)
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Definition

upper bound:

upperBound[X ,Y ] == λ r : X ↔ Y • λ a : P X • { y : Y | ∀ x : a • x 7→ y ∈ r }

The upper bound of a set a through a relation r is the set of those elements of the
target type of r that are related to all elements in a by r .

lower bound:

lowerBound[X ,Y ] == λ r : X ↔ Y • λ b : P Y • { x : X | ∀ y : b • x 7→ y ∈ r }

The lower bound of a set b through a relation r is the set of those elements of the
source type of r that are related to all elements in b by r .

Examples

a

Y

X

upperBound  r a

Y

X

b

lowerBound  r b

Figure 19.2 An example of upper bounds and of lower bounds of a set with respect to
a relation.

The nature of the upper or lower bound is particularly clear when the relation is
a total order (§26). The upper bound is then the set of all elements of the range
of the order that follow all the elements of the set, and the lower bound is the set
of all elements of the domain of the order that precede all the elements of the set.

For example:

r = {x , y : 1 . . 10 | x ≤ y}
upperBound r{3, 5, 7} = {7, 8, 9, 10}
lowerBound r{3, 5, 7} = {1, 2, 3}
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a

R

R

upperBound  ( _  <  _ )  a

lowerBound  ( _  <  _ )  a

Figure 19.3 Example: lower bound and upper bound of a set a with respect to the
order ( < ) over real numbers.

Similarly, if the relation is a partial order such as ⊂ and we have some non-empty
set of sets α, then the upper bound is the set of all sets of which all members of α
are proper subsets, so

α : P1 P X ` upperBound( ⊂ )α = { b : P1 X • b ∪ ⋃α }

and the lower bound is the set of all sets which are proper subsets of α, so

α : P1 P X ` lowerBound( ⊂ )α = P(
⋂

α) \ {⋂α}

Further examples of image, bound and shadow are given following the definition
of shadow below.

Laws

Law 19.12 Laws about lower bounds are ‘duals’ of laws about upper bound.

[X ,Y ] r : X ↔ Y ; a : P X ` lowerBound(r∼)a = upperBound r a

Law 19.13 Bound is a total function.

[X ,Y ] ` upperBound[X ,Y ] ∈ (X ↔ Y ) → P X → P Y

Law 19.14 An equivalent definition of upper bound, separated into empty and
non-empty cases.
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[X ,Y ] r : X ↔ Y ` upperBound[X ,Y ]r ∅ = Y

[X ,Y ] r : X ↔ Y ; a : P1 X `
upperBound r a = { y : ran r | ∀ x : a • x 7→ y ∈ r }

� Law 19.15 Bound distributes through intersection on its relation argument, and
pseudo-distributes through union on its set argument:

[X ,Y ] ρ : P(X ↔ Y ); α : P P X `
upperBound(

⋂
ρ)(
⋃

α) =
⋂{ r : ρ; a : α • upperBound r a }

[X ,Y ] r , s : X ↔ Y ; a : P X `
upperBound(r ∩ s)a = upperBound r a ∩ upperBound s a

[X ,Y ] r : X ↔ Y ; a, b : P X `
upperBound r(a ∪ b) = upperBound r a ∩ upperBound r b

Law 19.16 As a corollary of law 26.37, along with law 19.15, bound is subset
order-preserving (§26) on its relation argument, and subset order-reversing (§26)
on its set argument.

[X ,Y ] r , s : X ↔ Y ; a, b : P X | r ⊆ s ∧ a ⊆ b `
upperBound r b ⊆ upperBound s a

� Law 19.17 Upper bound of a range restriction is intersection of the upperbound.

[X ,Y ] r : X ↔ Y ; b : P Y ; a : P1 X `
upperBound(r B b)a = (upperBound r a) ∩ b

[X ,Y ] r : X ↔ Y ; b : P Y ; a : P1 X `
upperBound(r −B b)a = (upperBound r a) \ b

� Law 19.18 Upper bound of a domain restriction vanishes outside a subset of
the restricting set.

[X ,Y ] r : X ↔ Y ; b, a : P X `
upperBound(b C r)a = ( if a ⊆ b then upperBound r a else ∅ )

[X ,Y ] r : X ↔ Y ; b, a : P X `
upperBound(b −C r)a = ( if disjoint〈a, b〉 then upperBound r a else ∅ )

Law 19.19 Being in the bound of a non-empty set is a stronger condition than
being in the image. The two are equal only on the full relation.
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[X ,Y ] r : X ↔ Y ; a : P1 X ` upperBound r a ⊆ r(| a |)
[X ,Y ] r : X ↔ Y ; a : P1 X ` upperBound r a = r(| a |) ⇔ a C r = a × Y

� Law 19.20 There is a pair of de Morgan-style laws relating image and bound
through set complement.

[X ,Y ] r : X ↔ Y ; a, c : P X ; b : P Y | c ⊆ a `
((a × b) \ r)(| c |) = upperImage((a × b) \ r)c = b \ upperBound r c

[X ,Y ] r : X ↔ Y ; a, c : P1 X ; b : P Y | c ⊆ a `
upperBound((a × b) \ r)c = b \ upperImage r c = b \ (r(| c |))

By setting a = X and b = Y we obtain a form of this law using the generic
parameter explicitly (figure 19.4), which can also be useful:

[X ,Y ] r : X ↔ Y ; a : X `
((X × Y ) \ r)(| a |) = upperImage((X × Y ) \ r)a = Y \ upperBound r a

[X ,Y ] r : X ↔ Y ; a : P1 X `
upperBound((X × Y ) \ r)a = Y \ upperImage r a = Y \ (r(| a |))

a

Y

X

upperImage
((X x Y) \  r) a

a

Y

X

Y   \
upperbound   r a

Figure 19.4 Illustration of one of the de Morgan-style laws relating upperImage and
upperBound (law 19.20), in the form using the whole generic parameter sets.

Law 19.21 For an antisymmetric relation, at most one of the bounds is an element
of the set.

[X ] r : antisymmetricX ; a : P X ; x , y : X | {x , y} ⊆ a ∩ upperBound r a `
x = y
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Law 19.22 For an irreflexive relation, none of the bounds is an element of the set.

[X ] r : irreflexiveX ; a : P X ` disjoint〈a, upperBound r a〉

•

Upper and lower shadow

Intent

The upper shadow gives the set of values of the target type of the relation whose
corresponding domain values (if any) are wholly contained in the set.

Similarly the lower shadow gives the set of values of the source type of the relation
whose corresponding range values (if any) are wholly contained in the set.

Definition

upper shadow:

upperShadow[X ,Y ] ==
λ r : X ↔ Y • λ a : P X • { y : Y | ∀ x : X | x 7→ y ∈ r • x ∈ a }

The upper shadow of a set a through a relation r is the set of those elements y of
the target type of r for which every x in the relation at that y is also in the set a.

lower shadow:

lowerShadow[X ,Y ] ==
λ r : X ↔ Y • λ b : P Y • { x : X | ∀ y : Y | x 7→ y ∈ r • y ∈ b }

The lower shadow of a set b through a relation r is the set of those elements x of
the source type of r for which every y in the relation at that x is also in the set b.

Examples

1. upperShadow[1 . . 10, 1 . . 10]( < ){1, 2, 5, 9, 10} = {1, 2, 3}
2. lowerShadow[1 . . 10, 1 . . 10]( < ){1, 2, 5, 9, 10} = {8, 9, 10}
3. Unlike the case with images and bounds, the extent of the generic parameter

nearly always affects the value of this operation.

Further examples are given below.
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a

Y

X

upperShadow  r a

Figure 19.5 An example of upper shadow of a set with respect to a relation.

Laws

Law 19.23 Laws about lower shadows are ‘duals’ of laws about upper shadows.

[X ,Y ] a : P X ; r : X ↔ Y ` lowerShadow(r∼)a = upperShadow r a

Law 19.24 The upper shadow always contains the complement of the range of
the relation.

[X ,Y ] r : X ↔ Y ; a : P X `
upperShadow[X ,Y ]r a =

(Y \ ran r) ∪ { y : ran r | ∀ x : X | x 7→ y ∈ r • x ∈ a }

Law 19.25 Shadow distributes through intersection on its set argument

[X ,Y ] r : X ↔ Y ; a, b : P Y `
upperShadow[X ,Y ]r(a ∩ b) =

upperShadow[X ,Y ]r a ∩ upperShadow[X ,Y ]r b

Law 19.26 Shadow pseudo-distributes through union on its relation argument

[X ,Y ] r , s : X ↔ Y ; b : P Y `
upperShadow[X ,Y ](r ∪ s)b =

upperShadow[X ,Y ]r b ∩ upperShadow[X ,Y ]s b
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(dom  r \  a)

Y

X

upperImage
r (dom  r \  a)

a

Y

X

ran  r  \
upperShadow  r a

Figure 19.6 Illustration of one of the de Morgan-style laws relating upperImage and
upperShadow (law 19.27).

Law 19.27 There is a pair of de Morgan-style laws relating image and shadow
through set complement (figure 19.6).

[X ,Y ] r : X ↔ Y ; a : P X `
r(| dom r \ a |) = upperImage r(dom r \ a) = ran r \ upperShadow r a

[X ,Y ] r : X ↔ Y ; a : P X `
ran r ∩ upperShadow r(dom r \ a) = ran r \ upperImage r a = ran r \ (r(| a |))

There is an alternative form of this law, using the generic parameters explicitly,
namely

[X ,Y ] r : X ↔ Y ; a : P X `
upperShadow r a = Y \ upperImage r(X \ a)

[X ,Y ] r : X ↔ Y ; a : P X `
upperImage r a = Y \ upperShadow r(X \ a)

Law 19.28 Laws about shadow inspired by refinement:

[X ,Y ] r : X ↔ Y ; a : P X ; b : P Y `
Y \ b ⊆ ran(a −C r) ⇔ upperShadow r a ⊆ b

[X ,Y ] r : X ↔ Y ; b : P Y ; s : Y ↔ Y `
r o

9 s −B ran(a −C r) = r o
9 s B upperShadow r a
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Larger examples

Consider the specification

[PERSON ,EMPLOYER]

graduates : P PERSON
ftse100 : P EMPLOYER
hasWorkedFor : PERSON ↔ EMPLOYER

then

• upperShadow hasWorkedFor graduates is the set of employers who employ
only graduates (including those who employ nobody)

• upperImage hasWorkedFor graduates is the set of employers who have em-
ployed any graduates

• upperBound hasWorkedFor graduates is the set of employers who have em-
ployed all the graduates

• lowerShadow hasWorkedFor ftse100 is the set of persons who work only for
ftse100 firms (including those who have never worked at all)

• lowerImage hasWorkedFor ftse100 is the set of persons who have worked for
any ftse100 firms

• lowerBound hasWorkedFor ftse100 is the set of persons who have worked for
all the ftse100 firms

Consider the specification

[LEMMA]

myTheory : P LEMMA
usedby : LEMMA ↔ LEMMA

then

• upperShadow usedby myTheory is the set of lemmas which use only those of
myTheory (inluding those which use none at all)

• upperImage usedby myTheory is the set of lemmas which use any of myTheory

• upperBound usedby myTheory is the set of lemmas which use all those of
myTheory
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• lowerShadow usedby myTheory is the set of lemmas which are used only by
myTheory (inluding those which are not used at all)

• lowerImage usedby myTheory is the set of lemmas which are used by any of
myTheory

• lowerBound usedby myTheory is the set of lemmas which are used by all those
of myTheory

•

Upper and lower singleton image

Intent

Provide a simplified version of image/bound in the case where the argument set is
a singleton.

Definition

upper singleton image:

successors[X ,Y ] == λ r : X ↔ Y • λ x : X • { y : Y | x 7→ y ∈ r }

The upper singleton image of an element x through a relation r is the set of those
range elements of r that are related to x by r . In graph terms (§24) it is the set
of nodes at the end of the arcs leaving a vertex x .

lower singleton image:

predecessors[X ,Y ] == λ r : X ↔ Y • λ y : Y • { x : X | x 7→ y ∈ r }

The lower image of an element y through a relation r is the set of those domain
elements of r that are related to y by r . In graph terms (§24) it is the set of nodes
at the start of the arcs entering a vertex y .

Laws

Law 19.29 Lower singleton image laws can be derived as ‘duals’ of upper singleton
image laws, and vice versa, by using

[X ,Y ] x : X ; r : X ↔ Y ` successors r x = predecessors r∼ x
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Law 19.30 The singleton images are related to the set images and bounds of
singleton sets as follows:

[X ,Y ] x : X ; r : X ↔ Y `
successors r x = upperImage r{x} = upperBound r{x}

[X ,Y ] r : X ↔ Y ; y : Y `
predecessors r y = lowerImage r{y} = lowerBound r{y}

Law 19.31 The singleton images are related to the set images, bounds, and shad-
ows of general sets as follows:

[X ,Y ] a : P X ; r : X ↔ Y ` upperImage r a =
⋃{ x : a • successors r x }

[X ,Y ] a : P X ; r : X ↔ Y ` upperBound r a =
⋂{ x : a • successors r x }

[X ,Y ] a : P X ; r : X ↔ Y ` upperShadow r a = { y : Y | successors r y ⊆ a }

•



Chapter 20

Combining relations

There are some special purpose operations that are designed specifically for com-
bining relations. Just as complicated sets may best be specified by building simple
sets, and then combining them, so complicated relations may best be built from
combinations of simpler ones.

• compatible relations: ( ≈ )

• override: ( ⊕ ), construct a relation that is equal to s on s ’s domain, and
takes its values from a default relation r elsewhere, use r ⊕ s .

• compose: ( o
9 ), ( ◦ ), (

→
o
9 ), (

←
o
9 ), construct a relation from X to Z , by

taking two ‘steps’, from X to an intermediate Y , then from Y to Z , use r o
9 s .

• merge: to construct a relation to pairs Y × Z from a relation to Y and
another to Z , use merge(r , s).

• split

• bicomposition

Compatible relations

Intent

Two relations are compatible if they agree on their common domain. Certain
operations on relations (and particularly functions) require them to be compatible.

Definition

relation ( ≈ )

≈ [X ,Y ] == { r , s : X ↔ Y | dom r C s = dom s C r }

182
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Examples

1. The empty relation is compatible with all relations

2. dom distributes through ∩ of compatible relations (law 17.5)

3. The union of two functions is a function precisely when they are compatible
(law 21.8)

Laws

Law 20.1 Compatibility is reflexive (r ≈ r) and symmetric (r ≈ s ⇒ s ≈ r).

[X ,Y ] ` ( ≈ )[X ,Y ] ∈ reflexive(X ↔ Y ) ∩ symmetric(X ↔ Y )

Law 20.2 Relations with disjoint domains are compatible.

[X ,Y ] r , s : X ↔ Y | disjoint〈dom r , dom s〉 ` r ≈ s

Law 20.3 The union of compatible relations is unchanged on their common do-
main. The intersection of compatible relations results in a restriction to their
common domain.

[X ,Y ] r , s : X ↔ Y | r ≈ s `
(dom r ∩ dom s) C (r ∪ s) = (dom r ∩ dom s) C r

[X ,Y ] r , s : X ↔ Y | r ≈ s ` r ∩ s = dom s C r = dom r C s

Law 20.4 An overridden relation is compatible with the overriding relation.

[X ,Y ] r , s : X ↔ Y ` r ⊕ s ≈ s

•
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Override

Intent

r ⊕ s has the same values as s on the domain of s , and the values of r elsewhere.

Definition

function 50 leftassoc ( ⊕ )

⊕ [X ,Y ] == λ r , s : X ↔ Y • (dom s −C r) ∪ s

Examples

a

Y

X

r s

Figure 20.1 An example of relational overriding.

1. Figure 20.1 shows an example of relational overriding.

2. We can ‘update’ a relation by changing a single element
r ′ = r ⊕ {x 7→ y}

3. We can make a relation total on its source set (so that dom r = X ) by
overriding the full relation with r
rt = (X × Y )⊕ r

4. We can make a relation total on its source set by overriding the relation that
maps every x to some particular y , with r
rt = (X × {y})⊕ r

5. We can make a homogeneous relation total by overriding the identity relation
with r
rt = idX ⊕ r
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6. The abs function, that maps numbers to their absolute value, can be defined
by overriding
id R⊕ ( λ x : R− • −x ) ⊆ abs

Laws

Law 20.5 Relational overriding is a total surjection (§21).

[X ,Y ] ` ( ⊕ )[X ,Y ] ∈ (X ↔ Y )2× →→ X ↔ Y

Law 20.6 Relational overriding is idempotent.

[X ,Y ] r : X ↔ Y ` r ⊕ r = r

Law 20.7 Relational overriding is closed, associative, and has the empty set as its
identity element. Hence it forms a monoid (§23) over relations. It similarly forms
a monoid over partial functions (§21).

[X ,Y ] a : P X ; b : P Y `
∃Monoid[X ↔ Y ] • g = a ↔ b ∧ ( � ) = ( ⊕ ) ∧ e = ∅

[X ,Y ] a : P X ; b : P Y `
∃Monoid[X ↔ Y ] • g = a 7→ b ∧ ( � ) = ( ⊕ ) ∧ e = ∅

Law 20.8 Relational overriding reduces to union when the relations are compati-
ble. Hence it forms an abelian monoid (§23) over compatible relations. It similarly
forms an abelian monoid over compatible partial functions (§21).

[X ,Y ] r , s : X ↔ Y ` r ≈ s ⇔ r ⊕ s = r ∪ s

[X ,Y ] ρ : P(X ↔ Y ) | (∀ r , s : ρ • r ≈ s) `
∃AbelianMonoid[X ↔ Y ] • g = ρ ∧ ( � ) = ( ⊕ ) ∧ e = ∅

[X ,Y ] ρ : P(X 7→ Y ) | (∀ r , s : ρ • r ≈ s) `
∃AbelianMonoid[X ↔ Y ] • g = ρ ∧ ( � ) = ( ⊕ ) ∧ e = ∅

� Law 20.9 Relational overriding distributes through union and through non-
empty intersections.

[X ,Y ] ρ : P(X ↔ Y ); s : X ↔ Y ` ⋃{ r : ρ • r ⊕ s } =
⋃

ρ⊕ s

[X ,Y ] r , r ′, s : X ↔ Y ` (r ⊕ s) ∪ (r ′ ⊕ s) = (r ∪ r ′)⊕ s

[X ,Y ] ρ : P1(X ↔ Y ); s : X ↔ Y ` ⋂ ρ⊕ s =
⋂{ r : ρ • r ⊕ s }

[X ,Y ] r , r ′, s : X ↔ Y ` (r ∩ r ′)⊕ s = (r ⊕ s) ∩ (r ′ ⊕ s)
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Law 20.10 Relational overriding is subset order-preserving (§26) on its first ar-
gument.

[X ,Y ] r , r ′, s : X ↔ Y | r ⊆ r ′ ` r ⊕ s ⊆ r ′ ⊕ s

� Law 20.11 The domain of an overriding is the union of the separate domains.

[X ,Y ] r , s : X ↔ Y ` dom(r ⊕ s) = dom r ∪ dom s

� Law 20.12 Domain restriction and subtraction distribute through overriding.

[X ,Y ] a : P X ; r , s : X ↔ Y ` a C (r ⊕ s) = (a C r)⊕ (a C s)

[X ,Y ] a : P X ; r , s : X ↔ Y ` a −C (r ⊕ s) = (a −C r)⊕ (a −C s)

� Law 20.13 A restriction outside the domain of an overriding relation is inde-
pendent of that relation. A restriction confined within the domain of an overriding
relation depends on only that relation. A domain subtraction covering the domain
of an overriding relation is independent of that relation.

[X ,Y ] a : P X ; r , s : X ↔ Y | disjoint〈a, dom s〉 ` a C (r ⊕ s) = a C r

[X ,Y ] a : P X ; r , s : X ↔ Y | a ⊆ dom s ` a C (r ⊕ s) = a C s

[X ,Y ] a : P X ; r , s : X ↔ Y | dom s ⊆ a ` a −C (r ⊕ s) = a −C r

Law 20.14 Range restriction and subtraction do not in general distribute through
overriding. Range restriction does distribute through overriding if the restricting
set is larger than the range of the overriding relation. Range subtraction does
distribute through overriding if the restricting set is disjoint from the range of the
overriding relation.

[X ,Y ] r , s : X ↔ Y ; b : P Y ` (r ⊕ s) B b ⊆ (r B b)⊕ (s B b)

[X ,Y ] r , s : X ↔ Y ; b : P Y ` (r ⊕ s)−B b ⊆ (r −B b)⊕ (s −B b)

[X ,Y ] r , s : X ↔ Y ; b : P Y | ran s ⊆ b `
(r ⊕ s) B b = (r B b)⊕ (s B b) = (r B b)⊕ s

[X ,Y ] r , s : X ↔ Y ; b : P Y | disjoint〈b, ran s〉 `
(r ⊕ s)−B b = (r −B b)⊕ (s −B b) = (r −B b)⊕ s

� Law 20.15 The upper image of an overriding is

[X ,Y ] r , s : X ↔ Y ; a : P X ` (r ⊕ s)(| a |) = r(| a \ dom s |) ∪ s(| a |)

•
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Composition

Intent

r o
9 s captures the notion of ‘apply r , then apply s to the result’.

Definition

relational composition:

function 40 leftassoc ( o
9 )

o
9 [X ,Y ,Z ] == λ r : X ↔ Y ; s : Y ↔ Z •

{ x : X ; z : Z | (∃ y : Y • x 7→ y ∈ r ∧ y 7→ z ∈ s) }

functional composition:

function 40 leftassoc ( ◦ )

◦ [X ,Y ,Z ] == λ r : Y ↔ Z ; s : X ↔ Y • s o
9 r

Examples

X

Y

•

•
•

•

•
•

•

•

r

dom  r

ran  r

Z

•

•

•

•ran  s

s

dom  s

dom (  r  ; s  )

ran (  r  ; s  )

r ; s
s o r

Figure 20.2 An example of relational composition.

1. Figure 20.2 shows an example of relational composition.
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2. We define relational iteration in terms of relational composition
rn+1 = r o

9 rn

3. We can use functional composition to reduce the number of brackets needed
to write repeated function applications
(f (g(h x ))) = (f ◦ g ◦ h)x

Laws

Law 20.16 Composition is a total surjection (§21).

[X ,Y ,Z ] ` ( o
9 )[X ,Y ,Z ] ∈ (X ↔ Y )× (Y ↔ Z ) →→ (X ↔ Z )

[X ,Y ,Z ] ` ( ◦ )[X ,Y ,Z ] ∈ (Y ↔ Z )× (X ↔ Y ) →→ (X ↔ Z )

Law 20.17 Composition is closed, associative, and has the identity relation as its
identity element, so forms a monoid (§23) over homogeneous relations. It simi-
larly forms a monoid over homogeneous partial functions (§21), homogeneous total
functions (§21), homogeneous surjections (§21), and homogeneous injections (§21).

[X ] a : P X ` ∃Monoid[X ↔ X ] • g = a ↔ a ∧ ( � ) = ( o
9 ) ∧ e = id a

[X ] a : P X ` ∃Monoid[X ↔ X ] • g = a 7→ a ∧ ( � ) = ( o
9 ) ∧ e = id a

[X ] a : P X ` ∃Monoid[X ↔ X ] • g = a → a ∧ ( � ) = ( o
9 ) ∧ e = id a

[X ] a : P X ` ∃Monoid[X ↔ X ] • g = a 7→→ a ∧ ( � ) = ( o
9 ) ∧ e = id a

[X ] a : P X ` ∃Monoid[X ↔ X ] • g = a 7� a ∧ ( � ) = ( o
9 ) ∧ e = id a

Law 20.18 Composition is closed, associative, has the identity relation as its iden-
tity element, and has the inverse relation as its inverse function, so forms a group
(§23) over homogeneous bijections.

[X ] a : P X `
∃Group[X ↔ X ] • g = a �→ a ∧ ( � ) = ( o

9 ) ∧ e = id a ∧ inv = ( ∼)

Law 20.19 Composition with the full relation:

[X ,Y ,Z ] r : X ↔ Y ; a : P Y ; b : P Z ` r o
9 (a × b) = dom(r B a)× b

[X ,Y ,Z ] a : P X ; b : P Y ; r : Y ↔ Z ` (a × b) o
9 r = a × ran(b C r)

Law 20.20 Composition with the empty relation yields the empty relation.
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[X ,Y ,Z ] r : X ↔ Y ` r o
9 ∅[Y × Z ] = ∅[X × Z ]

[X ,Y ,Z ] r : Y ↔ Z ` ∅[X × Y ] o
9 r = ∅[X × Z ]

� Law 20.21 Composition distributes through generalised union.

[X ,Y ,Z ] ρ : P(X ↔ Y ); σ : P(Y ↔ Z ) `⋃{ r : ρ; s : σ • r o
9 s } =

⋃
ρ o

9

⋃
σ

[X ,Y ,Z ] r , r ′ : X ↔ Y ; s : Y ↔ Z ` (r o
9 s) ∪ (r ′ o

9 s) = (r ∪ r ′) o
9 s

[X ,Y ,Z ] r : X ↔ Y ; s , s ′ : Y ↔ Z ` (r o
9 s) ∪ (r o

9 s ′) = r o
9 (s ∪ s ′)

Law 20.22 As a corollary of law 26.37 specialised to subsets, along with law 20.21,
composition is subset order-preserving on both arguments.

[X ,Y ,Z ] r , r ′ : X ↔ Y ; s , s ′ : Y ↔ Z | r ⊆ r ′ ∧ s ⊆ s ′ ` r o
9 s ⊆ r ′ o

9 s ′

Law 20.23 Inverting a composition is the same as composing the inversions in
the other order.

[X ,Y ,Z ] r : X ↔ Y ; s : Y ↔ Z ` (r o
9 s)∼ = s∼ o

9 r∼

� Law 20.24 The composition of two relations has no reflexive pairs (§24) pre-
cisely when one relation and the other’s inverse are disjoint.

[X ,Y ] r : X ↔ Y ; s : Y ↔ X ` r ∩ s∼ = ∅ ⇔ (r o
9 s) ∩ idX = ∅

� Law 20.25 The pairs of a composition are precisely those where the upper sin-
gleton image of the domain element and the lower singleton image of the range
element share at least one element (the shared elements providing the necessary
link).

[X ,Y ,Z ] r : X ↔ Y ; s : Y ↔ Z `
r o

9 s = { x : X ; z : Z | successors r x ∩ predecessors s z 6= ∅ }

� Law 20.26 The domain of a composition r o
9 s is the lower image of the domain

of s through r . The range of a composition r o
9 s is the upper image of the range

of r through s .

[X ,Y ,Z ] r : X ↔ Y ; s : Y ↔ Z ` dom(r o
9 s) = lowerImage r(dom s)

[X ,Y ,Z ] r : X ↔ Y ; s : Y ↔ Z ` ran(r o
9 s) = s(| ran r |)



190 Chapter 20. Combining relations

Law 20.27 As a corollary of laws 18.17 and 20.26, the domain and range of a
composition can be expressed in terms of restriction.

[X ,Y ,Z ] r : X ↔ Y ; s : Y ↔ Z ` dom(r o
9 s) = dom(r B dom s)

[X ,Y ,Z ] r : X ↔ Y ; s : Y ↔ Z ` ran(r o
9 s) = ran(ran r C s)

Law 20.28 As a further corollary of laws 18.17 and 20.26, composing a relation
with its own inverse does not shrink its domain.

[X ,Y ] r : X ↔ Y ` dom r = dom(r o
9 r∼)

[X ,Y ] r : X ↔ Y ` ran r = ran(r∼ o
9 r)

� Law 20.29 Restriction associates with composition.

[X ,Y ,Z ] a : P X ; r : X ↔ Y ; s : Y ↔ Z ; b : P Z `
a C (r o

9 s) B b = (a C r) o
9 (s B b)

[X ,Y ,Z ] a : P X ; r : X ↔ Y ; s : Y ↔ Z ; b : P Z `
a −C (r o

9 s)−B b = (a −C r) o
9 (s −B b)

� Law 20.30 Restricting the range of the first relation in a composition is the
same as restricting the domain of the second; restriction pseudo-distributes through
composition.

[X ,Y ,Z ] r : X ↔ Y ; b : P Y ; s : Y ↔ Z ` (r B b) o
9 s = r o

9 (b C s)

[X ,Y ,Z ] r : X ↔ Y ; b : P Y ; s : Y ↔ Z ` (r −B b) o
9 s = r o

9 (b −C s)

� Law 20.31 Nested images can be written as composition.

[X ,Y ,Z ] a : P X ; r : X ↔ Y ; s : Y ↔ Z ` (r o
9 s)(| a |) = s(| r(| a |) |)

� Law 20.32 Overriding then composing on the right is a subset of the overriding
of the individual compositions.

[X ,Y ,Z ] r , s : X ↔ Y ; t : Y ↔ Z ` (r ⊕ s) o
9 t ⊆ (r o

9 t)⊕ (s o
9 t)

Composition on the right does not in general distribute through overriding.
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For example:

r = X × b; s = X × (Y \ b); t = b × Z
(r ⊕ s) o

9 t = s o
9 t = ∅

(r o
9 t)⊕ (s o

9 t) = (X × Z )⊕∅ = X × Z

Law 20.33 Composition on the right distributes through overriding when the
range of the overriding relation s is smaller than the domain of t .

[X ,Y ,Z ] r , s : X ↔ Y ; t : Y ↔ Z | ran s ⊆ dom t `
(r ⊕ s) o

9 t = (r o
9 t)⊕ (s o

9 t)

� Law 20.34 Overriding then composing on the left is a superset of the overriding
of the individual compositions.

[X ,Y ,Z ] r : X ↔ Y ; s , t : Y ↔ Z ` (r o
9 s)⊕ (r o

9 t) ⊆ r o
9 (s ⊕ t)

Composition on the left does not in general distribute through overriding.

For example:

r = X ×Y ; s = b × c; t = (Y \ b)× (Z \ c)
(r o

9 s)⊕ (r o
9 t) = (X × c)⊕ (X × (Z \ c)) = X × (Z \ c)

r o
9 (s ⊕ t) = r o

9 ((b × c) ∪ ((Y \ b)× (Z \ c)))
= (X × c) ∪ (X × (Z \ c)) = X × Z

Law 20.35 The name ‘functional composition’ is used for ◦ because this is the
order of presentation of the arguments that appears natural when they are func-
tions.

[X ,Y ,Z ] f : Y → Z ; g : X → Y ; x : X ` (f ◦ g)x = f (g x )

•
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Demonic composition

Intent

Whereas composition gives a result if there is some path from the source to the
target, demonic composition requires all paths to be present. This is more robust
under refinement, since resolution of non-determinism will not leave an end-to-end
path broken.

Definition

right demonic composition:

function 40 leftassoc (
→
o
9 )

→
o
9 [X ,Y ,Z ] == λ r : X ↔ Y ; s : Y ↔ Z •

{ x : X ; z : Z | (∀ y : Y | x 7→ y ∈ r • y 7→ z ∈ s) }

left demonic composition:

function 40 leftassoc (
←
o
9 )

←
o
9 [X ,Y ,Z ] == λ r : X ↔ Y ; s : Y ↔ Z •

{ x : X ; z : Z | (∀ y : Y | y 7→ z ∈ s • x 7→ y ∈ r) }

Examples

Consider r = {a 7→ c, a 7→ d , b 7→ d}, s = {c 7→ e, c 7→ f , d 7→ f }. Then

r o
9 s = {a 7→ e, a 7→ f , b 7→ f }. However, r

→
o
9 s = {a 7→ f , b 7→ f }; the maplet

a 7→ e is not present here because there is no path via d (a refinement that resolved
non-determinism by dropping a 7→ c would find that e is no longer reachable from
a). Also r

←
o
9 s = {a 7→ e, a 7→ f }; the maplet b 7→ f is not present because there

is no path to f via c.

Note that demonic composition is not associative.

Laws

Law 20.36 Laws about left demonic composition are duals of laws about right
demonic composition.
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a

b

c

d

e

f

r s

a

b

e

f

r s
a

b

e

f

a

b

c

d

e

f

r s
a

b

e

f

right demonic

composition

a

b

c

d

e

f

r s
a

b

e

f

left demonic

Figure 20.3 An example of right and left demonic composition. In the right case, a
can reach both c and d , which can both reach f (but not e), so we get a 7→ f (but not
a 7→ e). In the left case, f can be reached from both c and d , which can both be reached
from reach a (but not b), so we get a 7→ f (but not b 7→ f ).

[X ,Y ,Z ] r : X ↔ Y ; s : Y ↔ Z ` (r
←
o
9 s)∼ = s∼

→
o
9 r∼

� Law 20.37 Right demonic composition pseudo-distributes through union on its
first argument and distributes through intersection on its second argument

[X ,Y ,Z ] r , r ′ : X ↔ Y ; s : Y ↔ Z ` (r ∪ r ′)
→
o
9 s = (r

→
o
9 s) ∩ (r ′

→
o
9 s)

[X ,Y ,Z ] r : X ↔ Y ; s , s ′ : Y ↔ Z ` r
→
o
9 (s ∩ s ′) = (r

→
o
9 s) ∩ (r

→
o
9 s ′)

Law 20.38 As a corollary of law 26.40 specialised to subsets, along with law 20.36,
right demonic composition is subset order-reversing on its first argument. As a
corollary of law 26.37 specialised to subsets, along with law 20.36, right demonic
composition is subset order-preserving on its second argument.
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[X ,Y ,Z ] r , r ′ : X ↔ Y ; s : Y ↔ Z | r ⊆ r ′ ` r ′
→
o
9 s ⊆ r

→
o
9 s

[X ,Y ,Z ] r : X ↔ Y ; s , s ′ : Y ↔ Z | s ⊆ s ′ ` r
→
o
9 s ⊆ r

→
o
9 s ′

� Law 20.39 The pairs of a right demonic composition are precisely those where
the upper singleton image of the domain element falls completely within the lower
singleton image of the range element.

[X ,Y ,Z ] r : X ↔ Y ; s : Y ↔ Z `
r
→
o
9 s = { x : X ; z : Z | successors r x ⊆ predecessors s z }

� Law 20.40 The domain of a right demonic composition always includes the
complement of the domain of its first argument.

[X ,Y ,Z ] r : X ↔ Y ; s : Y ↔ Z `
r
→
o
9 s = ((X \ dom r)× Z ) ∪ dom r C (r

→
o
9 s)

� Law 20.41 If the first argument is a function, right demonic composition on
that domain reduces to composition.

[X ,Y ,Z ] f : X 7→ Y ; s : Y ↔ Z `
f
→
o
9 s = ((X \ dom f )× Z ) ∪ (f o

9 s)

� Law 20.42 If the second argument is an inverse function, right demonic com-
position is made with the functional part of the first argument.

[X ,Y ,Z ] r : X 7→ Y ; s : Y ↔ Z | s∼ ∈ Z 7→ Y `
r
→
o
9 s = ((X \ dom r)× Z ) ∪ { x : X | r functionalAt x }C (r o

9 s)

� Law 20.43 There is a de Morgan style law relating right demonic composition
and composition.

[X ,Y ,Z ] r : X ↔ Y ; s : Y ↔ Z ` r
→
o
9 s = (X × Z ) \ (r o

9 ((Y × Z ) \ s))

•
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Merge and split

Intent

merge takes two relations, and merges them into a single relation to pairs. split
takes a single relation to pairs, and splits it into a pair of relations.

Definition
merge:

merge[X ,Y ,Z ] ==
λ r : X ↔ Y ; s : X ↔ Z •

{ x : X ; p : Y × Z | x 7→ p.1 ∈ r ∧ x 7→ p.2 ∈ s }

split:

split[X ,Y ,Z ] == λ r : X ↔ Y × Z • (r o
9 first, r o

9 second)

Examples

1. r = {x 7→ y , x ′ 7→ y ′, x ′′ 7→ y ′′}
s = {x 7→ z , x ′ 7→ z ′, x ′′ 7→ z ′′}
#{x , x ′, x ′′} = 3
merge(r , s) = {x 7→ (y , z ), x 7→ (y ′, z ′), x ′′ 7→ (y ′′, z ′′)}

2. r = {z1 7→ (x1, y1), . . . , zn 7→ (xn , yn)}
split r = ({z1 7→ x1, . . . , zn 7→ xn}, {z1 7→ y1, . . . , zn 7→ yn})

Laws

Law 20.44 merge is a total surjection (§21).

[X ,Y ,Z ] ` merge[X ,Y ,Z ] ∈ (X ↔ Y )× (X ↔ Z ) →→ (X ↔ Y × Z )

Law 20.45 An alternative definition of composition:

[X ,Y ,Z ] r : X ↔ Y ; s : Y ↔ Z ` r o
9 s = s ◦ r = ran(merge(r∼, s))
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Law 20.46 split is a total injection (§21). Its range is the set of all pairs of
relations with the same domain.

[X ,Y ,Z ] ` split[X ,Y ,Z ] ∈
(X ↔ Y × Z ) �→ { r : X ↔ Y ; s : X ↔ Z | dom r = dom s }

Law 20.47 Splitting then merging restores the original relation.

[X ,Y ,Z ] ` merge ◦ split = id(X ↔ Y × Z )

Law 20.48 Merging then splitting restores the original relations on their common
domain.

[X ,Y ,Z ] r : X ↔ Y ; s : X ↔ Z `
(split ◦merge)(r , s) = (dom s C r , dom r C s)

•

Bicomposition

Intent

Given a function from pairs of arguments to a result f : A× B 7→ C , we can form
a related function from pairs of sequences to a corresponding sequence of results
fb : seqA × seqB 7→ seqC . bicompose generalises this idea from functions to
relations, and from sequences to labelled sets.

Definition

bicompose[A,B ,C ,X ] ==
λ r : A× B ↔ C •

λ sa : X ↔ A; sb : X ↔ B •
{ x : X ; c : C | ( ∃ a : A; b : B •

x 7→ a ∈ sa ∧ x 7→ b ∈ sb ∧ (a, b) 7→ c ∈ r ) }
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Examples

1. To apply a function f : R2× → R to the frequencies of a pair of bags, b and
c, we can write bicompose f (count b, count c)−B {0}. For example,

∀ b, c : bag X • b ] c = bicompose( + )(count b, count c)−B {0}

Laws

Law 20.49 An alternative definition of bicomposition:

[A,B ,C ,X ] r : A× B ↔ C ; sa : X ↔ A; sb : X ↔ B `
bicompose r(sa, sb) = r ◦merge(sa, sb)

Law 20.50 Although bicomposition is defined in terms of any relations, it is mo-
tivated by the case where the relations are functions.

[A,B ,C ,X ] f : A× B → C ; g : X → A; h : X → B ; x : X `
bicompose f (g , h)x = f (g x , h x )

Bicomposition is useful where for example g and h are both sequences of the same
length, or both bags over the same set.

•
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Functions

A function is an association of argument with a result, so that each argument
produces (at most) one result. Different formal systems have differing approaches
to the model of a function. For example, programming languages usually equate
a function with an algorithm to proceed from argument to result, while the λ-
calculus puts the text of the function in front of the text of the argument and
provides rewriting rules to simplify if possible.

The set-theoretic mathematical approach to a function is to consider the argument
and its result not as an algorithm or process, but rather as a possible pair. The
function is identified with the set of all possible argument-result pairs. So in Z we
can assimilate functions as special cases of binary relations, since both are just sets
of pairs. We (arbitrarily) put the argument as the domain element and the result
as the range element, and then consider as a function any relation where for each
domain value there is at most one corresponding range value in the relation.

The advantage of identifying functions as special cases of relations is that defini-
tions useful for work with relations are automatically inherited by functions. The
disadvantage, if one is not careful, is that one may confuse ideas that ought to be
kept separate.

• functional at a point: ( functionalAt )

• (partial) functions: X 7→ Y

• total functions: X → Y

• finite functions: X 7 7→ Y

• surjections, total surjections, finite surjections: X 7→→ Y , X →→ Y , X 7 7→→ Y

• injections, total injections, finite injections: X 7� Y , X � Y , X 7 7� Y

• surjective injections, bijections, finite surjective injections: X 7�→ Y , X �→
Y , X 7 7�→ Y

• homomorphisms

198
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• isomorphisms

Functionality

Intent

For any source set X , and target set Y , we can declare

f : X 7→ Y

and f is a function provided there is a unique range element corresponding to each
domain element:

∀ x : dom f • ∃1 y : Y • x 7→ y ∈ f

If we have some particular domain value x : X the result of applying the function
f is

( µ y : Y | x 7→ y ∈ f )

and we can write this as f x (adding parentheses around the function, or the
argument, or both together, if this assists clarity). We can also use the form r x ,
where r is a more general relation, not a function, provided the corresponding
µ-term has a unique value, that is, when the relation is ‘functional at the point of
application’.

Definition

relation ( functionalAt )

functionalAt [X ,Y ] == { r : X ↔ Y ; x : X | ∃1 y : Y • x 7→ y ∈ r }

A relation is functional at the point of application of an argument in its source set
if there is a unique value that this maps to in the target set.

Examples

1. {x 7→ y} functionalAt x

2. (r ⊕ {x 7→ y}) functionalAt x

3. root == { i : Z • i ∗ i 7→ i }
root functionalAt 0
¬ (root functionalAt 4), because {4 7→ 2, 4 7→ −2} ⊆ root
¬ (root functionalAt 3), because 3 6∈ dom root
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Laws

Law 21.1 Function application syntax can be used to denote the unique target
element corresponding to a particular domain element. This notation can also be
used for relations, provided the relation is functional at the point of application.

[X ,Y ] r : X ↔ Y ; x : X ; y : Y | x 7→ y ∈ r ∧ r functionalAt x ` r x = y

Law 21.2 If r is functional at x , then the upper image through r of the set
containing x is the singleton set containing r x . (This law explains the choice of
notation (| |) for upper image.)

[X ,Y ] r : X ↔ Y ; x : X | r functionalAt x ` r(| {x} |) = {r(x )}

Law 21.3 r is a function precisely when it is functional everywhere on its domain.

[X ,Y ] r : X ↔ Y ` r ∈ X 7→ Y ⇔ ( ∀ x : dom r • r functionalAt x )

•

General functions

Intent

A function is a binary relation where each element in the domain maps to precisely
one element in the range. A function is sometimes called a many-one relation.

Definition

(partial) functions:

generic 5 rightassoc ( 7→ )

X 7→ Y == { f : X ↔ Y | ( ∀ p, q : f | p.1 = q .1 • p = q ) }

Examples

1. figure 21.1a shows a diagram of a partial function

2. a tree is a partial function from child node to parent node

3. sequences (§34) are functions from an initial segment of the natural numbers
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f

Y

X X

Y

ft

Figure 21.1 an example of (a) a partial function (b) a total function

Laws

Law 21.4 Two functions are equal precisely when they have equal domains and
are compatible.

[X ,Y ] f , g : X 7→ Y ` f = g ⇔ dom f = dom g ∧ f ≈ g

� Law 21.5 The function constructor distributes through non-empty generalised
intersection.

[X ,Y ] α : P1 P X ; β : P1 P Y ` ⋂α 7→ ⋂
β =

⋂{ a : α; b : β • a 7→ b }
[X ,Y ] a, a ′ : P X ` (a ∩ a ′) 7→ Y = (a 7→ Y ) ∩ (a ′ 7→ Y )

[X ,Y ] b, b ′ : P Y ` X 7→ (b ∩ b ′) = (X 7→ b) ∩ (X 7→ b ′)

Law 21.6 As a corollary of law 26.37 specialised to subsets, along with law 21.5,
the generic partial function constructor is subset order-preserving on both its ar-
guments.

[X ,Y ] a : P X ; b : P Y ` a 7→ b ⊆ X 7→ Y

Law 21.7 Any subset of a function is a function. In particular, a restricted func-
tion is a function, and the intersection of a function and a relation is a function.

[X ,Y ] f : X 7→ Y ; r : X ↔ Y | r ⊆ f ` r ∈ X 7→ Y

[X ,Y ] a : P X ; f : X 7→ Y ; b : P Y ` a C f B b ∈ X 7→ Y

[X ,Y ] f : X 7→ Y ; r : X ↔ Y ` f ∩ r ∈ X 7→ Y
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Law 21.8 The union of two functions is a function precisely when they are com-
patible.

[X ,Y ] f , g : X 7→ Y ` f ≈ g ⇔ f ∪ g ∈ X 7→ Y

Law 21.9 Overriding a function with a function yields a function.

[X ,Y ] f , g : X 7→ Y ` f ⊕ g ∈ X 7→ Y

Law 21.10 Composing a function with a function yields a function.

[X ,Y ,Z ] f : X 7→ Y ; g : Y 7→ Z ` f o
9 g ∈ X 7→ Z

� Law 21.11 A relation is a function precisely when the composition of its inverse
with itself yields the identity.

[X ,Y ] r : X ↔ Y ` r∼ o
9 r = id(ran r) ⇔ r ∈ X 7→ Y

Law 21.12 If two relations compose to give the identity, then on their composed
parts they are inverses to each other and the second is a function,

[X ,Y ] r : X ↔ Y ; s : Y ↔ X ; a : P X | r o
9 s = id a `

∃ b == ran r ∩ dom s • (r B b)∼ = b C s ∈ b →→ a

•

Total functions

Intent

If the domain of the function is the entire source set X , the function is a total
function; function application is defined for any element of the source set.

Definition

total functions:

generic 5 rightassoc ( → )

X → Y == { f : X 7→ Y | dom f = X }

The use of the word ‘partial’ in partial function is not necessary; all functions are
partial. It is used if needed to draw attention to the absence of the word ‘total’.
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Examples

1. figure 21.1b shows a diagram of a total function

2. square == λ i : Z • i ∗ i is a total function on the integers: square ∈ Z → Z
3. cosine is a total function on the reals: R C cos ∈ R → R

Laws

Law 21.13 Any function is total on its domain. (The phrase ‘a function f is total
on a’ means ‘a ⊆ dom f ’.)

[X ,Y ] f : X 7→ Y ` f ∈ dom f → Y

� Law 21.14 If two source sets are unequal, the corresponding sets of total func-
tions are disjoint.

[X ,Y ] a, a ′ : P X | #{a, a ′} = 2 ` disjoint〈a → Y , a ′ → Y 〉

� Law 21.15 The total function constructor distributes through non-empty gen-
eralised intersection

[X ,Y ] β : P1 P Y ` X → ⋂
β =

⋂{ b : β • X → b }
[X ,Y ] b, b ′ : P Y ` X → (b ∩ b ′) = (X → b) ∩ (X → b ′)

Law 21.16 As a corollary of law 26.37 specialised to subsets, along with law 21.15,
the generic total function constructor is subset order-preserving on its target set
argument.

[X ,Y ] b : P Y ` X → b ⊆ X → Y

Law 21.17 Overriding a total function with a function yields a total function.

[X ,Y ] f : X → Y ; g : X 7→ Y ` f ⊕ g ∈ X → Y

Law 21.18 Composing a total function with a function yields a total function
precisely when the domain of the second includes the range of the first.

[X ,Y ,Z ] f : X → Y ; g : Y 7→ Z ` f o
9 g ∈ X → Z ⇔ ran f ⊆ dom g

•
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Finite functions

Intent

Define explicitly finite functions.

Definition

finite functions:

generic 5 rightassoc ( 7 7→ )

X 7 7→ Y == ( X 7→ Y ) ∩ ( X 7 7↔ Y )

Laws

Law 21.19 A function is finite precisely when its domain is finite

[X ,Y ,Z ] f : X 7→ Y ` finite f ⇔ finite dom f

•

Surjections

Intent

If the range of the function is the entire target set Y , the function is a surjective
function, or surjection; any element of the target set can be obtained by applying
the function to some argument. A surjection is sometimes called an ‘onto’ function.

Definition

(partial) surjections:

generic 5 rightassoc ( 7→→ )

X 7→→ Y == { f : X 7→ Y | ran f = Y }

total surjections:

If the domain of the function is the entire source set X , and the range of the
function is the entire target set Y , the function is a total surjection.
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generic 5 rightassoc ( →→ )

X →→ Y == (X 7→→ Y ) ∩ (X → Y )

finite surjections:

generic 5 rightassoc ( 7 7→→ )

X 7 7→→ Y == (X 7 7→ Y ) ∩ (X 7→→ Y )

Examples

fs

Y

X X

Y

fts

Figure 21.2 an example of (a) a partial surjection (b) a total surjection

1. figure 21.2 shows a diagram of a partial surjection and of a total surjection

2. addition on the integers is a total surjection: Z2× C ( + ) ∈ Z2× →→ Z
3. ihalve == λ i : Z • i div 2 is a total surjection: ihalve ∈ Z →→ Z
4. the binary operator of a Monoid (§23) is a surjection

Laws

Law 21.20 Any function is surjective onto its range. (The phrase ‘a function f is
surjective onto b’ means ‘b ⊆ ran f ’.)

[X ,Y ] f : X 7→ Y ` f ∈ X 7→→ ran f

Law 21.21 The surjection constructor distributes through non-empty generalised
intersection
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[X ,Y ] α : P1 P X ` ⋂α 7→→ Y =
⋂{ a : α • a 7→→ Y }

[X ,Y ] a, a ′ : P X ` (a ∩ a ′) 7→→ Y = (a 7→→ Y ) ∩ (a ′ 7→→ Y )

Law 21.22 As a corollary of law 26.37 specialised to subsets, along with law 21.21,
the generic surjection constructor is subset order-preserving on its source set argu-
ment.

[X ,Y ] a : P X ` a 7→→ Y ⊆ X 7→→ Y

Law 21.23 If two target sets are unequal, the corresponding sets of surjections
are disjoint.

[X ,Y ] b, b ′ : P Y | #{b, b ′} = 2 ` disjoint〈X 7→→ b,X 7→→ b ′〉

Law 21.24 A function f is a surjection precisely when every two distinct functions
give distinct post-compositions with f . (The post-compositions need not be distinct
in the non-surjective case, if the differences lie outside the range of f .)

[X ,Y ,Z ] f : X 7→ Y `
f ∈ X 7→→ Y ⇔ ( ∀ g , h : Y 7→ Z | f o

9 g = f o
9 h • g = h )

Law 21.25 Overriding a surjection with a function covering the same range yields
a surjection.

[X ,Y ] f : X 7→→ Y ; g : X 7→ Y | ran g = ran(dom g C f ) ` f ⊕ g ∈ X 7→→ Y

� Law 21.26 There are no surjections from a set onto its power set. The set P X
is ‘bigger’ than the set X .

[X ] ` X 7→→ P X = ∅

If X is a finite set with precisely N elements, then P X has 2N elements. But there
can be no surjection from a set with N elements onto a set with 2N elements, since
the latter has too many elements.

As X gets bigger, this clearly gets worse for all finite X . The theorem shows that
taking X as infinite does not solve the problem, but rather that there must be in
some sense ‘different sizes’ of infinite sets, with P X always bigger than X .

•
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Injections

Intent

If each element in the domain maps to a different element in the range, the function
is an injective function, or injection. An injection is sometimes called a one-one
function.

Definition

(partial) injections:

generic 5 rightassoc ( 7� )

X 7� Y == { f : X 7→ Y | ( ∀ p, q : f • p.1 = q .1 ⇔ p.2 = q .2 ) }

total injections:

generic 5 rightassoc ( � )

X � Y == (X 7� Y ) ∩ (X → Y )

finite injections:

generic 5 rightassoc ( 7 7� )

X 7 7� Y == ( X 7 7→ Y ) ∩ ( X 7� Y )

(partial) surjective injections:

generic 5 rightassoc ( 7�→ )

X 7�→ Y == (X 7→→ Y ) ∩ (X 7� Y )

bijections:

A function that is a total surjective injection is called a bijection.

generic 5 rightassoc ( �→ )

X �→ Y == (X →→ Y ) ∩ (X � Y )

finite surjective injections:

generic 5 rightassoc ( 7 7�→ )

X 7 7�→ Y == (X 7 7→ Y ) ∩ (X 7�→ Y )
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Instead of declaring a function f to be a finite surjective injection, X 7 7�→ Y , we
could instead declare the inverse of f to be a total injection, Y � X , where
additionally we have that Y is finite, finite Y .

Examples

fi

Y

X

fti

Y

X
Figure 21.3 an example of (a) a partial injection (b) a total injection

fsi

Y

X

fb

Y

X

Figure 21.4 an example of (a) a surjective injection (b) a bijection

1. Figure 21.3 shows a diagram of a partial injection and of a total injection.

2. A total injection can be used to ‘relabel’ all the elements of X as elements of
Y . There may be elements of Y ‘left over’.

3. The Cartesian square 2× (§12) is a total injection.

4. Figure 21.4 shows a diagram of a surjective injection and of a bijection.

5. succ == λ n : N • n + 1, the successor function that adds one, is a total
injection: succ ∈ N � N. It is not surjective onto the naturals, because
zero is not in its range. It is surjective onto the non-zero naturals, however:
succ ∈ N �→ N1.
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6. pred == λ n : N1 • n − 1, the predecessor function that subtracts one, is a
surjective injection: pred ∈ N 7�→ N. It is not total on the naturals, because
zero is not in its domain. It is total on the non-zero naturals, however:
pred ∈ N1 �→ N.

7. halve == { i : Z • 2 ∗ i 7→ i } is a surjective injection on the integers:
halve ∈ Z 7�→ Z. It is not total on the integers, because no odd numbers are
in its domain.

8. Injective sequences (§34) are so called because they are injections.

9. A bijection can be used to ‘relabel’ all the elements of X as elements of Y ,
and vice versa.

10. Relational inverse is a bijection.

11. Unary negation of R is a bijection.

12. Sequence reversal on finite sequences is a bijection :
seqX C rev ∈ seqX �→ seqX

Laws

Law 21.27 The injection constructor distributes through non-empty generalised
intersection

[X ,Y ] α : P1 P X ; β : P1 P Y ` ⋂α 7� ⋂
β =

⋂{ a : α; b : β • a 7� b }
[X ,Y ] a, a ′ : P X ` (a ∩ a ′) 7� Y = (a 7� Y ) ∩ (a ′ 7� Y )

[X ,Y ] b, b ′ : P Y ` X 7� (b ∩ b ′) = (X 7� b) ∩ (X 7� b ′)

Law 21.28 As a corollary of law 26.37 specialised to subsets, along with law 21.27,
the generic injection constructor is subset order-preserving on both its arguments.

[X ,Y ] a : P X ; b : P Y ` a 7� b ⊆ X 7� Y

Law 21.29 Any subset of an injection is an injection. In particular, a restricted
injection is an injection, and the intersection of an injection and a relation is a
injection.

[X ,Y ] f : X 7� Y ; r : X ↔ Y | r ⊆ f ` r ∈ X 7� Y

[X ,Y ] a : P X ; f : X 7� Y ; b : P Y ` a C f B b ∈ X 7� Y

[X ,Y ] f : X 7� Y ; r : X ↔ Y ` f ∩ r ∈ X 7� Y
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Law 21.30 The union of two injections is an injection precisely when they are
compatible and their inverses are compatible.

[X ,Y ] f , g : X 7� Y ` f ≈ g ∧ f ∼ ≈ g∼ ⇔ f ∪ g ∈ X 7� Y

Law 21.31 The inverse of an injection is an injection.

[X ,Y ] r : X ↔ Y ` r ∈ X 7� Y ⇔ r∼ ∈ Y 7� X

Law 21.32 Overriding an injection with an injection covering the same range
yields an injection.

[X ,Y ] f , g : X 7� Y | ran g = ran(dom g C f ) ` f ⊕ g ∈ X 7� Y

Law 21.33 As an immediate corollary of law 21.11, a function is an injection
precisely when its composition with its inverse yields the identity.

[X ,Y ] f : X 7→ Y ` f o
9 f ∼ = id(dom f ) ⇔ f ∈ X 7� Y

Law 21.34 A relation is a total injection from some domain precisely when its
inverse is a surjective injection onto that range.

[X ,Y ] r : X ↔ Y ` r ∈ X � Y ⇔ r∼ ∈ Y 7�→ X

This law shows that if a surjective injection arises in a specification, it is possible to
work instead with a total injection, its inverse. This may be stylistically preferable,
since a total injection may be the easier concept to understand.

Law 21.35 A function f is an injection precisely when every two distinct functions
with the same range that is a subset of f ’s domain give distinct pre-compositions
with f . (The reason that pre-compositions need not be distinct when f is not an
injection is that the non-injective f can merge, or ‘confuse’, different elements.)

[X ,Y ,Z ] f : X 7→ Y `
f ∈ X 7� Y ⇔

( ∀ g , h : Z 7→ X | ran g = ran h ⊆ dom f ∧ g o
9 f = h o

9 f • g = h )

Law 21.36 The composition of injections is an injection.
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[X ,Y ,Z ] f : X 7� Y ; g : Y 7� Z ` f o
9 g ∈ X 7� Z

Law 21.37 Consider two functions whose composition is an injection. If the range
of the first function is a subset of the domain of the second, then the first is an
injection. If the range and domain are in fact equal, then the second is also an
injection.

[X ,Y ,Z ] f : X 7→ Y ; g : Y 7→ Z | f o
9 g ∈ X 7� Z ∧ ran f ⊆ dom g `

f ∈ X 7� Y

[X ,Y ,Z ] f : X 7→ Y ; g : Y 7→ Z | f o
9 g ∈ X 7� Z ∧ ran f = dom g `

f ∈ X 7� Y ∧ g ∈ Y 7� Z

Law 21.38 Compositions can be cancelled on the right when they are total injec-
tions.

[X ,Y ,Z ] r , s : X ↔ Y ; a : P Y ; f : Y 7� Z |
ran r ∪ ran s ⊆ a
∧ f ∈ a � Z `

r o
9 f = s o

9 f ⇔ r = s

Law 21.39 Compositions can be cancelled on the left when they are surjective
injections.

[X ,Y ,Z ] f : X 7� Y ; a : P Y ; r , s : Y ↔ Z |
f ∈ X 7�→ a
∧ dom r ∪ dom s ⊆ a `

f o
9 r = f o

9 s ⇔ r = s

Law 21.40 There are no total injections from a power set to its set.

[X ] ` P X � X = ∅

Law 21.41 A function is a finite injection precisely when its range is finite

[X ,Y ,Z ] f : X 7� Y ` finite f ⇔ finite ran f

Law 21.42 The inverse of a bijection is a bijection with domain and range inter-
changed.
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[X ,Y ] f : X �→ Y ` f ∼ ∈ Y �→ X

Law 21.43 Composition with a bijection preserves the properties of a function.

[X ,Y ,Z ] f : X �→ Y ; g : Y → Z ` f o
9 g ∈ X → Z

[X ,Y ,Z ] f : X �→ Y ; g : Y 7→→ Z ` f o
9 g ∈ X 7→→ Z

[X ,Y ,Z ] f : X �→ Y ; g : Y 7� Z ` f o
9 g ∈ X 7� Z

[X ,Y ,Z ] g : X → Y ; f : Y �→ Z ` g o
9 f ∈ X → Z

[X ,Y ,Z ] g : X 7→→ Y ; f : Y �→ Z ` g o
9 f ∈ X 7→→ Z

[X ,Y ,Z ] g : X 7� Y ; f : Y �→ Z ` g o
9 f ∈ X 7� Z

Law 21.44 Schröder-Bernstein theorem: if there are total injections between two
sets in both directions, then there is a bijection between them. (See [Halmos 1960],
[Suppes 1972], [Enderton 1977].)

[X ,Y ] ` ( ∃ f : X � Y ; g : Y � X • true ) ⇔ ( ∃ h : X �→ Y • true )

•

Homomorphism

Intent

Structure-preserving maps are of interest. Here we define maps that preserve the
structure of functions; in §26 we define maps that preserve the structure of order
relations.

Consider a source set of elements a, and a binary homogeneous function �x that is
total on a2× . A target set b also has a total function �y defined on it. A function
h that maps elements of a to elements of b, whilst preserving the structure of the
function �x , is a homomorphism.

Definition

function 30 leftassoc ( �x )

function 30 leftassoc ( �y )
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Homomorphism [X ,Y ]
a : P X ; �x : X 2× 7→ X
b : P Y ; �y : Y 2× 7→ Y
h : X 7→ Y

a2× C ( �x ) ∈ a2× → a

b2× C ( �y ) ∈ b2× → b

a C h ∈ a → b

∀ x , y : a • h(x �x y) = h x �y h y

Examples

1. The modulus operation forms a homomorphism from addition, to addition
modulo n.

n : N1 `
∃Homomorphism[A, A] •

a = N ∧ ( �x ) = ( + )
∧ b = 0 . . n − 1 ∧ ( �y ) = ( + ) mod n
∧ h = ( λm : N • m mod n )

2. When the two binary operators are the same (except possibly for different
generic instantiations), then a homomorphism becomes the statement of a
distributive law: h distributes through the binary operator
h(x � y) = (h x ) �(h y)

3. Upper image forms a homomorphism on set union:

[X ,Y ] r : X ↔ Y `
∃Homomorphism[P X , P Y ] •

a = P X ∧ ( �x ) = ( ∪ )
∧ b = P Y ∧ ( �y ) = ( ∪ )
∧ h = ( λ c : P X • upperImage r c )

This homomorphism is expressed as the distributive law 19.4.

4. When the two binary operators are set union and intersection (or some other
similarly ‘paired’ operations), then a homomorphism becomes the statement
of a pseudo-distributive law: h pseudo-distributes through union (or inter-
section)
h(x ∪ y) = (h x ) ∩ (h y)
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5. Domain subtraction creates a homomorphism between set union and inter-
section:

[X ,Y ] r : X ↔ Y `
∃Homomorphism[P X ,X ↔ Y ] •

a = P X ∧ ( �x ) = ( ∩ )
∧ b = X ↔ Y ∧ ( �y ) = ( ∪ )
∧ h = ( λ c : P X • c −C r )

This homomorphism is expressed as the pseudo-distributive laws 18.8 and
18.9.

6. A requirement on a safety critical compiler might be that it should create a
homomorphism between statement composition and instruction concatena-
tion, in order that the target code be more readily verifiable:

C : STMT 7→ seq INSTR

C(s o
9 s ′) = C s a C s ′

An optimising compiler, on the other hand, would not in general create such
a homomorphism.

Isomorphism

Intent

If the homomorphism’s structure-preserving map is bijective, it is called an iso-
morphism.

In such a case the sets a and b are isomorphic with respect to the operations,
and can be considered ‘identical up to a renaming’. This concept is particularly
useful in a typed language like Z, to relate two isomorphic sets over different types,
because we cannot say a = b and be type correct.

Definition

Isomorphism [X ,Y ]
Homomorphism[X ,Y ]

a C h ∈ a �→ b
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Examples

1. The positive reals under multiplication are isomorphic to the reals under
addition, where the isomorphism is the natural logarithm:

` ∃ Isomorphism[A, A] •
a = R+ ∧ ( �x ) = ( ∗ )
∧ b = R ∧ ( �y ) = ( + )
∧ h = (ln )

2. Cartesian product creates an isomorphism with respect to the four simple set
operations

[X ,Y ] y : P Y `
∃ Isomorphism[P X ,X ↔ Y ] •

a = P X ∧ ( �x ) = ( ∪ )
∧ b = X ↔ Y ∧ ( �y ) = ( ∪ )
∧ h = ( λ x : P X • x × y )

[X ,Y ] y : P Y `
∃ Isomorphism[P X ,X ↔ Y ] •

a = P X ∧ ( �x ) = ( ∩ )
∧ b = X ↔ Y ∧ ( �y ) = ( ∩ )
∧ h = ( λ x : P X • x × y )

[X ,Y ] y : P Y `
∃ Isomorphism[P X ,X ↔ Y ] •

a = P X ∧ ( �x ) = ( \ )
∧ b = X ↔ Y ∧ ( �y ) = ( \ )
∧ h = ( λ x : P X • x × y )

[X ,Y ] y : P Y `
∃ Isomorphism[P X ,X ↔ Y ] •

a = P X ∧ ( �x ) = ( 	 )
∧ b = X ↔ Y ∧ ( �y ) = ( 	 )
∧ h = ( λ x : P X • x × y )

These isomorphisms are expressed as the distributive laws 9.19 and 9.20
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3. Relational inverse creates an isomorphism with respect to the four simple set
operations

[X ,Y ] `
∃ Isomorphism[X ↔ Y ,Y ↔ X ] •

( �x ) = ( ∪ ) ∧ ( �y ) = ( ∪ ) ∧ h = ( ∼)

[X ,Y ] `
∃ Isomorphism[X ↔ Y ,Y ↔ X ] •

( �x ) = ( ∩ ) ∧ ( �y ) = ( ∩ ) ∧ h = ( ∼)

[X ,Y ] `
∃ Isomorphism[X ↔ Y ,Y ↔ X ] •

( �x ) = ( \ ) ∧ ( �y ) = ( \ ) ∧ h = ( ∼)

[X ,Y ] `
∃ Isomorphism[X ↔ Y ,Y ↔ X ] •

( �x ) = ( 	 ) ∧ ( �y ) = ( 	 ) ∧ h = ( ∼)

These isomorphisms are expressed as the distributive laws 16.7 and 16.9.

•
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Labelled Sets

A set is totally defined by its members, so that if any member of one set is a
member of another, and vice versa, the two sets are identical. Any element is
either a member of a set, or it is not. These simple properties make sets a suitable
basis for our theory, but often the statement that some values form a set gives
us insufficient information. As an example, it is easy to suppose naively that the
set {a, b, c} must have three members, but this is not so without the additional
constraint that a, b, and c are all distinct. To specify that “all elements of the
set are distinct” does not impose this constraint, since if any pair of a, b, or c is
equal, the set will have only two members, so any two elements of it will still be
distinct. One general way in which we can assert the distinctness of elements such
as these is to pair them up with other values known to be distinct, then form a set
of the pairs. Thus if {x , y , z} are known to be distinct, and we form the labelled
set s = {x 7→ a, y 7→ b, z 7→ c} then the predicate ∀ i , j : dom s | i 6= j • s i 6= s j
will assert what we wanted to say.

A “labelled set” is therefore any function L 7→ Value where the range values are
the sole focus of attention, and the purpose of the domain values is just to keep
the range values apart. Numbers (§29) often form a convenient labelling set, and
labelled sets often take the form of sequences (§34).

This understanding explains why the predicate “disjoint”, defined below, has to use
a labelled set of sets. If an unlabelled set of sets were used, different representations
of the same set within the whole set would be treated as a single element, so the
whole would be counted as disjoint.

• disjointness

• partition

217
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Disjointness

Intent

If the values in a labelled set are themselves sets, they may have certain non-
overlapping properties.

A collection of sets is disjoint if every pair of sets has no intersection.

Definition

relation (disjoint )

disjoint [L,X ] == { r : L ↔ P X | ∀ p, q : r | p 6= q • p.2 ∩ q .2 = ∅ }

Examples

1. disjoint〈prime, composite〉

Laws

Law 22.1 The empty set is disjoint; a singleton maplet set is disjoint; a two maplet
set is disjoint precisely when the two labelled sets have no intersection.

[L,X ] ` disjoint ∅[L× P X ]

[L,X ] l : L; a : P X ` disjoint{l 7→ a}
[L,X ] k , l : L; a, b : P X | #{k , l} = 2 ` disjoint{k 7→ a, l 7→ b} ⇔ a ∩ b = ∅

Law 22.2 If a family of sets is disjoint, their generalised intersection is empty.

[L,X ] r : L 7→ P X | disjoint r ` ⋂(ran r) = ∅

•
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Partition

Intent

A collection of sets partitions a set a if the sets are disjoint and together form the
whole of a.

Definition

relation ( partition )

partition [L,X ] == { r : L ↔ P X ; a : P X | disjoint r ∧ ⋃(ran r) = a }

Examples

1. 〈{0, 1}, prime, composite〉 partition N

Laws

Law 22.3 A pair of sets partition a third precisely when they are disjoint and
together form the whole of the third set.

[L,X ] l , l ′ : L; a, a ′, b : P X | #{l , l ′} = 2 `
{l 7→ a, l ′ 7→ a ′} partition b ⇔ a ∩ a ′ = ∅ ∧ a ∪ a ′ = b

Law 22.4 Any set can be partitioned in the following ways:

[X ] a, b : P X ` 〈a ∩ b, a \ b〉 partition a

[X ] a, b : P X ` 〈a \ b, b \ a〉 partition(a 	 b)

[X ] a, b : P X ` 〈a, b \ a〉 partition(a ∪ b)

[X ] a, b : P X ` 〈a ∩ b, a 	 b〉 partition(a ∪ b)

•
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Binary operators

In this chapter we explore several important properties of binary operators (func-
tions that take two arguments).

• idempotent operators

• semigroups and abelian semigroups

• monoids and abelian monoids

• groups and abelian groups

• distribute Abelian monoid over finite labelled set

• finite distributed sum and product, +/, ∗/

The set union operator ∪ has the property that a ∪ a = a; it is idempotent.

The symmetric set difference operator 	 has the property that a 	(b	 c) is the
same as (a 	 b)	 c; it is associative. It also has the property that there is an
element i = ∅, such that for every a, a 	 i = i 	 a = a; it has an identity element.
It also has the property that for any a, there is another element b, such that
a 	 b = b	 a = i ; every element has an inverse. These properties of symmetric
set difference are those of a well-known mathematical construct: a group.

More about groups and so on can be found in any book on ‘abstract algebra’, for
example, [Bhattacharya et al. 1994], [Fraleigh 1994].

Many binary operators can be usefully generalised to a distributed form, where
they are used to combine a collection of more than two values. For example,
distributed addition can be used to sum a series, distributed concatenation can be
used to combine many sequences.

Precisely how the distribution is defined depends on the properties of the binary
operator. We assume that the binary operator is at least a monoid. Being associa-
tive we do not need to worry about bracketing. Having an identity element means

220
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we can give a natural meaning to the case of combining an empty collection of
values.

In this chapter we make the additional assumption that the operator is commu-
tative (hence forms an abelian monoid). So we also do not have to worry about
any order that the collection of values has. Later, after we have defined sequences
(§34), we relax this assumption. We also require here that the collection of values
is finite. This means that we do not have to worry about convergence properties
in the general case. We relax this requirement in certain specific cases later, where
appropriate.

If the operator is idempotent, we can put its arguments together in a set, since
it does not matter how many times any particular argument has been provided.
Thus for the application of union and intersection to many arguments, we use the⋃

and
⋂

functions. For operators which are not idempotent, however, we need
some way of distinguishing the arguments: we use some labelling function L 7 7→ X .

The general two-argument function is:

function 30 leftassoc ( � )

Idempotence

Intent

An idempotent operator can be applied multiple times with no more effect than
applying it once.

Definition

generic (idempotent )

idempotentX == { � : X 2× → X | ( ∀ x : X • x � x = x ) }

Examples

1. ( ∪ ), ( ∩ ), and ( ⊕ ) are idempotent.

2. If we want to specify an operation that has no further effect were we to
‘mistakenly’ perform it again, such as updating some record, or delivering
some packet over a network, we can use an idempotent operator to construct
our definition.
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•

Semigroup

Intent

A semigroup consists of a set, and a two-argument function. On the set, the
function is total (defined for all elements of the set), closed (mapping only to
elements of the set), and associative.

A special case is when the operator is abelian: when it has the commutative
property that x � y is the same as y � x . (The name ‘abelian’ commemorates the
contribution to group theory made by the Norwegian mathematician Niels Henrik
Abel, 1802–1829.)

Definition

semigroups:

SemiGroup [X ]
g : P X
� : X 2× 7→ X

g2× C ( � ) ∈ g2× → g

∀ x , y , z : g • (x � y) � z = x �(y � z )

abelian semigroups:

AbelianSemiGroup[X ] == [ SemiGroup[X ] | ∀ x , y : g • x � y = y � x ]

Examples

1. Payments into a bank account (without bank charges) should form an abelian
semigroup: paying in two amounts should give the same balance as paying
in a single amount equal to their sum, and the order the payments are made
in should not affect the final balance.

2. Computer arithmetic does not form a semigroup, because it is not associative.
Arithmetic overflow means that, on occasion, x + (y + z ) 6= (x + y) + z . For
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example, if y ' −z , so that y + z ' 0, the first expression might be well
defined, but the second might overflow.

Variant

An alternative way of defining SemiGroup would be to describe

g2× C ( � )

alone as the semigroup. This is in a sense simpler, since it means that we would
be working with a single relation, rather than with the two-component schema
above. The schema approach turns out to have an easier development, however
(see also the discussion in §3.7.2), and corresponds better with the long-established
mathematical nomenclature. Some of the mathematical literature even goes so far
as to describe the set g on its own as being a semigroup, leaving the operation
implicit, but we shall not be so lax, nor so ambiguous.

•

Monoid

Intent

An identity element leaves every other element unchanged by the operation. A
monoid is a semigroup where one of the elements of the group set is an identity
element.

Definition

monoids:

Monoid [X ]
SemiGroup[X ]
e : X

e ∈ g

∀ x : g • x � e = x = e � x

abelian monoids:

AbelianMonoid[X ] == Monoid[X ] ∧ AbelianSemiGroup[X ]
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Examples

Once we have provided the set g and the operation � for a particular monoid, the
identity element e is a derived component (uniquely fixed by the rest of the specifi-
cation, law 23.1), and so need not be specified explicitly. We do specify it in these
examples, however, to be helpful in identifying it to the reader. (Technically, we
should prove the existence of the alleged monoid with its alleged identity element.
We do not do so for these examples, because the proofs are unilluminating.)

1. Relational overriding forms a monoid over relations. The identity element is
the empty set.

[X ,Y ] a : P X ; b : P Y `
∃Monoid[X ↔ Y ] • g = a ↔ b ∧ ( � ) = ( ⊕ ) ∧ e = ∅

2. Homogeneous relational composition forms a monoid over relations, partial
functions, total functions, surjections, and injections. The identity element
is the identity relation.

[X ] a : P X `
∃Monoid[X ↔ X ] • g = a ↔ a ∧ ( � ) = ( o

9 ) ∧ e = id a

[X ] a : P X `
∃Monoid[X ↔ X ] • g = a 7→ a ∧ ( � ) = ( o

9 ) ∧ e = id a

[X ] a : P X `
∃Monoid[X ↔ X ] • g = a → a ∧ ( � ) = ( o

9 ) ∧ e = id a

[X ] a : P X `
∃Monoid[X ↔ X ] • g = a →→ a ∧ ( � ) = ( o

9 ) ∧ e = id a

[X ] a : P X `
∃Monoid[X ↔ X ] • g = a � a ∧ ( � ) = ( o

9 ) ∧ e = id a

3. Sequence concatenation forms a monoid over finite sequences. The identity
element is the empty sequence.

[X ] ` ∃Monoid[A ↔ X ] • g = seqX ∧ ( � ) = ( a ) ∧ e = 〈 〉

4. Set union forms an abelian monoid over sets. The identity element is the
empty set.

[X ] ` ∃AbelianMonoid[P X ] • g = P X ∧ ( � ) = ( ∪ ) ∧ e = ∅
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5. Set intersection forms an abelian monoid over sets. The identity element is
the full set.

[X ] ` ∃AbelianMonoid[P X ] • g = P X ∧ ( � ) = ( ∩ ) ∧ e = X

6. Arithmetic addition forms an abelian monoid over natural numbers. The
identity element is zero.

` ∃AbelianMonoid[A] • g = N ∧ ( � ) = ( + ) ∧ e = 0

7. Arithmetic multiplication modulo n forms an abelian monoid over 0 . . n − 1.
The identity element is unity.

n : N1 `
∃AbelianMonoid[A] •

g = 0 . . n − 1 ∧ ( � ) = ( ∗ ) mod n ∧ e = 1

Laws

� Law 23.1 A monoid has a unique identity element.

[X ] Monoid[X ]; e0 : X | e0 ∈ g ∧ ( ∀ x : g • x � e0 = x ) ` e0 = e

[X ] Monoid[X ]; e0 : X | e0 ∈ g ∧ ( ∀ x : g • e0 � x = x ) ` e0 = e

� Law 23.2 A monoid’s binary function is a surjection.

[X ] Monoid[X ] ` g2× C ( � ) ∈ g2× →→ g

•

Group

Intent

An inverse element is one which combines with an element a to give the identity
element. The inverse function returns the inverse of every element. A group is a
monoid with an inverse function on the group’s set.
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Definition
groups:

Group [X ]
Monoid[X ]
inv : X 7→ X

g C inv ∈ g → g

∀ x : g • x � inv x = inv x � x = e

abelian groups:

AbelianGroup[X ] == Group[X ] ∧ AbelianSemiGroup[X ]

Examples

Once we have provided the set g and the operation � for a particular group, the
identity element e and the inverse function inv are derived components (uniquely
fixed by the rest of the specification, laws 23.1 and 23.3), and so need not be
specified explicitly although we do so in the following examples. We do specify
them in these examples, however, to be helpful in identifying them to the reader.
(Technically, we should prove the existence of the alleged group with its alleged
identity element and inverse function. We do not do so for these examples, because
the proofs are unilluminating. We do so for the case of arithmetic modulo prime
p, law 23.4, because the proof is not quite so immediately obvious.)

1. Relational composition forms a group over the set of homogeneous bijections.
The identity element is the identity relation; the inverse function is relational
inverse.

[X ] `
∃Group[X ↔ X ] •

g = X �→ X ∧ ( � ) = ( o
9 ) ∧ e = idX ∧ inv = ( ∼)

2. Symmetric set difference forms an abelian group over sets. The identity
element is the empty set; the inverse function is the identity relation.

[X ] `
∃AbelianGroup[P X ] •

g = P X ∧ ( � ) = ( 	 ) ∧ e = ∅ ∧ inv = id(P X )
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3. Arithmetic addition modulo n forms an abelian group over 0 . . n − 1. The
identity element is zero; the inverse function is unary minus modulo n.

n : N1 `
∃AbelianGroup[A] •

g = 0 . . n − 1 ∧ ( � ) = ( + ) mod n
∧ e = 0 ∧ inv = ( λm : g • -m mod n )

4. Payments into a bank account should form an abelian group: there should
be an inverse operation to remove money paid in.

5. Audit trails should not have an inverse operation, and hence should not form
a group. Once an audit item has been added to the trail, it should not be
possible to remove it.

Laws

� Law 23.3 A group has a unique inverse function.

[X ] Group[X ]; inv0 : X 7→ X |
g C inv0 ∈ g → g ∧ ( ∀ x : g • x � inv0 x = e ) `

inv0 = inv

[X ] Group[X ]; inv0 : X 7→ X |
g C inv0 ∈ g → g ∧ ( ∀ x : g • inv0 x � x = e ) `

inv0 = inv

� Law 23.4 Arithmetic multiplication modulo p, where p is prime, forms an
abelian group over 1 . . p − 1.

p : prime `
∃AbelianGroup[A] •

g = 1 . . p − 1 ∧ ( � ) = ( λ n,m : g • (n ∗m) mod p )

•
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Distributing an abelian monoid

Intent

Distribute an Abelian monoid over a finite labelled set, to give the result of com-
bining all the elements together using the function, to give a single element of the
same type as the set elements.

Definition

distributeOverLabelledSet[L,X ] ==
{ AbelianMonoid[X ]; � / : (L 7 7→ X ) 7→ X |

� / ∈ (L 7 7→ g) → g
∧ � / ∅ = e
∧ ( ∀ l : L; x : g • � /{l 7→ x} = x )
∧ ( ∀ f1, f2 : L 7 7→ g | dom f1 ∩ dom f2 = ∅ •

� /(f1 ∪ f2) = � /f1 � � /f2 ) •
(L, g , ( � )) 7→ � / }

The conventional name for the distributed form of a binary operator � is � /.

We deal with the case of distributing a general (non-abelian) monoid, as distribute-
OverSeq, after we have defined sequences (§34).

Examples

1. Set union and intersection could be distributed over labelled sets

[X ] ` distributeOverLabelledSet〈|
g == P X , � == ( ∪ )[X ], e == ∅[X ] |〉 ⊆ ∪/

[X ] ` distributeOverLabelledSet〈|
g == P X , � == ( ∩ )[X ], e == X |〉 ⊆ ∩/

However, since the operators are idempotent, their elements do not need to
be labelled, so we use generalised union

⋃
and generalised intersection

⋂
instead. So, given a labelled set f , rather than using ∪/f or ∩/f , we use⋃

(ran f ) and
⋂

(ran f ) instead.

2. We distribute arithmetic sum and product over (finite) labelled sets below,
to form +/ and ∗/. In §32 we introduce the functions Σ and Π for complete
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distributed sum and product; they have been further generalised to extend
to certain infinite cases.

Laws

Law 23.5 distributeOverLabelledSet is a total function from Abelian Monoids to
total functions on finite labelled sets. (Proof of this law would involve the induction
principle for finite sets, law 15.1.)

[L,X ] ` distributeOverLabelledSet ∈
{ AbelianMonoid • (L, g , ( � )) } → (L 7 7→ X ) → X

Law 23.6 Distributing over the empty collection gives the identity element; dis-
tributing over the singleton collection gives the value; distributing over a collection
of two gives the values combined by the binary operator.

[L,X ] � / : (L 7 7→ X ) → X ; AbelianMonoid[X ] |
g = X
∧ � / = distributeOverLabelledSet(L, g , ( � )) `

� / ∅ = e

[L,X ] l : L; x : X ; � / : (L 7 7→ X ) → X ; AbelianMonoid[X ] |
g = X
∧ � / = distributeOverLabelledSet(L, g , ( � )) `

� / {l 7→ x} = x

[L,X ] k , l : L; x , y : X ; � / : (L 7 7→ X ) → X ; AbelianMonoid[X ] |
g = X
∧ #{k , l} = 2
∧ � / = distributeOverLabelledSet(L, g , ( � )) `

� / {k 7→ x , l 7→ y} = x � y

[L,X ] j , k , l : L; x , y , z : X ; � / : (L 7 7→ X ) → X ; AbelianMonoid[X ] |
g = X
∧ #{j , k , l} = 3
∧ � / = distributeOverLabelledSet(L, g , ( � )) `

� / {j 7→ x , k 7→ y , l 7→ z} = x � y � z

•
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Finite distributed sum

Intent

The operation of distributed sum applied to a finite labelled family of numbers
finds the sum of those numbers.

Definition

+/[L] == distributeOverLabelledSet(L, R, ( + ))

The use of the function distributeOverLabelledSet in the definition covers all finite
labelled sets. The application of this function may be pronounced add up.

Several Z authors have used a function with approximately this meaning, typically
calling it +/ or Σ, but without formally defining it.

Examples

1. The empty distributed sum is zero; the distributed sum of a singleton is that
element; the distributed sum of two items is the (binary) sum of those two.

` +/〈 〉 = 0

x : R ` +/〈x 〉 = x

x , y : R ` +/〈x , y〉 = x + y

2. The sum of the first n integers, both in conventional mathematical notation,
and in Z, is:

n∑
m=1

m = n(n + 1)/2

n : N ` +/(id(1 . . n)) = n ∗ (n + 1)÷ 2

3. The sum of the first n squares, both conventionally, and in Z, is:

n∑
m=1

m2 = n(n + 1)(2n + 1)/6

n : N ` +/(λm : 1 . . n • m ∗∗ 2) = n ∗ (n + 1) ∗ (2 ∗ n + 1)÷ 6
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4. The sum of the first n cubes, both conventionally, and in Z, is:
n∑

m=1

m3 = n2(n + 1)2/4

n : N ` +/(λm : 1 . . n • m ∗∗ 3) = n ∗∗ 2 ∗ (n + 1) ∗∗ 2÷ 4

5. The sum of the first n powers, both conventionally, and in Z, is:
n−1∑
m=0

xm =
1− xn

1− x

n : N; x : R \ {1} `
+/( λm : 0 . . (n − 1) • x ∗∗m ) = (1− x ∗∗ n)÷ (1− x )

•

Finite distributed product

Intent

The operation of distributed product applied to a finite labelled family of numbers
finds the product of those numbers.

Definition

∗/[L] == distributeOverLabelledSet(L, R, ( ∗ ))

The use of the function distributeOverLabelledSet in the definition covers all finite
labelled sets. The application of this function may be pronounced multiply up.

A few Z authors have used a function with approximately this meaning, typically
calling it ∗/ or Π, but without formally defining it.

Examples

1. The empty distributed product is unity; the distributed product of a singleton
is that element; the distributed product of two items is the (binary) product
of those two.

` ∗/〈 〉 = 1

x : R ` ∗/〈x 〉 = x

x , y : R ` ∗/〈x , y〉 = x ∗ y
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2. The product of the first n integers (the factorial function, §33) both conven-
tionally, and in Z, is:

n∏
m=1

m = n!

n : N ` ∗/(id(1 . . n)) = factorial n

•
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Homogeneous relations

In this chapter we explore properties of homogeneous relations, X ↔ X .

• vertices and roots

• well-rooted graphs: (wellRootedX )

• identity relation: idX

• reflexive relations and closure

• irreflexive relations and residue

• symmetric relations, closure and residue

• antisymmetric relations

• transitive relations

• transitive closure and reflexive transitive closure: ( +), ( ∗)

• intransitive relations and residue

• locally finite relations: locallyFiniteOutX , locallyFiniteInX , locallyFiniteX

• equivalence relations: reflexive, symmetric, and transitive

• acyclic relations

• maximal iteration: do

A homogeneous relation has its domain and range of the same type; we first explore
the meaning of the elementary set operations between these sets.

Some useful constraints on homogeneous relations take the form of assertions that
particular patterns exist either always or never in the relation. The patterns we
consider are:

• reflexive pairs, elements related to themselves: x 7→ x ∈ r

• symmetric pairs, elements are either related or unrelated in both directions,
so that for distinct x and y we have x 7→ y ∈ r ⇔ y 7→ x ∈ r

233
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• transitive triples, so that x 7→ y ∈ r ∧ y 7→ z ∈ r ⇒ x 7→ z ∈ r

These patterns give rise to six standard properties, of being reflexive, irreflexive,
symmetric, antisymmetric, transitive or intransitive, according to whether they
arise always or never.

We define the operations to make these patterns apply: the P closure of a relation
r is the smallest superset of r that has property P ; the P residue of a relation r is
the largest subset of r that has property P .

In general, a relation may have some pairs that have the specified properties, and
some that do not. When specifying, it is good practice always to check if a par-
ticular relation can be chosen so that all or none of its pairs have the relevant
properties. Such a choice can help avoid problems of over-specification and pro-
liferation of special cases. One can also immediately apply the relevant laws and
thus raise the level of one’s thinking.

Design choices

Abstraction

As the British philosopher and logician Bertrand Russell, 1872–1970, observed,
pure mathematics may be defined as “the subject in which we never know what we
are talking about” (in his essay Mathematics and the Metaphysicians, in [Russell
1929]). That is, we are dealing with abstraction, and by drawing the maximum of
conclusions from the minimum of assumptions we maximise the usefulness of our
thought processes. We can then apply our theories in a wide variety of different
particular circumstances.

When thinking about our abstractions we need to have some sort of a mental
model, but we must be careful not to let that mental model be too detailed, as it
may then suggest unjustified conclusions. In developing our mental model it may
be helpful to consider two or more contrasting particular cases, to guard against
that danger.

Directed graph models

One mental model of homogeneous relations, and a possible application of the
theory, is the directed graph, or digraph, where we have a set of vertices joined
by directed arcs. The set X corresponds to the set of possible vertices, and the
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elements of X ↔ X correspond to the arcs between them. An undirected graph
corresponds to a similar relation constrained to be symmetric.

An alternative mental model is given by a comparison algorithm. Here we take
the set X as being the possible arguments to a two-argument function that returns
the answer ‘yes’ or ‘no’. The relation X ↔ X then corresponds to the pairs of
argument that give the result ‘yes’. This mental model, though still mathematically
imperfect, is preferable to that of the graph because it suggests less in the way of
extraneous constraints. For example, with the idea of the graph in our minds we
might suppose that each vertex inevitably has only a finite number of immediate
neighbours. This need not be the case however; if we want that property we must
specify it.

A theory of homogeneous relations can be developed specifically to support graph
theory. Graph theory in general requires a richer structure than a homogeneous
relation on its own provides. For example if it is desired to provide an explicit
representation of isolated points, or to allow multiple edges between any particular
pair of vertices, a single relation is not enough. Graph theory can also be applied
to problems like that of flows in networks, where each arc or edge can be associated
with some attribute, such as a numeric value.

If one’s specification needs such richness, it is not difficult to declare the necessary
structures, but a useful start to graph theory can be developed on the simpler
basis of homogeneous relations. So we make a few elementary definitions and give
some of their immediate consequences. There is a difference in emphasis, too, in
that many of the concerns of graph theory are with finite graphs, whereas here we
concentrate on the general case, giving definitions and results that apply equally
whether the graph is finite or infinite.

Design choices in definitions

Z is a powerful and flexible notation, and therefore there is often no best way
of defining things. We have a number of choices in this chapter, which we can
exemplify by considering the possible ways of defining reflexivity.

1. If we have some set a : P X , and we want the expression reflexive a to mean
the set of all reflexive homogeneous relations using the set a, we can choose
between at least the following definitions:
• reflexive a == { r : a ↔ a | id a ⊆ r }
• reflexive a == { r : X ↔ X | id a ⊆ r }
• reflexive a == { r : a ↔ a | id(dom r ∪ ran r) ⊆ r }
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2. Continuing the previous example, we could abandon the restriction to a single
parameter, and write with some appropriate definition, reflexive(X , a), where
a : P X .

3. reflexive could be a predicate asserting that relation r is reflexive.

4. We could define a schema

Reflexive[X ] == [ r : X ↔ X ; a, b : P X | id a ⊆ r ⊆ b × b ]

Our criteria for making the choice are (in no particular order):

• simplicity of definition

• adequacy of power to make the significant mathematical points that we wish
to make

• amenability to proof

• compatibility with standard mathematical convention

• compatibility with existing Z convention, for example [Hayes 1993]

• applicability in an analogous way to related cases (in this case to the definition
of ‘irreflexive’ and so on)

All the theory we have developed for our particular choice should readily be adapt-
able to any alternative approach that the reader may prefer.

Functions on the domain and range

Intent

A homogeneous relation r : X ↔ X has its domain and range of the same type;
so there are five simple functions that we can apply between them

• dom r ∪ ran r : all vertices (also called nodes)

• dom r ∩ ran r : interior vertices; elements that are included in the relation in
both senses: they are neither roots nor leaves.

• dom r 	 ran r : exterior vertices; elements that are included in the relation
in only one sense. In graph terms, these could be called the ‘extrema’ or the
‘end nodes’: they are either leaves or roots.

• dom r \ ran r : leaves (also called ‘sources’, or ‘minima’)

• ran r \ dom r : roots (also called ‘sinks’, ‘or maxima’)
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These all have some meaning, as indicated. We formally define some but not all
the corresponding functions, since it is straightforward for a specifier to do so for
the rest whenever the need arises.

•

Vertices

Intent

The union of the domain and range corresponds to the whole set of elements that
are anywhere in the relation. In graph terms, this is the set of vertices that are at
either end of any arc.

Definition

vertices:

vertex[X ] == λ r : X ↔ X • dom r ∪ ran r

Laws

Law 24.1 All elements in the relation are vertices.

[X ] x , y : X ; r : X ↔ X | x 7→ y ∈ r ` {x , y} ⊆ vertex r

Law 24.2 vertex distributes through generalised union.

[X ] ρ : P(X ↔ X ) ` vertex(
⋃

ρ) =
⋃

(vertex(| ρ |))
[X ] r , s : X ↔ X ` vertex(r ∪ s) = vertex r ∪ vertex s

Law 24.3 As a corollary of law 26.37 specialised to subsets, along with law 24.2,
vertex is subset order-preserving.

[X ] r , s : X ↔ X | r ⊆ s ` vertex r ⊆ vertex s

Law 24.4 Specialising the order-preserving law about bounds (law 26.36) to f =
vertex , gives
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[X ] ρ : P(X ↔ X ) ` vertex(
⋂

ρ) ⊆ ⋂
(vertex(| ρ |))

[X ] r , s : X ↔ X ` vertex(r ∩ s) ⊆ vertex r ∩ vertex s

Law 24.5 The vertices of a relation are the same as the vertices of its inverse.

[X ] r : X ↔ X ` vertex r = vertex(r∼)

•

Roots and leaves

Intent

Our definition has the arcs directed from the leaves towards the roots (just because
it is technically more convenient to do it that way).

The names ‘roots’ (and ‘leaves’) are consistent with the image of the ‘tree’ and
‘forest’ special cases given below. We content ourselves with defining ‘roots’. Sev-
eral of the results about roots given below apply, dually, to leaves by inverting the
relation.

Definition

roots:

The ‘roots’ of a graph are the vertices that an arc enters but does not leave.

root[X ] == λ r : X ↔ X • ran r \ dom r

well-rooted graphs:

generic (wellRooted )

wellRootedX == { r : X ↔ X | ∀ s1 : P1 r • root s1 6= ∅ }

A well-rooted graph is a graph for which any non-empty subgraph has a root.

Examples

1. { x , y : N | x ≤ y } ∈ wellRooted A
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2. { x , y : Z | x ≤ y } 6∈ wellRooted A
3. {x 7→ y , y 7→ z , z 7→ x} 6∈ wellRootedX

•

Identity relation

Intent

With the (generic) identity relation, every element is related to (only) itself. In
graph terms, every element is connected to itself by an arc; there are no other arcs.

Definition

identity relation:

generic (id )

idX == { x : X • x 7→ x }

Examples

id X

X

X

X ,  dom  r,  ran  r

•

• •

••

•

Figure 24.1 The identity relation.

1. id{x} = {x 7→ x}
2. id{x , y} = {x 7→ x , y 7→ y}
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Laws

Law 24.6 The identity relation is a bijection.

[X ] ` idX ∈ X �→ X

Law 24.7 The domain of the identity relation is its parameter set. Dually, so is
the range.

[X ] ` dom(idX ) = X = ran(idX )

Law 24.8 The identity relation is self-inverse.

[X ] ` (idX )∼ = idX

Law 24.9 Composing with the identity restricts the relation.

[X ,Y ] a : P X ; r : X ↔ Y ; b : P Y ` id a o
9 r o

9 id b = a C r B b

[X ] a, b : P X ` id a o
9 id b = id(a ∩ b)

Law 24.10 The composition of a relation with its own inverse contains the iden-
tity.

[X ,Y ] r : X ↔ Y ` id(dom r) ⊆ r o
9 r∼

[X ,Y ] r : X ↔ Y ` id(ran r) ⊆ r∼ o
9 r

Law 24.11 The identity relation is reflexive, symmetric, antisymmetric, and tran-
sitive; the identity relation is the only relation that is both symmetric and anti-
symmetric.

[X ] ` idX ∈ reflexiveX ∩ symmetricX ∩ antisymmetricX ∩ transitiveX

[X ] ` symmetricX ∩ antisymmetricX = P(idX )

•
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Reflexive relation

Intent

A reflexive relation is one where every element is related to (at least) itself. In
graph terms, every element is connected to itself by an arc; there may be other
arcs.

Definition

reflexive relations:

generic (reflexive )

reflexiveX == { r : X ↔ X | idX ⊆ r }

Examples

X

X

X ,  dom  r,  ran  r

•

• •

••

•

Figure 24.2 An example of a reflexive relation.

1. ∅ ∈ reflexiveX

2. {x 7→ x} ∈ reflexive{x}
3. {x 7→ x , x 7→ y , y 7→ y} ∈ reflexive{x , y}
4. ( ⊆ ) ∈ reflexiveX

5. A permutation of a sequence is one that has the same items, whether in the
same order or not
permutation : reflexive(seqX )

6. ‘is parallel to’ is reflexive
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Laws

Law 24.12 The inverse of a reflexive relation is reflexive.

[X ] r : reflexiveX ` r∼ ∈ reflexiveX

Law 24.13 Any superset of a reflexive relation (that does not increase its domain)
is reflexive. The union and intersection of reflexive relations is reflexive.

[X ] s : X ↔ X ; r : reflexiveX | r ⊆ s ` s ∈ reflexiveX

[X ] ρ : P(reflexiveX ) ` ⋃ ρ ∈ reflexiveX

[X ] ρ : P1(reflexiveX ) ` ⋂ ρ ∈ reflexiveX

� Law 24.14 The composition of a relation with its inverse is reflexive on the
relation’s domain.

[X ,Y ] r : X ↔ Y ` r o
9 r∼ ∈ reflexive(dom r)

[X ,Y ] r : X ↔ Y ` r∼ o
9 r ∈ reflexive(ran r)

•

Reflexive closure

Intent

The reflexive closure of a relation r is the smallest reflexive relation containing r .

Laws

Law 24.15 The reflexive closure of a relation is formed by unioning it with the
identity.

[X ] r : X ↔ X ` r ∪ idX ∈ reflexiveX

•
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Irreflexive relation

Intent

An irreflexive relation is one with no element related to itself. In graph terms, no
element is connected to itself by a single arc.

Definition

irreflexive relations:

generic (irreflexive )

irreflexiveX == { r : X ↔ X | r ∩ idX = ∅ }

Examples

X

X

X

•

• •

••

•

dom  r

ran  r

Figure 24.3 An example of an irreflexive relation.

1. ∅ ∈ irreflexiveX

2. x 6= y ⇒ {x 7→ y} ∈ irreflexiveX

3. ( 6= ) ∈ irreflexiveX

4. ( ⊂ ) ∈ irreflexiveX

5. X 2× \ idX ∈ irreflexiveX

6. ‘is perpendicular to’ is irreflexive

7. ‘is sibling of’ is irreflexive (§42)

8. A true anagram of a word has the same letters, but in a different order
trueAnagram : irreflexive(seqCHAR)
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Laws

Law 24.16 The inverse of an irreflexive relation is irreflexive.

[X ] r : irreflexiveX ` r∼ ∈ irreflexiveX

Law 24.17 Any subset of an irreflexive relation is irreflexive. The union of ir-
reflexive relations is irreflexive.

[X ] r : X ↔ X ; s : irreflexiveX | r ⊆ s ` r ∈ irreflexiveX

[X ] ρ : P(irreflexiveX ) ` ⋃ ρ ∈ irreflexiveX

� Law 24.18 A composition of two or more relations is irreflexive precisely when
any cyclic permutation of the composition is irreflexive.

[X ,Y ] r : X ↔ Y ; s : Y ↔ X ` r o
9 s ∈ irreflexiveX ⇔ s o

9 r ∈ irreflexiveY

[X ,Y ,Z ] r : X ↔ Y ; s : Y ↔ Z ; t : Z ↔ X `
(r o

9 s o
9 t ∈ irreflexiveX ⇔ s o

9 t o
9 r ∈ irreflexiveY )

∧ (s o
9 t o

9 r ∈ irreflexiveY ⇔ t o
9 r o

9 s ∈ irreflexiveZ )

Informally, this says that if, starting at any x : X in the domain of r and travelling
round the cycle of relations back to X , you cannot return to the element you
started from (if there is no cyclic path from x ), then you cannot find a cyclic path
starting anywhere else along the cycle of relations.

•

Irreflexive residue

Intent

The irreflexive residue of a relation r is the largest irreflexive relation contained in
r .

Laws

Law 24.19 The irreflexive residue of a relation is formed by subtracting the iden-
tity.
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[X ] r : X ↔ X ` r \ idX ∈ irreflexiveX

•

Symmetric relation

Intent

A symmetric relation is the same in ‘reverse’, with its pairs swapped. Whereas a
general homogeneous relation can be the model of a directed graph, a symmetric
relation models an undirected graph, since all arcs go in both directions. These
undirected arcs are called edges.

Definition

symmetric relations:

generic (symmetric )

symmetricX == { r : X ↔ X | r = r∼ }

Examples

X

X

X

•

• •

••

•

dom  r = ran  r

Figure 24.4 An example of a symmetric relation.

1. ∅ ∈ symmetricX

2. {x 7→ x} ∈ symmetricX

3. {x 7→ y , y 7→ x} ∈ symmetricX

4. ( 6= ) ∈ symmetricX
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5. ‘is parallel to’ is symmetric

6. ‘is perpendicular to’ is symmetric

7. ‘is sibling of’ is symmetric (§42)

8. permutation : symmetric(seqX )

9. trueAnagram : symmetric(seqCHAR)

Laws

Law 24.20 The union, intersection, and difference of symmetric relations is sym-
metric.

[X ] ρ : P(symmetricX ) ` ⋃ ρ ∈ symmetricX

[X ] ρ : P1(symmetricX ) ` ⋂ ρ ∈ symmetricX

[X ] r , s : symmetricX ` r \ s ∈ symmetricX

Law 24.21 A symmetric relation has no roots.

[X ] r : symmetricX ` root r = ∅
[X ] r : symmetricX ` vertex r = dom r = ran r

� Law 24.22 The composition of any relation with its inverse is symmetric.

[X ,Y ] r : X ↔ Y ` r o
9 r∼ ∈ symmetricX

[X ,Y ] r : X ↔ Y ` r∼ o
9 r ∈ symmetricY

•

Symmetric closure and residue

Intent

The symmetric closure of a relation r is the smallest symmetric relation containing
r .

The symmetric residue of a relation r is the largest symmetric relation contained
in r .
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Definition

symmetric closure of a graph:

symmetricClosure[X ] == λ r : X ↔ X • r ∪ r∼

For any homogeneous relation r the symmetric closure gives the underlying undi-
rected graph.

Laws

Law 24.23 A symmetric relation is its own symmetric closure (its own underlying
undirected graph).

[X ] r : symmetricX ` r = symmetricClosure r

Law 24.24 The symmetric residue of a relation is formed by intersecting the re-
lation with its inverse.

[X ] r : X ↔ X ` r ∩ r∼ ∈ symmetricX

•

Antisymmetric relation

Intent

An antisymmetric relation is one that has no pairs that are both forward and
‘reverse’ between different elements; it may have reflexive pairs. In graph terms,
no arc between distinct vertices goes in both directions; reflexive arcs are permitted,
however.

Definition

antisymmetric relations:

generic (antisymmetric )

antisymmetricX == { r : X ↔ X | r ∩ r∼ ⊆ idX }
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Examples

X

X

X

•

• •

••

• dom  r ran  r

Figure 24.5 An example of an antisymmetric relation.

1. ∅ ∈ antisymmetricX

2. {x 7→ y} ∈ antisymmetricX

3. ( ⊆ ) ∈ antisymmetricX

4. ( ≤ ) ∈ antisymmetric A

Laws

Law 24.25 The inverse of an antisymmetric relation is antisymmetric.

[X ] r : antisymmetricX ` r∼ ∈ antisymmetricX

Law 24.26 Any subset of an antisymmetric relation is antisymmetric.

[X ] r : X ↔ X ; s : antisymmetricX | r ⊆ s ` r ∈ antisymmetricX

•
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Transitive relation

Intent

A transitive relation is one where, for any pairs that could be composed together,
the result of that composition is also in the relation. In graph terms, if there is a
path of two arcs between three vertices, then there is a direct arc between the first
and last vertices.

Definition

transitive relations:

generic (transitive )

transitiveX == { r : X ↔ X | r o
9 r ⊆ r }

Examples

X

•

•

•

•
• •

dom  r

ran  r

•

Figure 24.6 An example of a transitive relation.

1. ∅ ∈ transitiveX

2. {x 7→ y , y 7→ z , x 7→ z} ∈ transitiveX

3. ( ⊆ ) ∈ transitiveX

4. ‘is parallel to’ is transitive

5. ‘is ancestor of’ is transitive (§42)

6. permutation : transitive(seqX )



250 Chapter 24. Homogeneous relations

Laws

Law 24.27 An equivalent definition of transitive is:

[X ] ` transitiveX =
{ r : X ↔ X | ∀ x , y , z : X | x 7→ y ∈ r ∧ y 7→ z ∈ r • x 7→ z ∈ r }

Law 24.28 The inverse of a transitive relation is transitive.

[X ] r : transitiveX ` r∼ ∈ transitiveX

� Law 24.29 Subsetting does not necessarily preserve transitivity, but the follow-
ing do. Any restriction of a transitive relation is transitive; the intersection of two
transitive relations is transitive.

[X ] a, b : P X ; r : transitiveX ` a C r B b ∈ transitiveX

[X ] r , s : transitiveX ` r ∩ s ∈ transitiveX

� Law 24.30 Any relation that is both transitive and symmetric is also reflexive
on its domain.

[X ] r : transitiveX ∩ symmetricX ` r ∈ reflexive (dom r)

In graph terms, if two consecutive arcs can always be composed into one (transitive)
and all arcs to immediate neighbours are two-way edges (symmetric) then there
must be a single arc back to each domain element (antisymmetric).

Law 24.31 As a corollary of the previous law, there are no non-trivial relations
that are transitive, irreflexive and symmetric.

[X ] ` transitiveX ∩ irreflexiveX ∩ symmetricX = {∅}

� Law 24.32 Any transitive function is the identity on its range. So the first
application of the function does all the ‘work’, and subsequent applications have
no further effect: the function is idempotent.

[X ] f : (X 7→ X ) ∩ transitiveX ` ran f C f = id(ran f )
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� Law 24.33 Being a function is, in some sense, the ‘opposite’ of being transitive.
An irreflexive, transitive function has no interior vertices; it is all roots and leaves.

[X ] f : (X 7→ X ) ∩ transitiveX ∩ irreflexiveX ` dom f ∩ ran f = ∅

•

Transitive closures

Intent

The transitive closure of a relation r is the smallest transitive relation containing
r .

The reflexive transitive closure of r is the smallest reflexive and transitive relation
containing r . We get the reflexive transitive closure by unioning with the identity
relation.

Definition

transitive closure:

function ( +)
+ [X ] == λ r : X ↔ X • ⋂{ t : transitiveX | r ⊆ t }

The comprehension in the definition of r+ defines the set of transitive relations
that have r as a subset. The use of the generalised intersection then gives us the
smallest such possible set.

reflexive transitive closure:

function ( ∗)
∗ [X ] == λ r : X ↔ X • r+ ∪ idX

If we write r ∗, we get a domain for the closed relation taken from the whole type.
This may well be what we want. If not, the closure expression needs to be supplied
with the relevant parameter, as ( ∗)[a]r . In such cases it is probably clearer to
write r+ ∪ id a.
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Examples

• ∅+ = ∅
• ∅∗ = idX

• {x 7→ y , y 7→ z}+ = {x 7→ y , y 7→ z , x 7→ z}
• ( ⊆ )+ = ( ⊆ )∗ = ( ⊆ )

• ( ⊂ )+ = ( ⊂ )

• ( ⊂ )∗ = ( ⊆ )

Laws

Law 24.34 The closures are total functions. Their ranges are the sets of all ap-
propriately transitive relations.

[X ] ` ( +)[X ] ∈ (X ↔ X ) →→ transitiveX

[X ] ` ( ∗)[X ] ∈ (X ↔ X ) →→ (reflexiveX ∩ transitiveX )

Law 24.35 The closures are idempotent.

[X ] r : X ↔ X ` r++ = r+

[X ] r : X ↔ X ` r+∗ = r ∗

[X ] r : X ↔ X ` r ∗∗ = r ∗

[X ] r : X ↔ X ` r ∗+ = r ∗

Law 24.36 The domain and range of a relation are unchanged under transitive
closure.

[X ] r : X ↔ X ` dom(r+) = dom r

[X ] r : X ↔ X ` ran(r+) = ran r

Law 24.37 The transitive closure of a relation is the union of all its non-trivial
iterations. The reflexive transitive closure of a relation is the union of all its
iterations, including the trivial zero iteration (or identity).

[X ] r : X ↔ X ` r+ =
⋃{ n : N1 • rn }

[X ] r : X ↔ X ` r ∗ =
⋃{ n : N • rn }



253

� Law 24.38 Transitive closure is subset order-preserving (§26).

[X ] r , s : X ↔ X | r ⊆ s ` r+ ⊆ s+

[X ] r , s : X ↔ X | r ⊆ s ` r ∗ ⊆ s∗

Law 24.39 Specialising the order-preserving law about bounds (law 26.36) to f =
+, and to f = ∗, gives

[X ] ρ : P(X ↔ X ) ` ⋃{ r : ρ • r+ } ⊆ (
⋃

ρ)+

[X ] r , s : X ↔ X ` r+ ∪ s+ ⊆ (r ∪ s)+

[X ] ρ : P(X ↔ X ) ` ⋃{ r : ρ • r ∗ } ⊆ (
⋃

ρ)∗

[X ] r , s : X ↔ X ` r ∗ ∪ s∗ ⊆ (r ∪ s)∗

[X ] ρ : P(X ↔ X ) ` (
⋂

ρ)+ ⊆ ⋂{ r : ρ • r+ }
[X ] r , s : X ↔ X ` (r ∩ s)+ ⊆ r+ ∩ s+

[X ] ρ : P(X ↔ X ) ` (
⋂

ρ)∗ ⊆ ⋂{ r : ρ • r ∗ }
[X ] r , s : X ↔ X ` (r ∩ s)∗ ⊆ r ∗ ∩ s∗

� Law 24.40 The transitive closure of a relation is irreflexive precisely when all
the iterates of that relation are irreflexive.

[X ] r : X ↔ X ` r+ ∈ irreflexiveX ⇔ ( ∀ n : N1 • rn ∈ irreflexiveX )

•

Intransitive relation

Intent

An intransitive relation is one where no pair can be obtained by linking together
other pairs end to end. In graph terms, if there is a direct arc between two vertices,
then there is no path of two or more arcs between them.
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Definition

intransitive relations:

generic (intransitive )

intransitiveX == { r : X ↔ X | r ∩ (r o
9 r+) = ∅ }

Examples

1. ∅ ∈ intransitiveX

2. {x 7→ y , y 7→ z} ∈ intransitiveX

3. λ i : Z • i + 1 ∈ intransitive Z
4. The mother relation is intransitive (§42).

Laws

Law 24.41 An intransitive relation has no transitive triples.

[X ] r : intransitiveX ; x , y , z : X | {x 7→ y , y 7→ z} ⊆ r ` x 7→ z 6∈ r

Law 24.42 The inverse of an intransitive relation is intransitive.

[X ] r : intransitiveX ` r∼ ∈ intransitiveX

Law 24.43 Any subset of an intransitive relation is intransitive.

[X ] r : X ↔ X ; s : intransitiveX | r ⊆ s ` r ∈ intransitiveX

Law 24.44 Intransitive relations are acyclic.

[X ] ` intransitiveX ⊆ acyclicX

•



255

Intransitive residue

Intent

The intransitive residue of a relation is the intransitive relation that remains when
all the transitive parts are removed. In graph terms, the intransitive residue of
a graph has any arc directly connecting two vertices removed if there is also an
indirect, multi-arc path between them. (Note that sometimes the removed direct
arc may have been part of the indirect path.)

Definition

intransitive residue:

intransitiveResidue[X ] == λ r : X ↔ X • r \ (r o
9 r+)

Examples

1. intransitiveResidue(( ≤ ) ∩ (Z× Z)) = ∅
2. intransitiveResidue(( < ) ∩ (R× R)) = ∅

Laws

Law 24.45 An intransitive residue is an intransitive relation.

[X ] r : X ↔ X ` intransitiveResidue r ∈ intransitiveX

Law 24.46 Reflexive relations and symmetric relations have no intransitive residue.

[X ] r : reflexive ` intransitiveResidue r = ∅
[X ] r : symmetric ` intransitiveResidue r = ∅

Law 24.47 A relation is acyclic precisely when it is contained within the transitive
closure of its intransitive residue.

[X ] r : X ↔ X ` r ∈ acyclicX ⇔ r ⊆ (intransitiveResidue r)+
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Law 24.48 A relation is transitive precisely when it contains the transitive closure
of its intransitive residue.

[X ] r : X ↔ X ` r ∈ transitiveX ⇔ (intransitiveResidue r)+ ⊆ r

Law 24.49 Hence a relation is acyclic and transitive precisely when it equals tran-
sitive closure of its intransitive residue. (It is also an irreflexive partial order, §26.)

[X ] r : X ↔ X ` r ∈ acyclicX ∩ transitiveX ⇔ r = (intransitiveResidue r)+

•

Vertex finiteness

Intent

We define the case where there is only a finite number of arcs entering or leaving
a vertex. If all vertices have finite degree we call the relation locally finite.

Definition

generic 80(locallyFiniteOut )

locallyFiniteOutX == { r : X ↔ X | ∀ x : X • finite(successors r x ) }

generic 80(locallyFiniteIn )

locallyFiniteInX == { r : X ↔ X | r∼ ∈ locallyFiniteOutX }

generic 80(locallyFinite )

locallyFiniteX == { r : X ↔ X | symmetricClosure r ∈ locallyFiniteOutX }

•
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Equivalence relation

Intent

An equivalence relation is a relation that is reflexive, symmetric, and transitive.

Definition

equivalence relations:

generic (equivalence )

equivalenceX == reflexiveX ∩ symmetricX ∩ transitiveX

Examples

X

•

• •

••

•

X

X

Figure 24.7 An example of an equivalence relation.

1. idX ∈ equivalenceX : ‘equality’ is the prototypical equivalence relation.
Each element is the sole member of its own equivalence class.

2. X 2× ∈ equivalenceX : there is a single equivalence class consisting of all
elements

3. ‘generates the same component as’ is an equivalence relation on vertices

4. ‘exists a bijection between’ is an equivalence relation on sets. For finite
sets, each equivalence class (see law 24.51) contains sets all having the same
cardinality; the existence of this equivalence relation is a way to extend the
definition of cardinality to infinite sets.

5. permutation ∈ equivalence(seqX )
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6. if we interpret an ordered pair of naturals as a rational number, ‘is the same
rational as’ ∈ equivalence(N1

2×)

7. ‘is parallel to’ is an equivalence relation

Laws

Law 24.50 The symmetric residue of a preorder is an equivalence relation.

[X ] r : preorderX ` r ∩ r∼ ∈ equivalenceX

Law 24.51 An equivalence relation partitions its generic set into equivalence classes.

[L,X ] r : equivalenceX `
∃ f : L 7→ P X • f partitionX ∧ r =

⋃{ a : ran f • a2× }

Law 24.52 Any partition can be used to generate an equivalence relation.

[L,X ] f : L 7→ P X | f partitionX ` ⋃{ a : ran f • a2× } ∈ equivalenceX

•

Acyclic relation

Intent

An acyclic relation is one where no vertex is related to itself by one or more
applications of the relation.

Definition

acyclic relations:

generic (acyclic )

acyclicX == { r : X ↔ X | r+ ∈ irreflexiveX }

The transitive closure of an acyclic relation is irreflexive.
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Examples

X

•

•

•

•

• •

dom  r

ran  r

• •

Figure 24.8 An example of an acyclic relation.

1. ∅ ∈ acyclicX

2. ( ⊂ ) ∈ acyclicX

3. The parent relation is acyclic (§42).

4. The inheritance relation in an object oriented language such as Eiffel (with
multiple inheritance) forms an acyclic graph of classes.

Laws

Law 24.53 The inverse of an acyclic relation is acyclic.

[X ] r : acyclicX ` r∼ ∈ acyclicX

Law 24.54 A subset of an acyclic relation is acyclic.

[X ] r : X ↔ X ; s : acyclicX | r ⊆ s ` r ∈ acyclicX

Law 24.55 All finite acyclic relations are well-rooted; all well-rooted relations are
acyclic.

[X ] ` acyclicX ∩ (X 7 7↔ X ) ⊆ wellRootedX ⊆ acyclicX

Law 24.56 Any transitive, irreflexive relation is acyclic; any acyclic relation is
irreflexive and antisymmetric.
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[X ] ` transitiveX ∩ irreflexiveX
⊆ acyclicX ⊆ irreflexiveX ∩ antisymmetricX

In graph terms, if two consecutive arcs can always be composed into one (transitive)
and there are no reflexive arcs (irreflexive) then there can be no two-way paths
(acyclic).

Law 24.57 The transitive closure of an acyclic relation is an irreflexive partial
order; the reflexive transitive closure of an acyclic relation is a reflexive partial
order (§26).

[X ] ` ( +)(| acyclicX |) = irreflexiveOrderX

[X ] ` ( ∗)(| acyclicX |) = reflexiveOrderX

•

Maximal iteration

Intent

r ∗ contains all pairs of values which may be obtained by composing together ele-
ments of r , and do r contains all such pairs where the process of composition has
gone as far as possible, in the sense that the range value obtained is no longer in
the domain of r .

Although the function do is defined for any relation r : X ↔ X , the most useful
applications are those where r is a non-total function. In that case, do r corre-
sponds to the action of iterating the function as often as possible for each value in
its domain. The iteration of the function ‘halts’ for the values in dom(do r) and
‘halts everywhere’ if dom(do r) = X

The significance of do has been well developed by such theorists as the Dutch
computer scientist Edsgar Dijkstra, 1930–2002 [Dijkstra 1976]. His treatment uses
“non-determinacy”, which corresponds with the use of relations as functions, where
the application of a “non-deterministic function” to its argument corresponds to
a choice from the image of the arguments through the relation. He also uses
“guards”, which correspond to domain restrictions. The separate clauses of his
“do” and “if” statements are put together in a way that corresponds to set union.
With this understanding, our do and Dijkstra’s “do” are identical



261

Definition

do[X ] == λ r : X ↔ X • r ∗ −B dom r

Examples

1. The factorial function (also defined later):

n : N ` do( λm : N1; k : Z • (m − 1, k ∗m) )(n, 1) = (0, factorial n)

2. The Greek/Egyptian mathematician Euclid (∼ 325b.c.–unknown) gave an
algorithm to calculate the greatest common divisor. Euclid wrote in the
Greek language, but his home was in Egypt, where many people spoke Greek
at that time. His ancestry is unknown, so could equally well have been Egyp-
tian or Greek. More importantly, he was heir not only to the earlier Greek
mathematical tradition, but also to the much longer ancient Egyptian math-
ematical tradition, to which the Greeks themselves frequently paid tribute.
Euclid’s algorithm can be written as:

p, q : N1 `
do(( λ n,m : N1 | m < n • (n −m,m) )

∪ ( λ n,m : N1 | n < m • (n,m − n)) )(p, q)
= (gcd(p, q), gcd(p, q))

3. In computer arithmetic on binary integers, multiplication can be carried out
by left-shifting (doubling), right-shifting (halving), testing the lost bit on
right-shifting (modulo 2) and adding. So using the operations of n ∗2, n div2,
and n mod 2 respectively, we can represent the process of multiplication of
integer x by y with the equation

(x ∗ y , y ′, 0) =
do( λ a, b : N; c : N1 •

(a + if c mod 2 = 1 then b else 0, b ∗ 2, c div 2) )
(0, x , y)

where y ′ can be discarded.
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Laws

Law 24.58 do is a total function.

[X ] ` do[X ] ∈ (X ↔ X ) → (X ↔ X )

Law 24.59 do r is the smallest relation that contains id(X \ dom r) and that is
unaltered by having r itself relationally composed with it.

[X ] r : X ↔ X ` do r =
⋂{ s : X ↔ X | id(X \ dom r) ⊆ s ∧ r o

9 s ⊆ s }

Law 24.60 Maximally iterating the empty relation gives the identity relation.

[X ] ` do[X ]∅ = idX

Law 24.61 Maximally iterating a function yields a function, and is partitioned
by the iterates (§31).

[X ] f : X 7→ X ` do f ∈ X 7→ X

[X ] f : X 7→ X ` ( λ n : N • f n −B dom f ) partition(do f )

Law 24.62 Alternative definitions of do in terms of relational iteration (§31)

[X ] r : X ↔ X ; n : N `
do r =

⋃{ m : N | m < n • rm −B dom r } ∪ (rn o
9 do r)

[X ] r : X ↔ X ` do r =
⋃{ n : N • rn −B dom r }

•
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Connected graphs, forests and
trees

In this chapter we further develop the theory of homogeneous binary relations in
a direction useful for graph theory.

• strongly connected graphs, connected graphs

• non-empty connected graphs

• components

• forests

• trees

Connected graph

Intent

A relation is strongly connected if every vertex is connected to every other vertex
by multiple applications of the relation. Hence the transitive closure of the relation
is completely full on the vertex set.

A relation is connected if every vertex is connected to every other vertex by multiple
applications of the relation and its inverse. Hence a relation is connected if its
underlying symmetric graph is strongly connected.

The internally connected but mutually disconnected parts of a graph are its com-
ponent subgraphs.

Definition

263
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strongly connected relations:

generic (stronglyConnected )

stronglyConnectedX == { r : X ↔ X | r+ = (vertex r)2× }

connected relations:

generic (connected )

connectedX == { r : X ↔ X | symmetricClosure r ∈ stronglyConnectedX }
connected1 X == connectedX \∅

component:

We define the component subgraph of any graph that is generated by one of its
vertices:

component[X ] == λ r : X ↔ X • λ x : X •
{ p : r | x 7→ p.1 ∈ (symmetricClosure r)+ }

Examples

X

•

•

•
•

•
•

dom r  =  ran  r X

dom  r

ran  r

•

•

•
•

•
•

Figure 25.1 an example of (a) a strongly connected relation (b) a connected relation.

Laws

Law 25.1 A strongly connected relation has no roots.

[X ] r : stronglyConnectedX ` root r = ∅
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Law 25.2 The only strongly connected acyclic relation is the empty one.

[X ] r : stronglyConnectedX ∩ acyclicX ` r = ∅

This result shows that being acyclic and being strongly connected can be regarded
as opposite extremes; in general a graph might be neither.

Law 25.3 The union of two non-empty graphs is not connected precisely when
their vertex sets are disjoint.

[X ] r , s : connected1 X ` r ∪ s 6∈ connectedX ⇔ disjoint〈vertex r , vertex s〉

Law 25.4 If an element is not a vertex of a graph, it generates the empty compo-
nent.

[X ] r : X ↔ X ; x : X | x 6∈ vertex r ` component r x = ∅

Law 25.5 In general there may be any number of components, which together
make up the original graph. The roots of the graph are divided up amongst the
components:

[X ] r : X ↔ X ` r =
⋃{ x : vertex r • component r x }

[X ] r : X ↔ X ` root r =
⋃{ x : vertex r • root(component r x ) }

Law 25.6 A connected graph has only one component.

[X ] r : connectedX ; x : X | x ∈ vertex r ` component r x = r

•

Forest

Intent

An acyclic function has each node connected to at most one other node, its parent.
This is called a forest.
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Definition

forests:

generic (forest )

forestX == acyclicX ∩ (X 7→ X )

Examples

X

dom  r

ran  r

•

•

•
•

• •

•

•

Figure 25.2 An example of a forest.

1. Figure 25.2 shows an example of a forest.

2. A directory structure in a collection of disjoint hierarchical file systems forms
a forest.

3. The mother and father relations are forests (§42).

Laws

Law 25.7 Forests are intransitive.

[X ] ` forestX ⊆ intransitiveX

Law 25.8 Any subset of a forest is a forest.

[X ] r : X ↔ X ; s : forestX | r ⊆ s ` r ∈ forestX

Law 25.9 The union of two forests with disjoint ranges is acyclic.

[X ] r , s : forestX | disjoint〈ran r , ran s〉 ` r ∪ s ∈ acyclicX

•



267

Tree

Intent

A connected forest is a tree.

Definition

trees:

generic (tree )

treeX == forestX ∩ connectedX

Examples

X

dom r ran r

Figure 25.3 An example of a tree.

1. Figure 25.3 shows an example of a tree.

2. A simple directory structure in a hierarchical file system forms a tree.

3. The inheritance relation in an object oriented language such as Smalltalk
(with single inheritance, and a single root class) forms a tree of classes.

Laws

Law 25.10 The components of a forest are trees.

[X ] r : forestX ; x : X ` component r x ∈ tree X
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Law 25.11 A tree has at most one root.

[X ] r : treeX ; x , y : X | {x , y} ⊆ root r ` x = y

Law 25.12 Any finite set of vertices in a tree has a least upper bound in the
reflexive transitive closure of the tree.

[X ] r : treeX ; a : F X | a ∈ dom r ` ∃ b : ran r • a 7→ b ∈ lub r ∗

•
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Orders

The subset relation ⊆ has the property that if a ⊆ b, and b ⊆ c, then a ⊆ c; it is
transitive. It also has the property that the only way for both a ⊆ b and b ⊆ a,
is to have a = b; it is antisymmetric. These are the properties of a well-known
mathematical construct: a (partial) order. (In Z parlance the word ‘partial’ is
redundant; it should be used only where it is necessary to draw attention to the
absence of the word ‘total’. ‘Partial’ does not mean ‘non-total’.)

This chapter is devoted to properties of orders.

• orders, reflexive orders, irreflexive orders

• posets, non-empty posets

• total orders, reflexive total orders, irreflexive total orders

• chains, non-empty chains

• preorders

• minimum, maximum

• greatest lower bound, least upper bound: glb, lub

• well orders, reflexive well orders, irreflexive well orders

• well founded chains, non-empty well founded chains

• graph preserving maps, graph preserving injections

• graph reversing maps, graph reversing injections

In other literature about orders, the distinction between the reflexive form, the
irreflexive form and that which is not constrained to be either may not be made
as above. Other authors may

• define orders using either the reflexive or the irreflexive form, ignoring the
other possibilities

269
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• call the reflexive form ‘weak’ and the irreflexive form ‘strict’, but again usually
ignoring the possibility of being neither

[Hayes 1993, A.9] gives partial order X for our reflexiveOrderX , and total order X
for our reflexiveTotalOrderX . [Halmos 1960] treats orders always as reflexive.
[Suppes 1972] uses the word “strict” to distinguish the irreflexive case. [Enderton
1977] discusses the alternatives, then opts for an irreflexive definition.

There does seem to be good reason to name and to study the properties of both
reflexive and irreflexive orders. For example, as we see in §27, a formal description
of sorting can best be done using irreflexive orders. On the other hand, minima
and maxima are defined more naturally with respect to orders that are reflexive.

[Spivey 1992, p104] uses the term ‘monotonic’ to refer to subset-preserving maps,
and ‘anti-monotonic’ to refer to subset-reversing maps.

For further reading, [Davey & Priestly 1990] is a mathematical treatment of orders,
bounds and lattices.

We use the following symbols for general orders, reflexive orders and irreflexive
orders, respectively, in examples and definitions below.

relation ( l )

relation ( 4 )

relation ( ≺ )

If two elements are related by the order, they are comparable. If two elements are
not related by the order, they are incomparable. For example, {a, b} and {a, c}
are incomparable under the subset order.

Partial order

Intent

An order is a relation that is both transitive and antisymmetric.

Definition

orders:

generic (order )

orderX == transitiveX ∩ antisymmetricX
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reflexive orders:

Some orders have the property that all elements are related to themselves (as in
‘subset of’, ‘less than or equal to’); they are reflexive.

generic (reflexiveOrder )

reflexiveOrderX == orderX ∩ reflexiveX

irreflexive orders:

Some orders have the property that no elements are related to themselves (as in
‘proper subset of’, ‘strictly less than’); they are irreflexive.

generic (irreflexiveOrder )

irreflexiveOrderX == orderX ∩ irreflexiveX

In general, orders need be neither reflexive nor irreflexive, but in practice they tend
to be one or the other.

Examples

• •• { a , c }

• ••

•

•

{ b , c }{ a , b  }

{ a, b , c }

{ a  } { b  } { c }

{  }

Figure 26.1 Example: the subsets of {a, b, c} ordered by ⊆.

1. ∅[X 2× ] ∈ irreflexiveOrderX
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2. ( ⊆ )[X ] ∈ reflexiveOrder P X

3. ( ⊂ )[X ] ∈ irreflexiveOrder P X

4. idX ∈ reflexiveOrderX . This is the trivial order, where each element is
related (only) to itself. It is sometimes called an anti-chain.

5. The Sort relation uses irreflexive orders (§27).

6. An interval of real numbers can be modelled by its begining and end, p =
(x , y) where x < y . An order on intervals is p ≺ p ′ ⇔ x ′ < x ∧ y < y ′:
the smaller interval is contained within the larger. It could be used to model
approximations to a real number.

7. Another order on intervals is p ≺ p ′ ⇔ y < x ′: the earlier interval occurs
entirely before the later. It could be used to model ‘must finish before’ order
on time in a planning chart.

8. The prefix relation is a reflexive order on streams and sequences (§36). The
suffix and infix relations are each reflexive orders on finite streams and finite
sequences.

9. The ancestor relation is an irreflexive order (§42).

Laws

Law 26.1 The orders on a are a subset of the orders on the generic parameter
set: order is subset-preserving.

[X ] a : P X ` order a ⊆ orderX

Law 26.2 Adding reflexive pairs to an order results in an order.

[X ] a : P X ; r : orderX ` r ∪ id a ∈ orderX

[X ] r : orderX ` r ∪ idX ∈ reflexiveOrderX

� Law 26.3 A subset of an order is antisymmetric, but need not be transitive.
However, the following subsets do preserve transitivity, and hence order.

[X ] a, b : P X ; r : orderX ` a C r B b ∈ orderX

[X ] r , s : orderX ` r ∩ s ∈ orderX

[X ] a : P X ; r : orderX ` r \ id a ∈ orderX

[X ] r : orderX ` r \ idX ∈ irreflexiveOrderX
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� Law 26.4 Transitive, irreflexive relations are irreflexive orders.

[X ] ` transitiveX ∩ irreflexiveX = irreflexiveOrderX

Law 26.5 Irreflexive orders are acyclic.

[X ] ` irreflexiveOrderX ⊆ acyclicX

•

Poset

Intent

A poset is an ordered set with respect to a relation.

Definition

posets:

poset[X ] == λ r : X ↔ X • { a : P X | r ∩ a2× ∈ order a }

non-empty posets:

poset1[X ] == λ r : X ↔ X • poset r \ {∅}

If we want to refer to some set a that is ordered by some relation r , we declare it
as a : poset r . The full relation r may or may not be an order itself.

Examples

• poset ∅ = {∅}
• poset1 ∅ = ∅
• poset(idX ) = P X

• poset(X 2×) = ∅ ∪ { x : X • {x} }
• R ∈ poset( < )
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Laws

Law 26.6 poset is a total surjection.

[X ] ` poset[X ] ∈ (X ↔ X ) →→ P P X

[X ] ` poset1[X ] ∈ (X ↔ X ) →→ P P1 X

Law 26.7 If r is an order, any subset of X is a poset.

[X ] r : orderX ` poset r = P X

•

Total order

Intent

If an order is such that every unequal pair is a member either of the order or of its
inverse, it is a total order. There are no incomparable elements.

Definition

total orders:

generic (totalOrder )

totalOrderX == { r : orderX | r ∪ r∼ ∪ idX = X 2× }

reflexive total orders:

generic (reflexiveTotalOrder )

reflexiveTotalOrderX == totalOrderX ∩ reflexiveX

irreflexive total orders:

generic (irreflexiveTotalOrder )

irreflexiveTotalOrderX == totalOrderX ∩ irreflexiveX
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Examples

1. The network diagram (section A.6.2) of a total order forms a single chain of
elements drawn up the page.

2. The integers under ‘less than’ form a total order

` ( ≤ ) ∩ Z2× ∈ reflexiveTotalOrder Z
` ( < ) ∩ Z2× ∈ irreflexiveTotalOrder Z

3. To introduce a new type with an order, but no additional structure (for
example, none of the arithmetic structure that comes from using numbers).

[TIME ]

relation ( before )

before : irreflexiveTotalOrderTIME

Laws

Law 26.8 The complement and the inverse of a total order are both total orders,
and identical to each other apart from in reflexivity

[X ] r : totalOrderX `
(X × X ) \ r ∈ totalOrderX
∧ r∼ ∈ totalOrderX
∧ ((X × X ) \ r) ∪ idX = r∼ ∪ idX

Law 26.9 An irreflexive total order partitions its generic set into the elements
before an element x , that element x , and the elements after x . (This motivates the
names predecessors and successors for these relations.)

[X ] r : irreflexiveTotalOrderX ; x : X `
〈predecessors r x , {x}, successors r x 〉 partitionX

•
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Chain

Intent

A chain is a totally ordered set with respect to a relation. It is so called because
of the form of the network diagram of a totally ordered set: a single line, or chain,
of elements, unlike the branching diagram of figure A.5.

Definition

chains:

chain[X ] == λ r : X ↔ X • { a : P X | r ∩ a2× ∈ totalOrder a }

non-empty chains:

chain1[X ] == λ r : X ↔ X • chain r \ {∅}

If we want to refer to some set a that is totally ordered by some relation r , we
declare it as a : chain r . The full relation r may or may not be a total order itself.

Examples

1. chain ∅ = {∅}
2. chain1 ∅ = ∅
3. chain(idX ) = ∅ ∪ { x : X • {x} }
4. chain(X 2×) = ∅ ∪ { x : X • {x} }
5. R ∈ chain( < )

Laws

Law 26.10 chain is a total surjection.

[X ] ` chain[X ] ∈ (X ↔ X ) →→ P P X

[X ] ` chain1[X ] ∈ (X ↔ X ) →→ P P1 X

Law 26.11 If r is a total order, any subset of X is a chain.
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[X ] r : totalOrderX ` chain r = P X

Law 26.12 A chain of r is also a poset of r .

[X ] r : X ↔ X ` chain r ⊆ poset r

•

Preorder

Intent

A preorder is a relation that is reflexive and transitive.

Preorders capture the commonality between the two extremes of equivalence rela-
tions and orders: if a preorder is also symmetric, it is an equivalence relation (§24);
if it is also antisymmetric, it is a (reflexive partial) order (§26).

Definition

generic (preorder )

preorderX == reflexiveX ∩ transitiveX

Examples

X

•

• •

••

•

Figure 26.2 An example of a preorder.

1. {x 7→ y , y 7→ z , x 7→ z , x 7→ x , y 7→ y , z 7→ z} ∈ preorder{x , y , z}
2. {x 7→ y , y 7→ x , x 7→ x , y 7→ y} ∈ preorder{x , y}
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3. idX ∈ preorderX

4. The relations suffix and infix are each preorders on streams and sequences
(§36).

5. The refinement relation on implementations is a preorder. It is neither
symmetric nor antisymmetric, for it is possible that both a refines b and
b refines a where a 6= b. For example, the Phoenix and Apollo booking
offices in [Woodcock & Davies 1996, §17.3] are mutual refinements, but are
not equal.

Laws

Law 26.13 Preorder closure: the reflexive transitive closure of a relation is a
preorder.

[X ] r : X ↔ X ` r ∗ ∈ preorderX

•

A spectrum of orders

Intent

We have introduced a large number of sets of homogenous relations. We now clarify
some of their interrelationships.

Opposites

Some of these relations are effectively opposites to each other, summed up in the
laws:

[X ] | X 6= ∅ ` reflexiveX ∩ irreflexiveX = ∅
[X ] ` symmetricX ∩ antisymmetricX = P idX

[X ] ` transitiveX ∩ intransitiveX = { r : X ↔ X | dom r ∩ ran r = ∅ }
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Spectrum

We identify a “spectrum” of subsets of homogenous relations over X , all of which,
assuming X 6= ∅, are non-empty and distinct, and give derived properties in the
form of theorems. (The word “without” is used to draw attention to the fact that
a certain condition has not been asserted, and also to imply that the set concerned
is non-empty and non-trivial if the condition is denied.)

1. r : forestX ` r ∈ intransitiveX ∩acyclicX ∩antisymmetricX ∩ irreflexiveX

2. r : intransitiveX ` r ∈ acyclicX ∩ antisymmetricX ∩ irreflexiveX
(without r ∈ X 7→ X )

3. r : acyclicX ` r ∈ antisymmetricX ∩ irreflexiveX
(without r ∈ transitiveX or r ∈ intransitiveX )

4. r : transitiveX ∩ irreflexiveX ` r ∈ acyclicX ∩ antisymmetricX ∩ orderX

5. r : transitiveX ∩ antisymmetricX ` r ∈ orderX
(without r ∈ reflexiveX or r ∈ irreflexiveX )

6. r : transitiveX ∩ antisymmetricX ∩ reflexiveX ` r ∈ preorderX ∩ orderX

7. r : transitiveX ∩ reflexiveX ` r ∈ preorderX
(without r ∈ symmetricX or r ∈ antisymmetricX )

8. r : transitiveX ∩ symmetricX ` r ∈ reflexiveX ∩preorderX ∩equivalenceX

Laws

Law 26.14 A preorder partitions its vertices into classes that are ordered under
the original relation.

[L,X ] r : preorderX `
∃ f : L 7→ P X •

f partitionX
∧ r ∩ r∼ =

⋃{ a : ran f • a2× }
∧ ( ∃ ro : reflexiveOrder(ran f ) • ro = { a, b : ran f | a × b ⊆ r } )

There are two special cases of this law.

• r ∈ symmetricX ⇒ ro = id(ran f ), the vacuous reflexive ‘order’. r is an
equivalence relation.

• r ∈ antisymmetricX ⇒ ro = { p : r • {p.1} 7→ {p.2} }, each element in the
order ro is a singleton. r is an order.
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Thus we see that, starting from any homogeneous relation r , we can form a pre-
order, and then partition the preorder into ordered sets.

• If r is strongly connected, r ∗ is the complete relation, the induced preorder
partition is a single set, and the induced order is the identity pair on that
single set.

• If r is acyclic, or an order, the induced preorder partition is a collection of
singleton sets, and the induced order is the original order mapped over these
singletons.

• Between these two extremes, this technique can be used to extract whatever
order there is in a given relation.

Law 26.15 An alternative treatment to the above, briefer but perhaps less ex-
plicit, is given by

[X ] r : transitive ` ∃ io : irreflexiveOrderX • io = r \ (r ∩ r∼)

In this case if r is strongly connected, the resultant order is the empty set, which
is still a valid irreflexive order; it is the partial order which permits everything.

•

Minimum and maximum

Intent

The minimum (maximum) element of a set with respect to a relation is defined as
that unique member of the set, if any, that precedes (follows) all members of the
set in the ordering implied by the relation.

The requirement that the minimum (maximum), if any, should be unique is guar-
anteed if the relation is antisymmetric (law 19.21) and many of the expected prop-
erties of minima and maxima as given in the laws below are predicated on that
condition. Further properties depend on the relation’s being an order, or a total
order.

The straightforward formal definition implies that a minimum (maximum) cannot
exist unless the relation is reflexive at least on the element concerned. In any
practical application where a minimum (maximum) is required and reflexivity is
in doubt, the reflexive closure of the first argument should therefore be used. (The
alternative approach, of widening the definition to allow the reflexive case, was
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rejected on the grounds that it would complicate the algebra and clutter the proofs
to little or no advantage.)

Definition

minimum and maximum:

minimum[X ] ==
λ r : X ↔ X • { a : P X ; x : X | {x} = a ∩ lowerBound r a }

maximum[X ] ==
λ r : X ↔ X • { a : P X ; x : X | {x} = a ∩ upperBound r a }

Examples

1. minimum( ⊆ ){a, b, a ∩ b, a ∪ b} = a ∩ b

2. minimum( ⊆ ){∅, a, b, a ∩ b, a ∪ b} = ∅
3. minimum( ≤ ){1, 2, 3} = 1

4. minimum( ≥ ){1, 2, 3} = 3

5. maximum( ⊆ ){a, b, a ∩ b, a ∪ b} = a ∪ b

6. maximum( ≤ ){1, 2, 3} = 3

7. maximum( ≥ ){1, 2, 3} = 1

Laws

Law 26.16 Laws about maximum are ‘duals’ of laws about minimum.

[X ] a : P X ; r : X ↔ X ` maximum(r∼)a = minimum r a

Law 26.17 minimum is a total function of its relation argument. The resulting
function is a partial function of its set argument: not all sets have a minimum
element under a relation.

[X ] ` minimum[X ] ∈ (X ↔ X ) → P X 7→ X

[X ] ` maximum[X ] ∈ (X ↔ X ) → P X 7→ X

Law 26.18 Minimum is insensitive to relational restriction outside its set argu-
ment. That is, if any one of minimum r a, or minimum(aCr)a or minimum(rBa)a
is defined, they all are, and their values are equal.
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[X ] r : X ↔ X ; a : P X `
a C (minimum r) = a C (minimum(a C r)) = a C (minimum(r B a))

Law 26.19 An equivalent definition of minimum, not explicitly using lowerBound ,
is

[X ] ` minimum[X ] = λ r : X ↔ X •
{ a : P X ; x : X | {x} = { x : a | ∀ y : a • x 7→ y ∈ r } }

[X ] ` maximum[X ] = λ r : X ↔ X •
{ a : P X ; x : X | {x} = { y : a | ∀ x : a • x 7→ y ∈ r } }

Law 26.20 An equivalent definition of minimum for antisymmetric relations is

[X ] r : antisymmetricX `
minimum r = { a : P X ; x : X | x ∈ a ⊆ successors r x }

[X ] r : antisymmetricX `
maximum r = { a : P X ; x : X | x ∈ a ⊆ predecessors r x }

Law 26.21 An alternative and more explicit definition of minimum for antisym-
metric relations is

[X ] r : antisymmetricX `
minimum r = { a : P X ; x : X | x ∈ a ∧ ( ∀ y : a • x 7→ y ∈ r ) }

[X ] r : antisymmetricX `
maximum r = { a : P X ; x : X | x ∈ a ∧ ( ∀ y : a • y 7→ x ∈ r ) }

Law 26.22 The minimum of a singleton set under a reflexive relation is that
element.

[X ] x : X ; r : reflexiveX ` minimum r{x} = x

Law 26.23 If a set and its subset both have a minimum, then the minimum of
the set precedes the minimum of the subset.

[X ] a, b : P X ; r : X ↔ X | {a, b} ⊆ dom(minimum r) ∧ b ⊆ a `
minimum r a 7→ minimum r b ∈ r

Law 26.24 If every set in a finite collection has a minimum under a total order,
then so does their union, and it is the minimum of the individual minima.



283

[X ] α : F(P X ); l : totalOrderX |
( ∀ a : α • a ∈ dom(minimum( l )) ) `

(
⋃

α 7→ minimum( l )(| α |)) ∈ minimum( l )

This law does not necessarily hold for an infinite collection of sets. For example,
a singleton set containing an integer has a minimum under the total order ≤ .
The union of any finite set of these singletons has a minimum, but the union of all
such sets is Z, which has no minimum.

•

Greatest lower bound, least upper bound

Intent

The greatest lower (least upper) bound of a set with respect to a relation is the
maximum of the lower bounds (minimum of the upper bounds).

Definition

greatest lower and least upper bounds:

glb[X ] == λ r : X ↔ X • (maximum r) ◦ (lowerBound r)

lub[X ] == λ r : X ↔ X • (minimum r) ◦ (upperBound r)

Examples

1. The bounds for the subset order are generalised intersection and union

[X ] a : P X ` glb( ⊆ )[a] =
⋂

[a]

[X ] a : P X ` lub( ⊆ )[a] =
⋃

[a]

2. The greatest lower bound of the numerical order on natural numbers is the
min function: glb(( ≤ ) ∩ N2×) ⊆ min. min is total on all non-empty
subsets of N.

3. The least upper bound of the numerical order on natural numbers is the max
function: lub(( ≤ ) ∩ N2×) ⊆ max. max is total only on finite non-empty
subsets of N.
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4. The greatest lower (least upper) bound need not be a member of the set

glb(( ≤ ) ∩ (R ∩ R)){ x : R | 0 < x } = 0

lub( ⊆ ){{a}, {b}} = {a, b}

5. The greatest lower bound of the prefix order on sequences is ‘longest common
prefix’, which is total on all non-empty sets of sequences.

Laws

Law 26.25 Laws about lub are duals of laws about glb.

[X ] a : P X ; r : X ↔ X ` lub(r∼)a = glb r a

Law 26.26 glb is a total function.

[X ] ` glb[X ] ∈ (X ↔ X ) → P X 7→ X

[X ] ` lub[X ] ∈ (X ↔ X ) → P X 7→ X

Law 26.27 If an antisymmetric set has a minimum, that minimum is also the
greatest lower bound.

[X ] r : antisymmetricX ` minimum r ⊆ glb r

Law 26.28 If a set has a greatest lower bound, all other lower bounds precede it.
(This follows immediately from the definitions.)

[X ] r : X ↔ X ; x : X ; a : P1 X | a ∈ dom(glb r) ∧ x ∈ lowerBound r a `
x 7→ glb r a ∈ r

Law 26.29 If a set has a greatest lower bound with respect to an order, any value
that precedes it is also a lower bound.

[X ] r : orderX ; x : X ; a : P1 X | a ∈ dom(glb r) ∧ x 7→ glb ra ∈ r `
x ∈ lowerBound r a

•
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Well order

Intent

A well ordering is a reflexive order where every non-empty subset of the elements
has a minimum with respect to the order. It has a ‘first element’ for the order.

Definition

well orders:

generic (wellOrder )

wellOrderX == { rto : reflexiveOrderX | dom(minimum rto) = P1 X }

Examples

1. The natural numbers under ≤ form a well order

` ( ≤ ) ∩ N2× ∈ wellOrder N

2. 1 ≺ 3 ≺ 5 ≺ 7 ≺ . . . ≺ 0 ≺ 2 ≺ 4 ≺ 6 ≺ . . . is also a well order on N.

3. ( ≤ ) restricted to the integers, Z2× , is not a well order, because there is no
minimum element. For a similar reason, the relation ( ≥ ) on the naturals
is not a well order.

4. 0 ≺ 1 ≺ -1 ≺ 2 ≺ -2 ≺ 3 ≺ -3 ≺ . . . is a well order on Z.

5. ( ≤ ) restricted to non-negative reals, R2×
+ , is not a well order, because not

every subset has a minimum (consider the subset of positive reals, R+).

Laws

Law 26.30 Well orders are total orders.

[X ] ` wellOrderX ⊆ reflexiveTotalOrderX

Law 26.31 Any finite reflexive total order is a well order.

[X ] r : (X 7 7↔ X ) ∩ reflexiveTotalOrderX ` r ∈ wellOrderX
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Law 26.32 Well-ordering principle: any set can be well ordered. (Such a well
order might not be the “usual” order.)

[X ] ` ∃wo : wellOrderX • true

The well-ordering principle is equivalent to the axiom of choice. See, for example
[Halmos 1960, chapter 17], [Suppes 1972, chapter 8], [Enderton 1977, chapter 7].

Law 26.33 A well ordering implies an induction principle.

[X ] wo : wellOrderX ; a, b; P X |
( ∀ x : a | predecessorswo x \ {x} ⊆ b • x ∈ b ) `

a ⊆ b

This form of induction is sometimes know as “transfinite induction”, because it
can be applied to well orderings that are not enumerable (§35). In practice it is
often usefully applied to orderings that are in fact enumerable.

•

Well founded chain

Intent

A well founded chain is a well ordered set with respect to a relation.

Definition

well founded chains:

wellFoundedChain[X ] ==
λ r : X ↔ X • { a : P X | r ∩ a2× ∈ wellOrder a }

non-empty well founded chains:

wellFoundedChain1[X ] == λ r : X ↔ X • wellFoundedChain r \ {∅}

If we want to refer to some set a that is well ordered by some relation r , we declare
it as a : wellFoundedChain r . The full relation r may or may not be a well order
itself.
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Laws

Law 26.34 wellFoundedChain is a total function.

[X ] ` wellFoundedChain[X ] ∈ (X ↔ X ) → P P X

[X ] ` wellFoundedChain1[X ] ∈ (X ↔ X ) → P P1 X

Law 26.35 If r is a well order, any subset of X is a well founded chain.

[X ] r : wellOrderX ` wellFoundedChain r = P X

•

Graph-preserving maps

Intent

We defined two kinds of morphisms in §21: mappings that maintain the structure
of functions. Now we define further kinds of structure maintaining maps: ones
that maintain a relation.

If we have relations on two sets, and a function that maps elements of one set to
the other, then it is graph-preserving if elements from the first set that are in its
relation remain related when transformed.

Definition

graph-preserving maps:

GraphPreservingMap [X ,Y ]
rx : X ↔ X
ry : Y ↔ Y
f : X 7→ Y

∀ x , y : dom f | x 7→ y ∈ rx • f x 7→ f y ∈ ry

GraphPreservingInjection [X ,Y ]
GraphPreservingMap[X ,Y ]

f ∈ X 7� Y
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Graph-preserving maps are of interest, because they allow us to ‘lift’ some relation
on a pair of elements to some relation on the image of those elements under the
map. See the examples below. There are three distinct cases:

1. X = Y and rx = ry : the same relation over the same type.

2. X 6= Y and rx = ry : the same generic relation over different types. For
example, subset order on sets P X , lifted to subset order on sets of sets P P X .

3. rx 6= ry : two different relations (over the same or different types).

Examples

•

• z

•
•

•

y

x

u

w

•
•

•
•

f y ,  f z

f w ,  f x

f u

•
•f

Figure 26.3 Network diagram example of a graph-preserving map on an order

1. Cartesian product is subset-preserving on both arguments.

2. Set difference is subset-preserving on its first argument.

3. Domain and range are subset-preserving.

4. Transitive closure is subset-preserving.

5. Addition is numerical order-preserving on both arguments.

6. Subtraction is numerical order-preserving on its first argument.

7. Sequence concatenation is prefix order-preserving on its second argument.

8. Sequence concatenation is suffix order-preserving on its first argument.

Laws

� Law 26.36 A graph-preserving map applied to the glb and lub of a set gives
wider bounds than the glb and lub of the image of the set through the map, where
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all such bounds exist.

[X ,Y ] a : P X ; GraphPreservingMap[X ,Y ] |
a ∈ dom(glb rx )
∧ f (| a |) ∈ dom(glb ry)
∧ glb rx a ∈ dom f `

f (glb rx a) 7→ glb ry(f (| a |)) ∈ ry

[X ,Y ] a : P X ; GraphPreservingMap[X ,Y ] |
a ∈ dom(lub rx )
∧ f (| a |) ∈ dom(lub ry)
∧ lub rx a ∈ dom f `

lub ry(f (| a |)) 7→ f (lub rx a) ∈ ry

One common specialisation is when both relations rx and ry are the subset relation,
and hence the bounds are union and intersection.

[X ,Y ] α : P X ; f : P X 7→ P Y |⋂
α ∈ dom f

∧ ( ∀ a, b : dom f | a ⊆ b • f a ⊆ f b ) `
f (
⋂

α) ⊆ ⋂
(f (| α |))

[X ,Y ] α : P X ; f : P X 7→ P Y |⋃
α ∈ dom f

∧ ( ∀ a, b : dom f | a ⊆ b • f a ⊆ f b ) `⋃
(f (| α |)) ⊆ f (

⋃
α)

� Law 26.37 Any function that distributes through least upper bound or greatest
lower bound is graph-preserving.

[X ,Y ] rx : reflexiveX ; ry : reflexiveY ; f : X 7→ Y |
∀ a : P X | a ∈ dom(lub rx ) ∧ f (| a |) ∈ dom(lub ry) ∧ lub rx a ∈ dom f •

f (lub rx a) = lub ry(f (| a |)) `
GraphPreservingMap[X ,Y ]

[X ,Y ] rx : reflexiveX ; ry : reflexiveY ; f : X 7→ Y |
∀ a : P X | a ∈ dom(glb rx ) ∧ f (| a |) ∈ dom(glb ry) ∧ glb rx a ∈ dom f •

f (glb rx a) = glb ry(f (| a |)) `
GraphPreservingMap[X ,Y ]
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One common specialisation is when both relations rx and ry are the subset relation,
and hence the bounds are union and intersection.

[X ,Y ] f : P X 7→ P Y | ∀α : P P X | ⋃α ∈ dom f • f (
⋃

α) =
⋃

(f (| α |)) `
∀ a, b : dom f | a ⊆ b • f a ⊆ f b

[X ,Y ] f : P X 7→ P Y | ∀α : P P X | ⋂α ∈ dom f • f (
⋂

α) =
⋂

(f (| α |)) `
∀ a, b : dom f | a ⊆ b • f a ⊆ f b

This law shows that the existence of a distributive law is a stronger property than
order preservation. (In practice, a stronger law may hold, where the implication
holds both ways: a ⊆ b ⇔ f a ⊆ f b.)

•

Graph-reversing maps

Intent

If we have relations on two sets, and a function that maps elements of one set to
the other, then it is graph-reversing if elements from the first set that are in its
relation are related oppositely when transformed.

Definition

graph-reversing maps:

GraphReversingMap [X ,Y ]
rx : X ↔ X
ry : Y ↔ Y
f : X 7→ Y

∀ x , y : dom f | x 7→ y ∈ rx • f y 7→ f x ∈ ry

GraphReversingInjection [X ,Y ]
GraphReversingMap[X ,Y ]

f ∈ X 7� Y
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Examples

1. Generalised intersection is subset-reversing.

2. Set difference is subset-reversing on its second argument.

3. Subtraction is numerical order-reversing on its second argument.

4. min and max are numerical order-reversing.

Laws

Law 26.38 A graph-reversing map on rx and ry can be transformed into a graph-
preserving map on rx and ry

∼.

[X ,Y ] GraphReversingMap[X ,Y ] `
GraphPreservingMap[X ,Y ] 1 • f = f1 ∧ rx = rx 1 ∧ ry = ry1

∼

However, we define the separate case, to help expose the pseudo-distributive prop-
erties when the relations are the same.

Law 26.39 A graph-reversing map applied to the glb and lub of a set gives wider
bounds than the lub and glb of the image of the set through the map, where all
such bounds exist.

[X ,Y ] a : P X ; GraphReversingMap[X ,Y ] |
a ∈ dom(lub rx )
∧ f (| a |) ∈ dom(glb ry)
∧ lub rx a ∈ dom f `

f (lub rx a) 7→ glb ry(f (| a |)) ∈ ry

[X ,Y ] a : P X ; GraphReversingMap[X ,Y ] |
a ∈ dom(glb rx )
∧ f (| a |) ∈ dom(lub ry)
∧ glb rx a ∈ dom f `

lub ry(f (| a |)) 7→ f (glb rx a) ∈ ry

One common specialisation is when both relations rx and ry are the subset relation,
and hence the bounds are union and intersection.

[X ,Y ] α : P X ; f : P X 7→ P Y |⋃
α ∈ dom f

∧ ( ∀ a, b : dom f | a ⊆ b • f b ⊆ f a ) `
f (
⋃

α) ⊆ ⋂
(f (| α |))
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[X ,Y ] α : P X ; f : P X 7→ P Y |⋂
α ∈ dom f

∧ ( ∀ a, b : dom f | a ⊆ b • f b ⊆ f a ) `⋃
(f (| α |)) ⊆ f (

⋂
α)

Law 26.40 Any function that pseudo-distributes through bounds is order-revers-
ing.

[X ,Y ] rx : reflexiveX ; ry : reflexiveY ; f : X 7→ Y |
∀ a : P X | a ∈ dom(lub rx ) ∧ f (| a |) ∈ dom(glb ry) ∧ lub rx a ∈ dom f •

f (lub rx a) = glb ry(f (| a |)) `
GraphReversingMap[X ,Y ]

[X ,Y ] rx : reflexiveX ; ry : reflexiveY ; f : X 7→ Y |
∀ a : P X | a ∈ dom(glb rx ) ∧ f (| a |) ∈ dom(lub ry) ∧ glb rx a ∈ dom f •

• f (glb rx a) = lub ry(f (| a |)) `
GraphReversingMap[X ,Y ]

One common specialisation is when both relations rx and ry are the subset relation,
and hence the bounds are union and intersection.

[X ,Y ] f : P X 7→ P Y | ∀α : P P X | ⋃α ∈ dom f • f (
⋃

α) =
⋂

(f (| α |)) `
∀ a, b : dom f | a ⊆ b • f b ⊆ f a

[X ,Y ] f : P X 7→ P Y | ∀α : P P X | ⋂α ∈ dom f • f (
⋂

α) =
⋃

(f (| α |)) `
∀ a, b : dom f | a ⊆ b • f b ⊆ f a

This law shows that the existence of a pseudo-distributive law is a stronger property
than order reversal. (In practice, a stronger law may hold, where the implication
holds both ways: a ⊆ b ⇔ f b ⊆ f a.)

•



Chapter 27

Sorting

Sort

Intent

A specification of sorting items can be undertaken by using orders, and enables
us to see the underlying structure clearly. Because we have abstracted out the
concept of an order, we can clearly see that

• we do not need to use numbers to define the resulting order after sorting; any
ordered set will do

• we do not need to have a total order defined on the items to be sorted; a
partial order will do

The operation of methodically sorting records into order is probably at least as
old as writing. For example, in a dictionary or other word-list the entries are
usually sorted into alphabetical order; in recording events that have occurred or
are planned to occur it is often best to sort in order of time; in modern recording
systems it is common to have some kind of reference number and to display records
in that numeric order.

Overview

The operation of sorting starts with the input, which is some labelled set of records.
We want to sort the records into some order; the labelling serves to allow the same
record to occur more than once. If the input is presented as a sequence, the
labelling set is N1, but in general any labelling set will do.

We refer to the record type as [X ] and the input labelling set as [I ]. We declare
the input as

in : I 7→ X

293
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If the input is instead declared as an unlabelled set, we can easily assimilate it to
our model by making it self-labelling. To do that we equate I with X , and if we
have a set

inSet : P X

we say

in = id inSet

To sort, there must be an order on X into which the records are to be sorted. In
data processing contexts this is often controlled by some numeric or alphabetic
comparison on one or several key fields that form part of the record. We might
on the other hand be sorting an acyclic graph where the directed links are given
explicitly; this is sometimes referred to as a topological sort.

There are no grounds for requiring or expecting the order to be total (although some
published formal treatments of this subject have made that assumption). Some
distinct pairs of values of X may not appear either way round in the order; these
are incomparable pairs. In performing our sort, however, we wish to treat such
incomparable pairs on the same footing as pairs where two distinct labels identify
the same value of X ; that is, to require pairs like (x , x ) also to be incomparable.
So we want the order to be irreflexive.

xOrder : irreflexiveOrderX

In practice both X and xOrder may well be quite complicated in structure, but we
have abstracted away from that complexity.

If a sorting order rawOrd is given that is not irreflexive, it is straightforward to
define a corresponding order that is, by taking the irreflexive residue:

xOrder = rawOrd \ idX

The purpose of the sort is to define an output ordering of the records. This means
putting them in a total order. So with output index [J ] we declare

jOrder : irreflexiveTotalOrder J
out : J 7→ X

Quite often J is N1, jOrder is < , and dom out is 1 . . n for some n. However, J
need not be numeric.
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To define our sort we need to stipulate that the output records are the same as the
input records. We do this by declaring a permutation of the indices

perm : J 7� I

that is a bijection on the domains

perm ∈ dom out �→ dom in

and governs the relationship between the output and the input

out = perm o
9 in

We constrain the output to be in the desired order

∀ p, q : out | p.2 7→ q .2 ∈ xOrder • p.1 7→ q .1 ∈ jOrder

Definition

The complete definition of the sorting process is:

Sort [I , J ,X ]
in : I 7→ X
xOrder : irreflexiveOrderX
jOrder : irreflexiveTotalOrder J
out : J 7→ X
perm : J 7� I

perm ∈ dom out �→ dom in

out = perm o
9 in

∀ p, q : out | p.2 7→ q .2 ∈ xOrder • p.1 7→ q .1 ∈ jOrder

Since xOrder need not be total in general, there may be pairs of input X values
that are incomparable, and the above specification allows them to be output in
either order. Hence the process specified by Sort is nondeterministic, and many
different outputs may be permitted.

Stable sorting, an option often offered by commercial sorting packages, has the
additional constraint that incomparable records are placed in the output in the



296 Chapter 27. Sorting

same order as they were in the input. To describe this we need to recognise the
order of the input index.

StableSort [I , J ,X ]
Sort[I , J ,X ]
iOrder : irreflexiveTotalOrder I

∀ p, q : out | p.2 7→ q .2 6∈ symmetricClosure xOrder •
p.1 7→ q .1 ∈ jOrder ⇔ perm p.1 7→ perm q .1 ∈ iOrder

Stable sorting is deterministic.

•



Chapter 28

Two binary operators

We define structures that have two binary operators over a set.

• rings

• integral domains

• fields

• ordered integral domains

• ordered fields

• complete fields

The main motivation is to give sufficient machinery to define numbers, §29. How-
ever, these standard mathematical constructs can find a wider use.

Ring

Intent

A ring has two binary operators, one called +̇ forming an additive Abelian group
(hence with an additive identity element, ‘zero’, and an additive inverse, ‘nega-
tion’), and one called ∗̇ forming a multiplicative semigroup. The operators are
linked by the distributive property on both sides.

Continuing the numerical analogy, we write the additive inverse, negation, to re-
semble unary minus, and make it right associative, so that -̇ -̇ x = -̇(-̇ x ), as ex-
pected. (Without an operator template definition, we would instead have the
usual left-associative function application -̇ -̇ x = (-̇ -̇)x .)

Definition

297
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function 30 leftassoc ( +̇ )

function 40 leftassoc ( ∗̇ )

function (-̇ )

Ring [X ]
AbelianGroup[X ][ +̇ / � ,O/e, -̇ /inv ]
SemiGroup[X ][ ∗̇ / � ]

∀ x , y , z : g •
x ∗̇(y +̇ z ) = (x ∗̇ y) +̇(x ∗̇ z )
∧ (y +̇ z ) ∗̇ x = (y ∗̇ x ) +̇(z ∗̇ x )

Examples

1. The terms ‘additive’ and ‘multiplicative’ are used for the ring operators be-
cause this is what they correpond to in the ring of integers. But not all rings
are numerical. A Boolean ring has x ∗̇ x = x and x +̇ x = O .

BooleanRing [X ] == [ Ring[X ] | ∀ x : g • x ∗̇ x = x ∧ x +̇ x = O ]

2. Symmetric set difference (as the additive operator) and intersection (as the
multiplicative operator) form a Boolean ring over sets. The additive identity
is the empty set; the additive inverse is the identity relation.

[X ] `
∃BooleanRing [P X ] •

g = P X ∧ ( +̇ ) = ( 	 ) ∧ O = ∅
∧ (-̇ ) = id(P X ) ∧ ( ∗̇ ) = ( ∩ )

3. If R is a ring, then the set of n2× matrices over R, under the usual matrix
addition and multiplication, is also a ring.

4. If R is a ring, then the set of polynomials with coefficients drawn from R,
under polynomial addition and multiplication, is also a ring.
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Laws

� Law 28.1 The additive identity element acts as a zero for multiplication.

[X ] Ring[X ]; x : X | x ∈ g ` x ∗̇O = O = O ∗̇ x

� Law 28.2 The additive inverse distributes through multiplication.

[X ] Ring[X ]; x , y : X | {x , y} ⊆ g ` x ∗̇ -̇ y = -̇(x ∗̇ y) = -̇ x ∗̇ y

� Law 28.3 Addition of additive inverse behaves like a binary subtraction opera-
tor.

function 30 leftassoc ( −̇ )

[X ] Ring[X ]; x , y , z : X ; −̇ : X 2× 7→ X |
{x , y , z} ⊆ g
∧ g2× C ( −̇ ) ∈ g2× → g
∧ ( ∀ x , y : g • x −̇ y = x +̇ -̇ y ) `

x ∗̇(y −̇ z ) = x ∗̇ y −̇ x ∗̇ z
∧ (x −̇ y) ∗̇ z = x ∗̇ z −̇ y ∗̇ z

The above three laws provide further justification for the choice of the ‘arithmetical’
names of the two ring operators.

� Law 28.4 If every element x in a ring obeys x ∗̇ x = x , then it is a Boolean ring.

[X ] Ring[X ] | ∀ x : g | x ∗̇ x = x ` BooleanRing [X ]

•
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Integral domain

Intent

An integral domain is a ring where the multiplicative operator forms an abelian
monoid (hence with a multiplicative identity element, ‘unity’), and there are no
non-zero factorisations of zero (that is, if two elements multiply to zero, at least
one of them is zero).

Definition

IntegralDomain [X ]
Ring[X ]
AbelianMonoid[X ][ ∗̇ / � , I /e]

O 6= I

∀ x , y : g • x ∗̇ y = O ⇔ x = O ∨ y = O

Examples

1. The integers under addition and multiplication modulo n form a (finite) in-
tegral domain.

[X ] n : N `
∃ IntegralDomain[A] •

g = 0 . . n − 1 ∧ ( +̇ ) = ( + ) mod n ∧ O = 0
∧ (-̇ ) = ( λm : g • -m mod n ) ∧ ( ∗̇ ) = ( ∗ ) mod n ∧ I = 1

2. The integers under addition and multiplication form an (infinite) integral
domain.

` ∃ IntegralDomain[A] •
g = N ∧ ( +̇ ) = ( + ) ∧ O = 0
∧ (-̇ ) = (- ) ∧ ( ∗̇ ) = ( ∗ ) ∧ I = 1

•
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Field

Intent

A field is an integral domain where the non-zero elements form a group under the
multiplicative operator (hence with a multiplicative inverse operation, ‘reciprocal’,
on the non-zero elements).

Definition

function ( ˙ 1)

Field [X ]
IntegralDomain[X ]
AbelianGroup[X ][g0/g , ∗̇ / � , I /e, ˙ 1/inv ]

g0 = g \ {O}

Examples

1. The integers under addition and multiplication modulo p, where p is prime,
form a (finite) field.

p : prime `
∃Field[A] •

g = 0 . . p − 1 ∧ ( +̇ ) = ( + ) mod p ∧ O = 0
∧ ( ∗̇ ) = ( ∗ ) mod p ∧ I = 1

Laws

Law 28.5 The size of a finite field is a power of a prime. (See, for example,
[Stewart 1973, §17].)

[X ] Field[X ] | finite g ` ∃ n : N1; p : prime • #g = p ∗∗ n

Law 28.6 Two finite fields of the same size are isomorphic.
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[X ,Y ] Field[X ]; Field[Y ]′ | finite g ∧ finite g ′ ∧ #g = #g ′ `
∃ Isomorphism[X ,Y ] • a = g ∧ b = g ′

Hence any finite field with a prime size p is isomorphic to the integers modulo p.

•

Ordered domain

Intent

An ordered integral domain is an integral domain with a total order defined on its
elements.

Definition

OrderedIntegralDomain [X ]
IntegralDomain[X ]
≺ : X ↔ X
4 : X ↔ X

g C ( ≺ ) B g ∈ irreflexiveTotalOrder g

g C ( 4 ) B g ∈ reflexiveTotalOrder g

g C ( 4 ) B g = (g C ( ≺ ) B g) ∪ id g

O ≺ I

∀ x , y , z : g | O ≺ z • x ≺ y ⇔ x +̇ z ≺ y +̇ z

∀ x , y , z : g | O ≺ z • x ≺ y ⇔ x ∗̇ z ≺ y ∗̇ z

Examples

1. The integers under addition and multiplication form an ordered integral do-
main

` ∃OrderedIntegralDomain[A] •
g = N ∧ ( +̇ ) = ( + ) ∧ O = 0 ∧ (-̇ ) = (- )
∧ ( ∗̇ ) = ( ∗ ) ∧ I = 1
∧ ( ≺ ) = ( < )
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Laws

� Law 28.7 A non-zero element and its additive inverse fall on either side of zero.

[X ] OrderedIntegralDomain[X ]; x : X | O 6= x ∈ g ` O ≺ x ⇔ -̇ x ≺ O

� Law 28.8 A plain integral domain may be finite or infinite. Imposing a total
order on its elements and requiring that addition of unity, for example, creates
a greater element implies that an ordered integral domain must necessarily be
infinite.

The elements of an ordered integral domain are unbounded above and below.

[X ] OrderedIntegralDomain[X ] ` ¬ finite g

[X ] OrderedIntegralDomain[X ]; x : X | x ∈ g ` ∃ y , y ′ : g • y ≺ x ≺ y ′

•

Ordered field

Intent

An ordered field is a field with a total order.

Definition

OrderedField[X ] == Field[X ] ∧ OrderedIntegralDomain[X ]

Examples

1. The rationals under addition and multiplication form an ordered field.

` ∃OrderedField[A] •
g = Q
∧ ( +̇ ) = ( + ) ∧ O = 0 ∧ (-̇ ) = (- )
∧ ( ∗̇ ) = ( ∗ ) ∧ I = 1 ∧ ( ˙ 1) = ( 1)
∧ ( ≺ ) = ( < )
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Laws

� Law 28.9 An element and its multiplicative inverse are either both greater than
zero, or both less than zero.

[X ] OrderedField[X ]; x : X | O 6= x ∈ g ` O ≺ x ⇔ O ≺ x ˙ 1

� Law 28.10 As with integral domains, the inclusion of the total ordering means
that, whereas fields may be finite, ordered fields are necessarily infinite. (A finite
field is also called a Galois field, commemorating the contribution to group theory
made by the French mathematician Evariste Galois, 1811–1832.)

The elements of an ordered field are unbounded above and below.

The elements of an ordered field are dense; between any two distinct elements there
is always another.

[X ] OrderedField[X ] ` ¬ finite g

[X ] OrderedField[X ]; x : X | x ∈ g ` ∃ y , y ′ : g • y ≺ x ≺ y ′

[X ] OrderedField[X ]; y , y ′ : X | {y , y ′} ⊆ g ∧ y ≺ y ′ ` ∃ x : g • y ≺ x ≺ y ′

•

Complete field

Intent

A complete field is an ordered field that contains its least upper bounds.

Definition

CompleteField [X ]
OrderedField[X ]

∀ a : P1 g | upperBound(( 4 ) B g)a 6= ∅ •
a ∈ dom(lub(( 4 ) B g))
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Examples

1. The reals under addition and multiplication form a complete field.

` ∃CompleteField[A] •
g = R
∧ ( +̇ ) = ( + ) ∧ O = 0 ∧ (-̇ ) = (- )
∧ ( ∗̇ ) = ( ∗ ) ∧ I = 1 ∧ ( ˙ 1) = ( 1)
∧ ( ≺ ) = ( < )

The definition of CompleteField allows us to characterise the real numbers
(§29). The rational numbers are a dense set, by virtue of being an ordered
field. The ordering is not complete, however: there can be a number that
we want to express that is between the rationals, but does not correspond to
any one of them (for example, the square root of 2).

` ∃ a : P Q | a ∈ dom(lub(( < ) B Q)) • lub( < )a 6∈ Q

The ordering of the real numbers has this property of completeness, which
is defined by the guaranteed existence of the least upper bound for any non-
empty bounded set. (We could equivalently work with the greatest lower
bound.)

•



306 Chapter 28. Two binary operators



Part V

Numbers





Chapter 29

Axiomatic Properties of Numbers

Integers are widely used in Z specifications. Often quantities are declared to have
integer type merely so their elements can be ordered or otherwise structured. The
previous chapters have built up many structures on relations that can be used
instead of resorting to a numeric type.

Being restricted to integers can sometimes be a limitation, however. Some problems
are most naturally specified using real numbers. Clearly, if such a specification is
later to be implemented, some numerical analysis will be needed. However, it is
better to do that at a later refinement stage than build it into the specification.

In this chapter we provide support for the real numbers. We do this in an extensible
manner, by considering the reals as embedded in some wider numeric set of the
same type, not further constrained. An obvious such containing type, for example,
is the complex numbers, and enhancement to support complex numbers would be
straightforward; nothing is defined here that would need to be contradicted. Other
sets that might be catered for are: an interpretation of numbers that allows infinite
values; dimensioned numbers; intervals; vectors, quaternions, matrices, tensors;
and so on.

The development here is axiomatic. We give a collection of properties, with the
assumption that together they are satisfiable and that they characterise the real
numbers as recognised by the mathematical community. We draw heavily on the
properties built up in the chapter on groups, rings, and fields (§23).

• the numeric type arithmos: A
• less than: ( < ), ( ≤ )

• addition, multiplication: ( + ), ( ∗ )

• negation: (- )

• integer properties, integers: Z

309
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• negative, positive, non-negative, non-zero numbers: ( −), ( +), ( ⊕), ( ±)

• natural numbers: N
• reciprocal: ( 1)

• rational properties, rational numbers: Q
• real properties, real numbers: R
• subtraction, division: ( − ), ( ÷ )

• other comparison relations: ( ≥ ), ( > )

A construction of the real numbers from the bottom upwards, starting from Z free
types, is given in [Valentine 1993b], [Valentine 1993a]. That development treats
the reals as embedded in a set of intervals, whose properties could be added to the
treatment given here, if desired.

For a readable technical account of the historical development of the concept of
number, see [Ebbinghaus et al. 1991].

Concrete syntax for number literals

Intent

Provide a concrete syntax for writing number literals in Z.

Definitions

We affirm the Standard Z convention, which cannot be stated formally within the
mechanism of Z but is assumed to be a part of the concrete syntax of Z, that any
lexeme wholly composed of more than one occurrence of the digits 0, 1, 2, 3, 4, 5,
6, 7, 8, 9, which we write as sd where s is a digit string and d is a digit, has the
value given recursively by the rule

sd = (10 ∗ s) + d

It is possible to write simple expressions to represent rational numbers, for example
-3, 355÷ 113

Standard Z does not define reals, so it need define no concrete syntax for them. We
assume the traditional “decimal point” extension to the concrete syntax of number
literals.

•
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Standard Prelude

Intent

Define some elementary numerical properties required to support number literal
expressions.

Definitions

The Z Standard prelude defines these properties in its “Standard Prelude”. It
declares a numeric type A (pronounced ‘arithmos’), whose whole extent is deliber-
ately not described, to allow extensions to be added.

[A]

It declares the set of natural numbers, N, to be a subset of A

N : P A

It declares a template for the addition operator.

function 30 leftassoc ( + )

It declares addition over the entire set A, and constrains it to have the expected
properties when restricted to N.

We start from these minimal definitions and extend them to further arithmetic
operators, and larger subsets of A.

•

Basic numerical operators

Intent

We declare, but give no further properties yet, the basic numeric comparison rela-
tion and the arithmetic operators for multiplication and negation.
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Definitions

relation ( < )

relation ( ≤ )

function 40 leftassoc ( ∗ )

function (- )

The operator template for unary minus ensures that the expression --x means -(-x ),
as expected; if it were not defined using a templete it would mean (--)x , not what
is wanted.

< : A ↔ A
≤ : A ↔ A
∗ : A2× 7→ A

- : A 7→ A

•

Integers and natural numbers

Intent

The integers form an ordered integral domain, with ‘less than’ as the total order.
The additive identity element is zero; the multiplicative identity element is one.
The set Z of integers is the smallest set with the integer properties.

Definitions

IntegerProperties
OrderedIntegralDomain[A]

( +̇ ) = ( + )
O = 0
(-̇ ) = (- )
( ∗̇ ) = ( ∗ )
I = 1
( ≺ ) = ( < )
( 4 ) = ( ≤ )
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Z : P A

∃ IntegerProperties • Z = g

∀ IntegerProperties • Z ⊆ g

This definition ensures that the set Z that we are defining is ‘small enough’ to be
just the set of the integers; there are no spurious ‘junk’ elements present. Remem-
ber that the set g in an ordered integral domain is necessarily infinite, so this set
as defined is also ‘big enough’ to hold all the integers.

We define operators to yield just negative numbers, just positive numbers, just
non-negative numbers, and just non-zero numbers.

function ( −)

function ( +)

function ( ⊕)

function ( ±)

− , + , ⊕ , ± : P A → P A

∀ a : P A •
a− = { x : a | x < 0 }
∧ a+ = { x : a | 0 < x }
∧ a⊕ = {0} ∪ a+

∧ a± = a− ∪ a+

The non-zero natural numbers are conventionally called N1.

N1 == N+

Laws

Law 29.1 The natural numbers are the non-negative subset of the integers.

` N = Z⊕
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Law 29.2 The non-zero natural numbers are the positive natural numbers.

` N± = N+

The definitions allow us to deduce all the expected properties of N.

Law 29.3 The set of natural numbers has the induction property: any set of
numbers that includes zero and all its successors contains the natural numbers.

a : P A | 0 ∈ a ∧ ( ∀ n : a • n + 1 ∈ a ) ` N ⊆ a

Law 29.4 The set of natural numbers is unbounded above (there is always a
greater natural number) and bounded below by zero.

n : N ` ∃m : N • n < m

` ¬ ∃ n : N • n < 0

Law 29.5 The set of integers is unbounded above and below. The set of integers
is not dense.

i : Z ` ∃ j , k : Z • j < i < k

i : Z ` ¬ ∃ j : Z • i < j < i + 1

� Law 29.6 There is a bijection between the integers and natural numbers.

` ∃ f : N �→ Z • true

•

Rational numbers

Intent

The rationals form an ordered field, with integer properties. The set Q of rationals
is the smallest set with the rational properties.
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Definitions

function ( 1)

1 : A 7→ A

RationalProperties
OrderedField[A]
IntegerProperties

( ˙ 1) = ( 1)

Q : P A

∃RationalProperties • Q = g

∀RationalProperties • Q ⊆ g

Note that the set Q± corresponds to the set g0 in the OrderedField part of Rational-
Properties.

Laws

Law 29.7 The non-zero rationals form an abelian group under multiplication.

` ∃AbelianGroup[A] •
g = Q± ∧ ( � ) = ( ∗ ) ∧ e = 1 ∧ inv = ( 1)

Law 29.8 The rationals are dense: for any two distinct rationals, there is another
rational that lies between them.

p, p ′ : Q | p < p ′ ` ∃ q : Q • p < q < p ′

� Law 29.9 There is a bijection between the natural numbers and pairs of natu-
rals. There is a bijection between the natural numbers and the rationals.

` ∃ f : N �→ N2× • true

` ∃ f : N �→ Q • true

•
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Real numbers

Intent

The reals form a complete field. The set R of reals is the smallest set with the real
properties.

Definitions

RealProperties
CompleteField[A]
RationalProperties

R : P A

∃RealProperties • R = g

∀RealProperties • R ⊆ g

Examples

1. The square root of two is a real, but not a rational, number.√
2 = lub(( < ) ∩ R2×){ x : Q | x ∗ x ≤ 2 }

Laws

Law 29.10 The non-zero reals form an abelian group under multiplication.

` ∃AbelianGroup[A] •
g = R± ∧ ( � ) = ( ∗ ) ∧ e = 1 ∧ inv = ( 1)

Law 29.11 The rationals are dense in R: for any two distinct reals, there is a
rational that lies between them.

x , y : R | x < y ` ∃ q : Q • x < q < y

� Law 29.12 There is a bijection between the power set of natural numbers and
the reals.
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` ∃ f : P N �→ R • true

Law 29.13 As a corollary of law 29.12, with law 21.26, there is no bijection be-
tween the naturals and the reals.

` N �→ R = ∅

•

Subtraction and division

Intent

We give a declaration for these operators wide enough to allow the operation on
all As, but define them only for reals, leaving them loose outside this set, allowing
different extensions as appropriate.

Definitions

function 30 leftassoc ( − )

function 40 leftassoc ( ÷ )

− : A2× 7→ A

( λ x , y : R • x + -y ) ⊆ ( − )

÷ : A2× 7→ A

{ x , y : R; z : R± | x = y ∗ z • (x , z ) 7→ y } ⊆ ( ÷ )

Laws

Law 29.14 Subtraction from zero, and division into one, are the additive and
multiplicative inverse functions.

RealProperties | g = R `
R C (- ) = ( λ x : R • 0− x )
∧ R C ( 1) = ( λ x : R± • 1÷ x )

•
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Numerical orders

Intent

We give a declaration for numerical orders wide enough to allow an order on all
As, but define them only for reals, leaving them loose outside this set, allowing
different extensions as appropriate.

Definitions

relation ( ≥ )

relation ( > )

≥ , > : A ↔ A

∀ x , y : R • x > y ⇔ y < x

∀ x , y : R • x ≥ y ⇔ y ≤ x

•
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Further Numbers

In the previous chapter we introduced the minimum of definitions needed to define
the real numbers. In this chapter we introduce further operations applicable to
numbers.

• sign, absolute value: sign, abs

• floor, ceiling: b c, d e
• integer division, modulus: div, mod

• integer range: ( . . )

• cardinality, total cardinality: #,
→
#

• maximum, minimum (of a set of numbers): max, min

• composite numbers, primes, coprimes

• square root: relational
√

, and functional
√

Sign

Intent

The sign function gives -1, 1 or 0, depending on whether its argument is negative,
positive, or zero, respectively.

Definition

function (sign )

sign : A 7→ A

( λ x : R • -1 )⊕ ( λ x : R+ • 1 )⊕ {0 7→ 0} ⊆ (sign )

319
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If there is any danger of confusion in the pronunciation of sign with sine, it is usual
to pronounce the former as the alternative Latin form signum.

Laws

Law 30.1 The sign function is total on the reals; its range is {-1, 0, 1}.

` R C (sign ) ∈ R →→ {-1, 0, 1}

•

Absolute value

Intent

The abs function gives the positive form of its argument.

Definition

function (abs )

abs : A 7→ A

id R⊕ ( λ x : R− • -x ) ⊆ (abs )

Laws

Law 30.2 The abs function is total on the reals; its range is the non-negative
reals.

` R C (abs ) ∈ R →→ R⊕

Law 30.3 The abs function is idempotent.

x : R ` abs(abs x ) = abs x

•
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Floor and ceiling

Intent

Floor, or ‘integer part’, rounds a real number x down to the nearest integer below.
Ceiling rounds a real number x up to the nearest integer above.

Definition

floor

function (b c)

b c : A 7→ A

{ x : R; i : Z | 0 ≤ x − i < 1 } ⊆ (b c)

ceiling

function (d e)

d e : A 7→ A

{ x : R; i : Z | 0 ≤ i − x < 1 } ⊆ (d e)

Laws

Law 30.4 The floor and ceiling functions are total on the reals; their ranges are
the integers.

` R C (b c) ∈ R →→ Z
` R C (d e) ∈ R →→ Z

Law 30.5 A real number lies between the floor and the ceiling.

x : R ` x − 1 < bxc ≤ x ≤ dxe < x + 1

Law 30.6 The floor and ceiling on integers is the identity; the floor and ceiling of
non-integers differ by unity.
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i : Z ` bic = die = i

x : R \ Z ` bxc+ 1 = dxe 6= x

•

Integer division and modulus

Intent

div gives the integer part of the quotient (real division) rounded down (towards
minus infinity). The function div is here defined for real arguments; the word
‘integer’ in the name refers to the fact that its result is an integer.

mod gives the remainder after integer division.

Definition

integer division

function 40 leftassoc ( div )

div : A2× 7→ A

( λ x : R; y : R± • bx ÷ yc ) ⊆ ( div )

modulus

function 40 leftassoc ( mod )

mod : A2× 7→ A

( λ x : R; y : R± • x − (x div y) ∗ y ) ⊆ ( mod )

Examples

1. 4.2 div 3 = 1; 4.2 mod 3 = 1.2

2. -4.2 div 3 = -2; -4.2 mod 3 = 1.8
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3. 4.2 div -3 = -2; 4.2 mod -3 = -1.8

4. -4.2 div -3 = 1; -4.2 mod -3 = -1.2

The decision of how to treat negative divisors is contentious; every conceivable
policy, and some inconceivable ones, are currently on offer from some author or
system. We have chosen to follow the Standard Z Mathematical Toolkit definitions.
The major debate involves whether to round the result downwards, or truncate to
zero (these having the same effect for positive divisors).

Building a new definition to treat negative divisors differently is completely straight-
forward. It would be sensible for any such redefinition to follow the standard
definition for positive divisors. In practice negative divisors are never used.

“What, never?”

“No, never!”

“What, never?”

“Hardly ever!”

— W. S. Gilbert, H.M.S. Pinafore, 1878

Laws

Law 30.7 The div function is total on pairs comprising a real and a non-zero real;
its range is the integers. The mod function is total on pairs comprising a real and
a non-zero real; its range is the reals.

` (R× R±) C ( div ) ∈ (R× R±) →→ Z
` (R× R±) C ( mod ) ∈ (R× R±) →→ R

Law 30.8 The remainder when dividing by a positive number is also positive, and
less than that number.

x : R; y : R+ ` 0 ≤ x mod y < y

Law 30.9 y divides x precisely when there is no remainder.

x : R; y : R± ` x mod y = 0 ⇔ ( ∃ i : Z • x = i ∗ y )

Law 30.10 Any real number can be broken into its integer part and remainder.
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x : R ` x = bxc+ (x mod 1)

Law 30.11 A non-zero number can be cancelled from the ‘top’ and ‘bottom’ of
an integer division.

x : R; y , z : R± ` (x ∗ z ) div (y ∗ z ) = x div y

Law 30.12 The modulus operation forms a homomorphism from addition to ad-
dition modulo y , and from multiplication to multiplication modulo y .

x , x ′ : R; y : R± ` ((x mod y) + (x ′ mod y)) mod y = (x + x ′) mod y

x , x ′ : R; y : R± ` ((x mod y) ∗ (x ′ mod y)) mod y = (x ∗ x ′) mod y

•

Integer range

Intent

The function . . gives the set of all integers between a beginning and an ending
number, which themselves need not be integer.

Definition

function 20 leftassoc ( . . )

. . : A2× 7→ P Z

( λ x , y : R • { i : Z | x ≤ i ≤ y } ) ⊆ ( . . )

Examples

1. 3 . . 6 = {3, 4, 5, 6}
2. π . . 6 = {4, 5, 6}
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Laws

Law 30.13 If the beginning number is greater than the ending number, then the
integer range is empty.

x , y : R | y < x ` x . . y = ∅

Law 30.14 If the beginning number is an integer, and equal to the ending number,
then the integer range is the singleton set containing that number.

i : Z ` i . . i = {i}

Law 30.15 If the beginning number is not an integer, and equal to the ending
number, then the integer range is empty.

x : R \ Z ` x . . x = ∅

Law 30.16 An integer range is a subset of another if its beginning and ending
numbers form a subinterval of the other’s corresponding interval.

x , x ′, y , y ′ : R | x ′ ≤ x ∧ y ≤ y ′ ` x . . y ⊆ x ′ . . y ′

Law 30.17 The intersection of two integer ranges is an integer range. The union
of two overlapping integer ranges is an integer range.

x , x ′, y , y ′ : R ` (x . . y) ∩ (x ′ . . y ′) = max{x , x ′} . . min{y , y ′}
x , x ′, y , y ′ : R | x ≤ x ′ ≤ y ` (x . . y) ∪ (x ′ . . y ′) = x . . y ′

Law 30.18 The integer range is unaffected by rounding up the beginning number,
and rounding down the ending number.

x , y : R ` x . . y = dxe . . byc

Law 30.19 Consider two integer ranges. New integer ranges can be made by
taking the sum of all pairs from the two ranges, and the difference of all pairs.

x , x ′, y , y ′ : Z | x ≤ y ∧ x ′ ≤ y ′ `
( + )(| (x . . y , x ′ . . y ′) |) = (x + x ′) . . (y + y ′)
∧ ( − )(| (x . . y , x ′ . . y ′) |) = (x − y ′) . . (y − x ′)

•
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Cardinality

Intent

The cardinality of a set is its size, the number of elements it contains.

Definition

The cardinality of a finite set is defined in terms of a bijection with an initial
segment of the natural numbers.

function (# )

The template for cardinality ensures that an expression like #
⋃

α usefully means
#(
⋃

α); if it were a simple function it would mean (#
⋃

)α, not what is wanted.

[X ]
# : P X 7→ A

{ a : P X ; n : N | 1 . . n �→ a 6= ∅ } ⊆ (# )

The definition is loose in that it says nothing about the result of applying the
function # to an infinite set. A specifier could tighten this definition by establishing
one or more elements of A to be the possible result of applying # to an infinite
set.

Examples

1. # ∅ = 0

2. #{x} = 1

Laws

Law 30.20 Any finite set has a cardinality.

[X ] ` F X C (# ) ∈ F X → N
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Law 30.21 The sizes of combinations of sets are related to the sizes of other
combinations.

[X ] a : F X ; b : P X ` #a = #(a \ b) + #(a ∩ b)

[X ] a, b : F X ` #a + #b = #(a ∪ b) + #(a ∩ b)

[X ] a, b : F X ` #(a ∪ b) = #a + #(b \ a)

[X ] a, b : F X ` #(a ∪ b) = #(a 	 b) + #(a ∩ b)

[X ] a, b : F X ` #(a 	 b) = #(a \ b) + #(b \ a)

Law 30.22 Cardinality is order-preserving (§26).

[X ] a, b : F X | a ⊆ b ` #a ≤ #b

Law 30.23 Specialising the order-preserving law about bounds (law 26.36) to f =
# gives

[X ] α : F(F X ) ` max(#(| α |)) ≤ #(
⋃

α)

[X ] α : F(F X ) ` #(
⋂

α) ≤ min(#(| α |))
[X ] a, b : F X ` max{#a, #b} ≤ #(a ∪ b)

[X ] a, b : F X ` #(a ∩ b) ≤ min{#a, #b}

Law 30.24 Two finite sets have the same size precisely when there is a bijection
between them. (This condition can be taken as a definition of ‘same size’ for infinite
sets.)

[X ,Y ] a : F X ; b : F Y ` #a = #b ⇔ ( ∃ f : a �→ b • true )

Law 30.25 The size of the domain of a relation (and dually, the size of its range)
cannot be larger than the size of the relation. The size of a relation cannot be
greater than the size of the cartesian product of its domain and range.

[X ,Y ] r : X 7 7↔ Y ` #(dom r) ≤ #r ≤ #(dom r) ∗#(ran r)

Law 30.26 A finite relation is functional precisely when its size is the same as the
size of its domain. Dually, a finite function is injective precisely when its size is
same as the size of its range. (Hence a finite injection has the same size domain
and range.)
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[X ,Y ] r : X 7 7↔ Y ` #r = #(dom r) ⇔ r ∈ X 7 7→ Y

[X ,Y ] f : X 7 7→ Y ` #f = #(ran f ) ⇔ f ∈ X 7 7� Y

Law 30.27 The size of an integer range is given by its end points.

i , j : Z ` #(i . . j ) = max{j − i + 1, 0}

•

Total cardinality

Intent

The function
→
# is provided for use where there is a need to compare cardinalities

of sets, some of which may be infinite.

Definition

generic (
→
# )

→
#X == λ a : P X • { b : F a • #b }

Examples

1. n ∈
→
# a means that a has at least n elements

2. #{a, b, c} = 3 `
→
#{a, b, c} = {0, 1, 2, 3}

3.
→
# N = N

4.
→
# R = N

Laws

Law 30.28
→
# is a total function from sets to non-empty sets of natural numbers

[X ] `
→
#X ∈ P X → P1 N
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Law 30.29 For finite sets, the set
→
#X contains precisely the natural numbers

from zero to the size of X .

[X ] ` finiteX ⇒
→
#X = 0 . . #X

Law 30.30 A set is not finite precisely when its total cardinality is the set of all
natural numbers.

[X ] ` ¬ finiteX ⇔
→
#X = N

Law 30.31 The total cardinality of set a is a subset of that of set b precisely when
either b is not finite, or both sets are finite and a is not bigger than b.

[X ] a : P X ; b : P Y `
→
# a ⊆

→
# b ⇔ (finite b ⇒ finite a ∧ #a ≤ #b)

Law 30.32 The total cardinality of set a is equal to that of set b precisely when
either both sets are not finite, or both sets are finite and the same size.

[X ] a : P X ; b : P Y `
→
# a =

→
# b ⇔ ((finite a ⇔ finite b) ∧ (finite a ⇒ #a = #b))

Law 30.33 There are total cardinality analogues of law 30.33.

[X ] a, b : P X `
→
# a = ( + )(| (

→
#(a \ b),

→
#(a ∩ b)) |)

[X ] a, b : P X ` ( + )(| (
→
# a,

→
# b) |) = ( + )(| (

→
#(a ∪ b),

→
#(a ∩ b)) |)

[X ] a, b : P X `
→
#(a ∪ b) = ( + )(| (

→
# a,

→
#(b \ a)) |)

[X ] a, b : P X `
→
#(a ∪ b) = ( + )(| (

→
#(a 	 b),

→
#(a ∩ b)) |)

[X ] a, b : P X `
→
#(a 	 b) = ( + )(| (

→
#(a \ b),

→
#(b \ a)) |)

Law 30.34 Where there is a bijection between two sets, their total cardinality
sets are equal.

[X ] a : P X ; b : P Y | a �→ b 6= ∅ `
→
# a =

→
# b

•
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Minimum and maximum

Intent

The minimum and maximum of a set of numbers are defined as special cases of
the minimum and maximum functions with respect to the ‘less than or equal to’
reflexive ordering on real numbers.

Definition

function (min )

function (max )

The operator templates for min and max ensure that an expression like min ran f
usefully means min(ran f ); if it were a simple function it would mean (min ran)f ,
not what is wanted.

min : P1 A 7→ A
max : P1 A 7→ A

minimum( ( ≤ ) ∩ R2× ) ⊆ (min )

maximum( ( ≤ ) ∩ R2× ) ⊆ (max )

Laws

Law 30.35 Any non-empty set of natural numbers has a minimum element; any
finite non-empty set of real numbers has a minimum and a maximum element.

` P1 N C (min ) ∈ P1 N →→ N
` F1 R C (min ) ∈ F1 R →→ R
` F1 R C (max ) ∈ F1 R →→ R

Law 30.36 Minimum is order-reversing (§26).

a, b : dom(min ) | a ⊆ b ` min b ≤ min a

Law 30.37 Specialising the order-reversing law about bounds (law 26.39) to f =
min gives
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α : P P A | α ∪ {⋂α} ⊆ dom(min ) ` max(min(| α |)) ≤ min(
⋂

α)

α : P P A | α ∪ {⋃α} ⊆ dom(min ) ` min(
⋃

α) = min(min(| α |))
a, b : dom(min ) | a ∩ b ∈ dom(min ) ` max{min a, min b} ≤ min(a ∩ b)

a, b : dom(min ) | a ∪ b ∈ dom(min ) ` min(a ∪ b) = min{min a, min b}

Law 30.38 Maximum is order-preserving (§26).

a, b : dom(max ) | a ⊆ b ` max a ≤ max b

Law 30.39 Specialising the order-preserving law about bounds (law 26.36) to f =
max gives

α : P P A | α ∪ {⋂α} ⊆ dom(max ) ` max(max(| α |)) = max(
⋂

α)

α : P P A | α ∪ {⋃α} ⊆ dom(max ) ` max(
⋂

α) ≤ min(max(| α |))
a, b : dom(max ) | a ∪ b ∈ dom(max ) ` max{max a, max b} = max(a ∪ b)

a, b : dom(max ) | a ∩ b ∈ dom(max ) ` max(a ∩ b) ≤ min{max a, max b}

•

Prime numbers

Intent

To define various prime and composite subsets of the natural numbers.

Definition

Composite numbers can be factored.

N2 == N \ {0, 1}
composite == { n,m : N2 • n ∗m }

Prime numbers have no factors.

prime == N2 \ composite

Coprimes have no common factors.

relation (coprime )

coprime == N2×
2 \ { n,m : N1; i : N2 • (n ∗ i ,m ∗ i) }
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Examples

1. composite = {4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, . . .}
2. prime = {2, 3, 5, 7, 11, 13, 17, 19, . . .}
3. coprime(2, 3); coprime(4, 9); coprime(15, 14)

Laws

Law 30.40 The set of primes is infinite.

` ¬ finite prime

Law 30.41 Fundamental Theorem of Arithmetic: any positive whole number can
be uniquely factored into primes.

n : N2 ` ∃1 f : prime 7→ N1 • n = Π ( λ p : dom f • p ∗∗(f p) )

� Law 30.42 p is prime precisely when p divides (p − 1)! + 1

p : N2 ` p ∈ prime ⇔ (factorial(p − 1) + 1) mod p = 0

Law 30.43 Two numbers are coprime when they have no factors in common.

n,m : N2 ` coprime(n,m) ⇔ disjoint〈dom(factor n), dom(factorm)〉

•

Square root

Intent

Two square root functions are provided. One is a relation between numbers and
their (positive and negative) roots; one is a function from a number to its positive
root.
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Definition√
: A ↔ A

{ x , y : R | (x , x ) ∈ dom( ∗ ) ∧ x ∗ x = y } ⊆
√

function (
√

)
√

==
√
∩ (A× R⊕)

Examples

1.
√

(| {4} |) = {−2, 2}
2.
√

4 = 2

Laws

Law 30.44 The square root is the one half power.

x : R `
√

x = x ∗∗(1÷ 2)

•
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Numbers and Relations

Now that we have defined numbers, we can define numeric properties of relations,
such as iterating a homogeneous relation a certain number of times, and we can
define the cardinality of certain properties of relations, such as the number of arcs
leaving a vertex.

• relational iteration: ( )

• vertex degree: outDegree, inDegree, degree

Relation iteration

Intent

Relational iteration is composition of a relation with itself, n times.

A specification that makes heavy use of a particular number of iterations may
well be over-specific. It may be possible to generalise it to use ‘iteration transitive
closure’, r+ or r ∗ (§24), or ‘maximal iteration’ (§24).

Definition

function ( )

[X ] ==
⋂{ f : (X ↔ X )× N ↔ (X ↔ X ) |

( ∀ r : X ↔ X • ((r , 0), idX ) ∈ f )
∧ ( ∀ n : N; r , s : X ↔ X | ((r , n), s) ∈ f •

((r , n + 1), r o
9 s) ∈ f ) }
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Laws

Law 31.1 Relational iteration is a total surjection. (It is a surjection because of
the identity r 1 = r .)

[X ] ` ( ) [X ] ∈ (X ↔ X )× N →→ (X ↔ X )

Law 31.2 An equivalent expression for relational iteration, explicitly in terms of
composition, is

[X ] r : X ↔ X ` r 0 = idX

[X ] r : X ↔ X ; n : N ` rn+1 = r o
9 rn = rn o

9 r

Law 31.3 Iteration commutes with inverse

[X ] r : X ↔ X ; n : N ` r∼n = rn∼

Law 31.4 Composing iterations is equivalent to iterating by the sum. Iterating
iterations is equivalent to iterating by the product.

[X ] r : X ↔ X ; n,m : N ` rn o
9 rm = rn+m

[X ] r : X ↔ X ; n,m : N ` (rn)m = rn∗m

� Law 31.5 Iteration is subset order-preserving (§26) on its relation argument.

[X ] r , s : X ↔ X ; n : N | r ⊆ s ` rn ⊆ sn

Law 31.6 Specialising the order-preserving laws about bounds (laws 26.36) to
f = n gives

[X ] ρ : P(X ↔ X ); n : N ` ⋃{ r : ρ • rn } ⊆ (
⋃

ρ)n

[X ] ρ : P(X ↔ X ); n : N ` (
⋂

ρ)n ⊆ ⋂{ r : ρ • rn }
[X ] r , s : X ↔ X ; n : N ` rn ∪ sn ⊆ (r ∪ s)n

[X ] r , s : X ↔ X ; n : N ` (r ∩ s)n ⊆ rn ∩ sn

� Law 31.7 If the composition of two relations is commutative, then so is an
iteration of one composed with another iteration of the other.
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[X ] r , s : X ↔ X ; n,m : N | r o
9 s = s o

9 r ` rn o
9 sm = sm o

9 rm

� Law 31.8 If the composition of two relations is commutative, then the iteration
of their composition is the same as the composition of their iterations.

[X ] r , s : X ↔ X ; n : Z | r o
9 s = s o

9 r ` (r o
9 s)n = rn o

9 sn

•

Vertex degree

Intent

Here we develop some more theory of homogeneous binary relations (§24), in terms
of their degree, the number of arcs entering or leaving a vertex.

Definition

out degree of a vertex:

The outDegree of a vertex is the number of arcs leaving that vertex.

outDegree[X ] ==
λ r : X ↔ X • λ x : X | finite(successors r x ) • # successors r x

in degree of a vertex:

The inDegree of a vertex is the number of arcs entering that vertex.

inDegree[X ] == λ r : X ↔ X • outDegree(r∼)

degree of a vertex:

The degree of a vertex is the number of arcs leaving and entering that vertex.

degree[X ] == λ r : X ↔ X • outDegree(symmetricClosure r)
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Laws

Law 31.9 outDegree is a total function (similarly for inDegree and degree).

[X ] ` outDegree[X ] ∈ (X ↔ X ) → X 7→ N

Law 31.10 A homogeneous function is a graph where the out degree is at most 1

[X ] ` X 7→ X = { r : X ↔ X | ran(outDegree r) ⊆ {0, 1} }

•
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Extending to infinite sets

We can use continuity and completeness arguments to extend the definition of
a function from a finite to an infinite domain. We use this technique here to
complete the definition of distributed arithmetic operators over infinite sets, from
their definitions over finite sets.

• make a function complete over an infinite set: makeComplete

• complete distributed sum: Σ

• complete distributed product: Π

Making a function complete on a set

Intent

makeComplete is designed to be used on a function that is defined on some chain
of subsets of real numbers, to turn it into a function on the union of the members
of the chain.

Definition

[X ]
makeComplete : (P X 7→ A) 7→ (P X 7→ A)

∀ f : P X 7→ R •
{ a : P X ; y : R |

∀ δ : R+ •
∃ b : dom f | b ⊆ a •

∀ b0 : dom f | b ⊆ b0 ⊆ a •
abs(y − f b0) ≤ δ }

⊆ makeComplete f
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Typically makeComplete is applied to to a function whose domain is finite sets,
and the result is a similar function with its domain extended to cover infinite sets.
The technique used is the familiar one used to give meaning to the sums of infinite
series in the absolutely convergent case. To see how it works, consider two cases

1. a ∈ dom f
We can then choose b = a, which forces b0 = a, so abs(y − f b0) < δ implies
abs(y−f a) < δ for all δ, so y = f a. This shows us that f ⊆ makeComplete f
and it is also clear by considering any other choice of b that no other value
of y can fit.

2. a 6∈ dom f
We choose b to be a large subset of a within dom f . b0 then ranges over even
larger sets. If the application of f to these sets converges, the result is that
convergent value. Otherwise a is not in the domain of the result.

Examples

We use makeComplete in the definition of the distributed arithmetic operators Σ
and Π below, to define their value for the infinite case.

Laws

Law 32.1 Making a function complete does not change it on its original domain.

[X ] f : P X 7→ R ` f ⊆ makeComplete f

•

Complete distributed sum

Intent

The operation of finite distributed sum is made complete.

Definition
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[L]
Σ : (L 7→ A) 7→ A

makeComplete +/ ⊆ Σ

The use of the function +/ in the definition covers all finite labelled sets, then the
use of makeComplete extends to cover infinite sets where the sum is ‘absolutely
convergent’. The application of this function may be pronounced add up.

Several Z authors have used a function with approximately this meaning, typically
calling it +/ or Σ, but without formally defining it.

Examples

1. The sum of all the powers, for abs x < 1, both conventionally, and in Z, is:

∞∑
m=0

xm =
1

1− x

x : R | -1 < x < 1 ` Σ ( λm : N • x ∗∗m ) = 1÷ (1− x )

Laws

Law 32.2 Any sum formed with +/ can be equally well formed with Σ

[L] f : L 7 7→ A ` +/ f = Σ f

•

Complete distributed product

Intent

The operation of finite distributed product is made complete.
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Definition

[L]
Π : (L 7→ A) 7→ A

makeComplete ∗/ ⊆ Π

The use of the function ∗/ in the definition covers all finite labelled sets, then the
use of makeComplete extends to cover infinite sets where the product is ‘absolutely
convergent’. The application of this function may be pronounced multiply up.

A few Z authors have used a function with approximately this meaning, typically
calling it ∗/ or Π, but without formally defining it.

Examples

1. The product of odd squares, both conventionally, and in Z, is:

∞∏
m=1

(
1− 1

(2m + 1)2

)
= π/4

` Π ( λm : N1 • 1− 1÷ (2 ∗m + 1) ∗∗ 2 ) = π ÷ 4

2. The product of powers of powers, for abs x < 1, both conventionally, and in
Z, is:

∞∏
m=0

(
1 + x 2m

)
=

1

1− x

x : R | -1 < x < 1 ` Π ( λm : N • 1 + x ∗∗ 2 ∗∗m ) = 1÷ (1− x )

Laws

Law 32.3 Any sum formed with ∗/ can be equally well formed with Π

[L] f : L 7 7→ A ` ∗/ f = Π f

•
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Powers and Trigonometry

In this chapter we show how to use some of our earlier definitions to build up the
definitions of the trigonometric functions.

• factorial

• power function: ( ∗∗ )

• exponential function: exp

• natural logarithm: ln

• common logarithm: log

• sine, cosine

• pi: π

Factorial

Intent

factorial n is the product of all the natural numbers from one to n.

Definition

function (factorial )

factorial : A 7→ A

( λ n : N • Π (id(1 . . n)) ) ⊆ (factorial )

factorial n is conventionally written n!, but the ! symbol is reserved for other uses
in Z.
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Examples

1. factorial 0 = 1

2. factorial 1 = 1

3. factorial 2 = 2

4. factorial 3 = 6

5. factorial 4 = 24

Laws

Law 33.1 The factorial function is a total function on the natural numbers; it is
a total injection on the positive naturals.

` N C (factorial ) ∈ N → N
` N1 C (factorial ) ∈ N1 � N

•

Power function, integer exponent

Intent

We define the power function to cover all cases for real operands where a real result
is defined and where that result is the principal value in the sense of complex vari-
able theory. Thus where there is a choice of sign in the result, as when calculating
4∗∗(1÷2) for example, the function defines only the positive choice, yielding 2 and
not -2.

We define the power function in two parts. First we define its value for an integer
exponent (here), which we use in defining the exponential function, which in turn
allows us to define the power function for a real exponent (later).

Definition

function 45 rightassoc ( ∗∗ )
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∗∗ : A2× 7→ A

({0} × R+) ∪ (R± × Z) ⊆ dom( ∗∗ )

∀ x : R • x ∗∗ 1 = x

∀ y : R+ • 0 ∗∗ y = 0

∀ x : R±; i : Z • x ∗∗(i + 1) = x ∗ x ∗∗ i

The power function associates to the right and binds more strongly than multipli-
cation. This ensures the expected behaviour, for example, that x ∗∗ n ∗∗ 2 = xn2

and x ∗ y ∗∗ i = x ∗ y i .

•

Exponential function and natural logarithm

Intent

The exponential function is defined using a power series. In conventional notation
it is:

ex = 1 +
∞∑

n=1

xn

n!
= 1 + x +

x 2

2!
+

x 3

3!
+ . . .

The natural logarithm is the inverse of the exponential.

Definition

exponential function:

function (exp )

exp : A 7→ A

( λ x : R • 1 + Σ ( λ n : N+ • x ∗∗ n ÷ factorial n ) ) ⊆ (exp )

The mathematical constant e is deliberately not defined under that name for fear of
confusion with other uses of that letter in a Z specification. It can be immediately
defined if needed as being equal to exp 1.

natural logarithm:

function (ln )
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ln : A 7→ A

{ x : R+; y : R | x = exp y } ⊆ (ln )

Laws

Law 33.2 The exponential function is a bijection from the reals to the positive
reals.

` R C (exp ) ∈ R �→ R+

` R+ C (ln ) ∈ R+ �→ R

Law 33.3 The positive reals under multiplication are isomorphic to the reals under
addition, where the isomorphism is the natural logarithm.

x , y : R ` exp(x + y) = exp x ∗ exp y

x , y : R+ ` ln x + ln y = ln(x ∗ y)

•

Power function, completed

Intent

The two sets of axioms given here and earlier for the power function together define
its value for all cases of real operands where a real result is defined and where that
result is the principal value in the sense of complex variable theory. So we have a
negative result only where we have a negative first argument and an odd integer
exponent.

Definition

R+ × R ⊆ dom( ∗∗ )

∀ x : R+; y : R • x ∗∗ y = exp(y ∗ ln x )

•
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Common logarithm

Intent

The common logarithm is the inverse of the power function.

Definition

function (log )

log : A 7→ A 7→ A

R+ \ {1} ⊆ dom(log )

∀ base : R+ \ {1} • { x : R±; y : R | x = base ∗∗ y } ⊆ logbase

Examples

1. log2 32 = 5

2. log10 1000 = 3

3. Common logarithm to base e is the natural logarithm.

x : R+ ` logexp 1 x = ln x

•

Sine and cosine

Intent

The sine function can be defined using a power series. In conventional notation it
is:

sin x =
∞∑

n=0

(-1)nx 2n+1

(2n + 1)!
= x − x 3

3!
+

x 5

5!
− . . .

Similarly, the power series for the cosine function is

cos x = 1 +
∞∑

n=1

(-1)nx 2n

(2n)!
= 1− x 2

2!
+

x 4

4!
− . . .
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Definition

sine:

function (sin )

sin : A 7→ A

( λ x : R •
Σ ( λ n : N •

((-1) ∗∗ n) ∗ (x ∗∗(2 ∗ n + 1))÷ factorial(2 ∗ n + 1) ) )
⊆ (sin )

cosine:

function (cos )

cos : A 7→ A

( λ x : R •
1 + Σ ( λ n : N+ •

((-1) ∗∗ n) ∗ (x ∗∗(2 ∗ n))÷ factorial(2 ∗ n) ) )
⊆ (cos )

pi:

π == min{ x : R+ | sin x = 0 }

Further mathematical functions can easily be defined in similar ways to the above.

Laws

Law 33.4 Sine and cosine are total functions on the reals.

` R C (sin ) ∈ R →→ { x : R | -1 ≤ x ≤ 1 }
` R C (cos ) ∈ R →→ { x : R | -1 ≤ x ≤ 1 }

Law 33.5 Some rational approximations to π are

` 223÷ 71 < π < 355÷ 113 < 22÷ 7

•
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Streams and sequences

One useful special case of a labelling function is where the labels are totally ordered.
The most common totally ordered labelling chosen is some consecutive segment of
the natural numbers under ‘less than’. Functions with such an ordered domain are
called streams: i . .∞ → X in the infinite case, or i . . j → X in the finite case.
The special case where i = 1 are called sequences.

A relation or function designed mainly to take a sequence as an argument can often
still be meaningful if that argument is instead a more general relation; it may not
require all the properties of sequences. For example:

• it may not require the indices to start at 1, but could be a stream, allowing
them start at any natural number: {0 7→ a, 1 7→ b, 2 7→ c}

• it may not require the indices to be contiguous, but could allow ‘gaps’ {3 7→
a, 5 7→ b, 9 7→ c}

• it may not require the indices to be natural numbers, but could allow any
totally ordered labelling set {-5 7→ a, π 7→ b, 9 7→ c}

• it may not require the indices to be ordered at all, but could be defined for
any function

• it may not require the sequence to be a single-valued function, but could be
defined for any relation

So, when we define relations designed mainly for work with sequences, if they are
capable of being used in more general contexts, we give more general definitions,
and do not restrict the arguments to be sequences.

In this chapter we define streams and sequences. In the following chapters we
define how to construct them from functions with an ordered domain, orders on
streams and sequences, and relations for manipulating streams and sequences.

• streams, non-empty and injective: streamX , stream1 X , istreamX , istream1 X
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• sequences, non-empty and injective: sequenceX , sequence1 X , isequenceX ,
isequence1 X

• finite streams, non-empty and injective: strX ,str1 X , istrX , istr1 X

• finite sequences, non-empty and injective: seqX , seq1 X , iseqX , iseq1 X

• shifting base: ( shift )

• stream and sequence displays

General Streams

Intent

Streams may be finite or infinite. Their domain consists of a contiguous segment
of the integers with a particular starting point (they can run up to infinity, but
cannot run up from minus infinity).

Definition

streams:

generic (stream )

streamX == { f : Z 7→ X | ∃m : Z • ∀ n : dom f • m ≤ n ∧ m . . n ⊆ dom f }

non-empty streams:

stream1 X == streamX \ {∅}

injective streams:

If a stream is also an injection, each element in the stream is distinct.

generic (istream )

istreamX == streamX ∩ (Z 7� X )

non-empty injective streams:

istream1 X == istreamX \ {∅}
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Examples

1. ( λ i : Z | -5 < i • i ∗ i ) = -4〈16, 9, 4, 1, 0, 1, 4, . . .〉 ∈ stream N
2. ( λ i : N • -i ) = 0〈0, -1, -2, -3, . . .〉 ∈ istream Z

Laws

Law 34.1 The domain of an infinite stream:

[X ] s : streamX | ¬ finite s ` ∃ i : Z • dom s = { j : Z | i ≤ j }

Law 34.2 Restricting a stream to an integer range yields a finite stream. Restrict-
ing a stream to an integer range starting at 1 yields a finite sequence.

[X ] s : streamX ; i , j : Z ` (i . . j ) C s ∈ strX

[X ] s : streamX ; i : Z | s = ∅ ∨ 1 ∈ dom s ` (1 . . i) C s ∈ seqX

Law 34.3 The domain of a non-empty stream has a minimum element:

[X ] s : stream1 X ` dom s ∈ dom min

•

General Sequences

Intent

A sequence is a stream that starts at 1. Again, sequences may be finite or infinite.
Their domain consists of an initial segment of the non-zero natural numbers.

Definition
sequences:

generic (sequence )

sequenceX == { f : N1 7→ X | ∀ n : dom f • 1 . . n ⊆ dom f }

non-empty sequences:

sequence1 X == sequenceX \ {〈 〉}
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injective sequences:

If a sequence is also an injection, each element in the sequence is distinct.

generic (isequence )

isequenceX == sequenceX ∩ (N1 7� X )

non-empty injective sequences:

isequence1 X == isequenceX \ {〈 〉}

Examples

1. ( λ n : N1 • n div 2 ) = 〈0, 1, 1, 2, 2, 3, 3, . . .〉 ∈ sequence N
2. ( λ n : N1 • 1− n ) = 〈0, -1, -2, -3, . . .〉 ∈ isequence Z
3. The identity function on natural numbers is a non-empty injective sequence:

id N1 ∈ isequence1 N1

Laws

Law 34.4 The domain of an infinite sequence is all the non-zero naturals:

[X ] s : sequenceX | ¬ finite s ` dom s = N1

Law 34.5 Sequences are streams

[X ] ` sequenceX ⊆ streamX

•
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Finite streams

Definition

finite streams:

generic (str )

strX == streamX ∩ (Z 7 7→ X )

non-empty finite streams:

str1 X == strX \ {∅}

finite injective streams:

generic (istr )

istrX == istreamX ∩ (Z 7 7→ X )

non-empty finite injective streams:

istr1 X == istrX \ {∅}

Examples

1. {0 7→ a, 1 7→ b, 2 7→ a} = 0〈a, b, a〉 ∈ strX

2. ( λ i : -2 . . 4 • i ∗ i ) = -2〈4, 1, 0, 1, 4, 9, 16〉 ∈ str N
3. ( λ n : 3 . . 10 •

√
n ) = 3〈

√
3, 2,

√
5,
√

6,
√

7,
√

8, 3,
√

10〉 ∈ istr R

Laws

Law 34.6 The domain of a finite stream is an integer range.

[X ] s : strX ` ∃ i : Z • dom s = i . . (i − 1 + #s)

•
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Finite sequences

Definition

finite sequences:

generic (seq )

seqX == sequenceX ∩ (N1 7 7→ X )

non-empty finite sequences:

seq1 X == seqX \ {〈 〉}

finite injective sequences:

generic (iseq )

iseqX == isequenceX ∩ (N1 7 7→ X )

non-empty finite injective sequences:

iseq1 X == iseqX ∩ seq1 X

Examples

1. {1 7→ a, 2 7→ b, 3 7→ a} = 〈a, b, a〉 ∈ seqX

2. ( λ n : 1 . . 4 • n ÷ 2 ) = 〈1÷ 2, 1, 3÷ 2, 2〉 ∈ seq Q
3. ( λ n : 1 . . 10 •

√
n ) = 〈1,

√
2, . . . , 3,

√
10〉 ∈ iseq R

4. The identity function on some initial segment of the natural numbers is a
non-empty finite injective sequence: ∀ n : N1 • id(1 . . n) ∈ iseq1 N1

Laws

Law 34.7 The domain of a finite sequence is the integer range from 1 to the length
of the sequence.

[X ] s : seqX ` dom s = 1 . . #s

•
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Shifting the base of a stream

Definition

function 60 leftassoc ( shift )

shift [X ] == λ s : streamX ; i : Z • { j : dom s • j + i 7→ s j }

Examples

1. j 〈a, b, a〉 shift 0 = j 〈a, b, a〉
2. j 〈a, b, a〉 shift i = (j+i)〈a, b, a〉
3. j 〈a, b, a〉 shift(-j ) = 0〈a, b, a〉
4. j 〈a, b, a〉 shift(-j + 1) = 〈a, b, a〉

•

Stream and sequence displays

Definition

Stream displays have the index of the first element subscripted, followed by the
stream elements in angle brackets.

function ( 〈, , 〉)
〈, , 〉 [X ] == λ i : Z; s : seqX • s shift(i − 1)

Sequence displays have the elements in angle brackets.

function (〈, , 〉)
〈, , 〉 [X ] == λ s : seqX • s

Examples

1. {1 7→ a, 2 7→ b, 3 7→ a} = 〈a, b, a〉
2. {0 7→ a, 1 7→ b, 2 7→ a} = 0〈a, b, a〉
3. {-2 7→ a, -1 7→ b, 0 7→ a} = -2〈a, b, a〉

•
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Constructing streams and
sequences

We can construct streams and sequences by concatenating other streams and se-
quences. Also, given some arbitrary labelled set, we can convert that set into a
sequence, provided the labelling domain is enumerable (can be written down in
order).

This chapter provide the machinery for such constructions.

• concatenation: ( a )

• enumerable orders

• enumerable chains

• enumerate

• form a sequence from a labelled set: formSequence

• squash

Concatenation

Intent

Concatenation allows us to combine two streams to form a third, in such a way
that it preserves the order of elements within each stream, and results in all the
elements in the second stream appearing after all those in the first.

Definition

function 30 leftassoc ( a )

355
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[X ]
a : (A 7→ X )2× 7→ (A 7→ X )

{ s , t : streamX ; n : N | ∅ ∈ {s , t}
∨ finite s ∧ n = #s ∧ min(dom s) = min(dom t) •

(s , t) 7→ s ∪ t shift n }
⊆ ( a )

We provide a declaration wide enough for all numbered sets.

Our definition covers only the case where the arguments are streams, and, if neither
is the empty stream, then the first stream is finite and the two streams have the
same starting point. Sequences concatenated onto the end of finite sequences satisfy
this constraint, with the minimum element being 1.

We provide a definition that extends the domain of concatenation as widely as
possible without compromising other potential definitions. For example, there are
(at least) four possible extensions to more general numbered sets that may be
appropriate in different circumstances: the first set maintains its indexing, or the
first set’s indices are squashed to a contiguous set of integers; the second set’s
indices are all incremented by the same amount (related somehow to the last index
of the first set), or the second set’s indices are squashed. These would all be
compatible extensions of our definition.

So we choose to define concatenation only for the case of a common minimum
domain element, because if we arbitrarily chose the minimum of one of the ar-
guments, we would require an arbitrary special case for when that argument is
empty. Similarly, we define the result only for streams (contiguous domain values)
because, if we try to use the spacing of the domain elements in some way, we would
require arbitrary special cases when one or both arguments are singletons.

Examples

1. 〈a, c, e〉a 〈b, d , f 〉 = 〈a, c, e, b, d , f 〉
2. {5 7→ 1, 6 7→ 2}a ( λ n : 5 . . 7 • n ∗∗ 2 ) = 5〈1, 2, 25, 36, 49〉
3. 〈0〉a id N1 = ( λ n : N1 • n − 1 )

4. {0 7→ a, 1 7→ b}a {0 7→ c} = {0 7→ a, 1 7→ b, 2 7→ c}
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Laws

Law 35.1 For sequences, concatenation reduces to the simpler definition:

[X ] s : seqX ; t : sequenceX ` s a t = s ∪ t shift #s

[X ] s : sequenceX ` s a 〈 〉 = s

Law 35.2 Stream concatenation is associative, and has identity element ∅. Hence
it forms a monoid (§23) over finite streams.

[X ] i : Z `
∃Monoid[A ↔ X ] •

g = { s : strX | s = ∅ ∨ min(dom s) = i } ∧ ( � ) = ( a ) ∧ e = ∅

Law 35.3 The length of concatenated finite streams is the sum of the components’
lengths.

[X ] s , t : strX ` #(s a t) = #s + #t

Law 35.4 Concatenation is suffix-order preserving (§26) on its first argument, and
prefix-order preserving on its second argument.

[X ] s , t , u : seqX | s suffix t ` s a u suffix t a u

[X ] s , t , u : seqX | s prefix t ` u a s prefix u a t

The order-preserving law about bounds (law 26.36) can be specialised for f =
s prefix and for f = suffix s .

•

Enumerable order

Intent

An enumerable ordering is a total order where every element of the order has only
a finite number of other elements ‘less than’ it. Hence the elements can be ‘written
down’ in order (and hence, made into a sequence).
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Definition

enumerable orders:

generic (enumerableOrder )

enumerableOrderX == totalOrderX ∩ locallyFiniteInX

reflexive enumerable orders:

generic (reflexiveEnumerableOrder )

reflexiveEnumerableOrderX == enumerableOrderX ∩ reflexiveX

irreflexive enumerable orders:

generic (irreflexiveEnumerableOrder )

irreflexiveEnumerableOrderX == enumerableOrderX ∩ irreflexiveX

Examples

Law 35.5 The natural numbers under ‘less than’ form an enumerable order

` ( ≤ ) ∩ N2× ∈ reflexiveEnumerableOrder N
` ( < ) ∩ N2× ∈ irreflexiveEnumerableOrder N

The well order 1 ≺ 3 ≺ 5 ≺ . . . ≺ 2 ≺ 4 ≺ 6 ≺ . . . is not an enumerable order.
There are infinitely many numbers before 2 in this order.

Laws

Law 35.6 Any reflexive enumerable order is a well order.

[X ] ` reflexiveEnumerableOrderX ⊆ wellOrderX

Law 35.7 Any finite total order is enumerable.

[X ] r : totalOrderX | finite r ` r ∈ enumerableOrderX

•
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Enumerable chains

Intent

An enumerable chain is an enumerably ordered set with respect to a relation.

Definition

enumerableChain[X ] ==
λ r : X ↔ X • { a : P X | r ∩ a2× ∈ enumerableOrder a }

enumerableChain1[X ] == λ r : X ↔ X • enumerableChain r \ {∅}

If we want to refer to some set a that is enumerably ordered by some relation r ,
we declare it as a : enumerableChain r . The full relation r may or may not be an
enumerable order itself.

Examples

1. {{a, b}, {a}, {a, b, c, d}, ∅} ∈ enumerableChain( ⊆ )

2. The upper bounds of prefixes of non-empty sequences form an enumerable
chain.

3. The lower bounds of prefixes of non-empty sequences form a non-empty enu-
merable chain.

4. A chain like 1, 3, 5, 7, . . . , 2, 4, 6, . . . is not enumerable

Laws

Law 35.8 enumerableChain is a total function on homogeneous relations.

[X ] ` enumerableChain[X ] ∈ (X ↔ X ) → P P X

[X ] ` enumerableChain1[X ] ∈ (X ↔ X ) → P P1 X

Law 35.9 If r is an enumerable order, any subset of X is an enumerable chain.

[X ] r : enumerableOrderX ` enumerableChain r = P X

•
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Enumeration of an enumerable chain

Intent

Convert an enumerable chain into a sequence by using the enumeration order.

Definition

enumerate[X ] == λ r : reflexiveX • λ a : enumerableChain r •
{ x : a • #(a C r B {x}) 7→ x }

Examples

#{a, b, c, d} = 4 ⇒
enumerate( ⊆ ){{a, b}, {a}, {a, b, c, d}, ∅} =

〈∅, {a}, {a, b}, {a, b, c, d}〉

Laws

Law 35.10 enumerate is a total function on reflexive relations.

[X ] ` enumerate[X ] ∈ reflexiveX → P X 7→ sequenceX

•

Forming a sequence from a labelled set

Intent

Form a sequence from a labelled set, where the labels are enumerable, by enumer-
ating them.

Definition

formSequence[L,X ] ==
λ r : reflexiveL •

λ f : L 7→ X | dom f ∈ enumerableChain r •
(enumerate r(dom f )) o

9 f
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Examples

#{a, b, c, d} = 4 ⇒
formSequence( ⊆ ){{a, b} 7→ w , {a} 7→ x , {a, b, c, d} 7→ y , ∅ 7→ z}

= 〈z , x ,w , y〉

Laws

Law 35.11 formSequence is a total function on reflexive relations.

[L,X ] ` formSequence ∈ reflexiveL → (L 7→ X ) 7→ sequenceX

•

Squashing a sequence from a numbered set

Intent

Form a sequence from a labelled set, where the labels are numeric and enumerable.

Definition

[X ]
squash : (A 7→ X ) 7→ sequenceX

formSequence( ( ≤ ) ∩ R2× ) ⊆ squash

squash is typically used in the deletion of elements from a sequence, to renumber
the remaining elements.

Examples

1. squash{3 7→ a, -2 7→ b, 7 7→ c, π 7→ d} = 〈b, a, d , c〉
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Laws

Law 35.12 Any function whose domain is the union of a finite set of reals and a
set of natural numbers can be squashed:

[X ] ` { f : R 7→ X | ( ∃ a : F R; b : P N • dom f = a ∪ b ) } ⊆ dom squash

Law 35.13 Only a sequence is left unchanged by squash.

[X ] s : dom squash ` s ∈ sequenceX ⇔ s = squash s

•
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Prefix, suffix and infix orders

The relations prefix , suffix and infix formalise the property of one stream being a
contiguous ‘part of’ another. A prefix is a contiguous ‘front part’ of a stream; a
suffix is a contiguous ‘back part’ of a stream; an infix is a contiguous ‘mid part’ of
a stream.

Since these three relations are (pre-)orders, we naturally think about greatest lower
bounds and least upper bounds. If these bounds were to be used frequently, it would
be worth defining some short name for them; if they are used just occasionally, they
can be referred to as glb( prefix ), and so on, as here.

• prefix, suffix relations

• infix relations

• prefix lower and upper bounds

• suffix lower and upper bounds

• infix lower and upper bounds

Prefix and suffix relations

Intent

Formalise the property of one stream being a contiguous ‘part of’ another, at the
beggining or at the end.

Definition

A stream s is a prefix of a stream t precisely when there is a third stream u that
may be concatenated onto s to give t . u may be empty, in which case s and t are
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equal. (An infinite stream is a prefix of an infinite stream if they are equal.)

relation ( prefix )

prefix [X ] == {s , t : streamX | ∃ u : streamX | (s , u) 7→ t ∈ ( a ) }

A stream s is a suffix of a stream t precisely when there is a third stream u onto
which s may be concatenated to give t . u may be empty, in which case s and t are
equal. (An infinite stream is a suffix of another infinite stream if they are equal,
or if a finite stream may be added to the front of one to yield the other.)

relation ( suffix )

suffix [X ] == {s , t : streamX | ∃ u : streamX | (u, s) 7→ t ∈ ( a ) }

Examples

1. 〈a, c, e〉 prefix〈a, c, e, b, d , f 〉
2. n〈a, c, e〉 prefix n〈a, c, e, b, d , f 〉
3. 〈b, d , f 〉 suffix〈a, c, e, b, d , f 〉
4. n〈b, d , f 〉 suffix n〈a, c, e, b, d , f 〉
5. 〈1, 2, 1, 2, 1, 2, . . .〉 suffix〈1, 1, 1, 2, 1, 2, 1, 2, . . .〉
6. let s == 〈1, 2, 1, 2, 1, 2, . . .〉; t == 〈2, 1, 2, 1, 2, 1, . . .〉 •

s suffix t ∧ t suffix s ∧ s 6= t

Laws

Law 36.1 The prefix relation provides an order on streams. The suffix relation
provides preorders on streams, and orders on finite streams.

[X ] ` ( prefix ) ∩ (streamX )2× ∈ reflexiveOrder(streamX )

[X ] ` ( suffix ) ∩ (streamX )2× ∈ preorder(streamX )

[X ] ` ( suffix ) ∩ (strX )2× ∈ reflexiveOrder(strX )

Law 36.2 If a stream s is a prefix of a stream t , then it is a subset of t . A sequence
s is a prefix of a sequence t precisely when it is a subset of t .

[X ] s , t : streamX | s prefix t ` s ⊆ t

[X ] s , t : sequenceX ` s prefix t ⇔ s ⊆ t
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Law 36.3 The finite sequence s is a prefix of the finite sequence t if it consists
of the first n items of t ; s is a suffix of t if it consists of t with the first n items
removed.

[X ] s , t : seqX ` s prefix t ⇔ s = (1 . . #s) � t

[X ] s , t : seqX ` s suffix t ⇔ s = (1 . . #t −#s) � t

Law 36.4 If s is a prefix of t , then s is compatible with t .

[X ] s , t : streamX | s prefix t ` s ≈ t

Law 36.5 The set of prefixes of suffixes equals the set of suffixes of prefixes.

[X ] ` ( prefix ) o
9 ( suffix ) = ( suffix ) o

9 ( prefix )

•

Infix relations

Intent

Formalise the property of one stream being a contiguous internal ‘part of’ another,
that is, being a prefix of a suffix of another.

Definition

relation ( infix )

infix [X ] == ( prefix ) o
9 ( suffix )

An infinite stream is an infix of another infinite stream if they are equal, or if a
finite stream may be added to the front of one to yield the other.

Examples

1. 〈e, b〉 infix〈a, c, e, b, d , f 〉
2. n〈e, b〉 infix n〈a, c, e, b, d , f 〉
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Laws

Law 36.6 The infix relation provides preorders on streams, and orders on finite
streams.

[X ] ` ( infix ) ∩ (streamX )2× ∈ preorder(streamX )

[X ] ` ( infix ) ∩ (strX )2× ∈ reflexiveOrder(strX )

Law 36.7 A stream s is an infix of a stream t precisely when there are streams

u and v that may be concatenated before and after s to give t . Hence u a s is a

prefix of t , and s a v is a suffix of t .

[X ] s , t : streamX `
s infix t ⇔

( ∃ u, v : streamX | {(u, s), (s , v)} ⊆ dom( a ) • u a s a v = t )

Law 36.8 A sequence s is an infix of a sequence t precisely when there is another
sequence u that may be concatenated with s to give a subset of t .

[X ] s , t : sequenceX `
s infix t ⇔ ( ∃ u : sequenceX | (u, s) ∈ dom( a ) • u a s ⊆ t )

Law 36.9 In the definition of infix , if u is empty, s is also a prefix of t ; so any

prefix is an infix. Also, if u a s = t , s is also a suffix of t ; so any suffix is also an
infix.

[X ] ` ( prefix ) ⊆ ( infix )

[X ] ` ( suffix ) ⊆ ( infix )

Law 36.10 s is an infix of t if it consists of some n consecutive items of t .

[X ] s , t : seqX ` s infix t ⇔ ( ∃ n : N • s = (n . . n + #s) � t )

Law 36.11 s is an infix of t if it is the suffix of some prefix of t ; s is an infix of t
if it is the prefix of some suffix of t .

[X ] s , t : streamX ` s infix t ⇔ ( ∃ u : streamX • s suffix u ∧ u prefix t )

[X ] s , t : streamX ` s infix t ⇔ ( ∃ v : streamX • s prefix v ∧ v suffix t )

•
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Prefix lower bounds

Intent

The prefix lower bounds of a set of streams are all those streams that are prefixes
of every stream in the set.

Laws

Law 36.12 The set of prefix lower bounds is a non-empty enumerable chain (§35)
that always contains at least the empty stream.

[X ] a : P1 streamX `
〈 〉 ∈ lowerBound( prefix )a ∈ enumerableChain1( prefix )

For example

lowerBound( prefix ){〈w , x , y〉, 〈w , x , z 〉} = {〈 〉, 〈w〉, 〈w , x 〉}
lowerBound( prefix ){〈x 〉, 〈y〉} = {〈 〉}

� Law 36.13 The chain of prefix lower bounds has a greatest lower bound, the
‘longest common prefix’.

[X ] ` P1 streamX ⊆ dom(glb( prefix ))

For example

glb( prefix ){〈w , x , y〉, 〈w , x , z 〉} = 〈w , x 〉
glb( prefix ){〈x 〉, 〈y〉} = 〈 〉

•

Prefix upper bounds

Intent

The prefix upper bounds of a set of streams are all those streams that have as
prefixes every stream in the set.



368 Chapter 36. Prefix, suffix and infix orders

Laws

Law 36.14 The set of prefix upper bounds is an enumerable chain; this chain may
be empty.

[X ] a : P1 streamX `
upperBound( prefix )a ∈ enumerableChain( prefix )

For example

upperBound( prefix ){〈x , y〉, 〈x , y , z 〉} =
{〈x , y , z 〉, 〈x , y , z , x 〉, 〈x , y , z , y〉, 〈x , y , z , z 〉, . . .}

upperBound( prefix ){〈x 〉, 〈y〉} = ∅

Law 36.15 The chain of prefix upper bounds is non-empty precisely when the
argument is a non-empty prefix-chain, in which case it has a least upper bound.

[X ] ` chain1( prefix )[X ] = dom(lub( prefix )[X ])

For example

lub( prefix ){〈x , y〉, 〈x , y , z 〉} = 〈x , y , z 〉

Law 36.16 The prefix least upper bound is the longest stream.

[X ] a : chain1( prefix )[X ] ` lub( prefix )a =
⋃

a

•

Suffix lower bounds

Intent

The suffix lower bounds of a set of streams are all those streams that are suffixes
of every stream in the set.

Laws

Law 36.17 The set of suffix lower bounds is a non-empty enumerable chain that
always contains at least the empty stream.
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[X ] a : P1 streamX `
〈 〉 ∈ lowerBound( suffix )a ∈ enumerableChain1( suffix )

For example

lowerBound( suffix ){〈y ,w , x 〉, 〈z ,w , x 〉} = {〈 〉, 〈x 〉, 〈w , x 〉}
lowerBound( suffix ){〈x 〉, 〈y〉} = {〈 〉}

Law 36.18 The chain of suffix lower bounds has a greatest lower bound, the
‘longest common suffix’.

[X ] ` P1 streamX ⊆ dom(glb( suffix ))

For example

glb( suffix ){〈y ,w , x 〉, 〈z ,w , x 〉} = 〈w , x 〉
glb( suffix ){〈x 〉, 〈y〉} = 〈 〉

•

Suffix upper bounds

Intent

The suffix upper bounds of a set of streams are all those streams that have as
suffixes every stream in the set.

Laws

Law 36.19 The set of suffix upper bounds is an enumerable chain; this chain may
be empty.

[X ] a : P1 streamX `
upperBound( suffix )a ∈ enumerableChain( suffix )

For example

upperBound( suffix ){〈x , y〉, 〈z , x , y〉} =
{〈z , x , y〉, 〈x , z , x , y〉, 〈y , z , x , y〉, 〈z , z , x , y〉, . . .}

upperBound( suffix ){〈x 〉, 〈y〉} = ∅

Law 36.20 The chain of suffix upper bounds is non-empty precisely when the
argument is a non-empty suffix-chain, in which case it has a least upper bound.
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[X ] ` chain1( suffix )[X ] = dom(lub( suffix )[X ])

For example

lub( suffix ){〈x , y〉, 〈z , x , y〉} = 〈z , x , y〉

Law 36.21 The suffix least upper bound is the longest stream.

[X ] a : chain1( suffix )[X ] ` lub( suffix )a = rev(
⋃

(rev(| a |)))

•

Infix lower bounds

Intent

The infix lower bounds of a set of streams are all those streams that are infixes of
every stream in the set.

Laws

Law 36.22 The set of infix lower bounds always contains at least the empty
stream.

[X ] a : P1 streamX ` 〈 〉 ∈ lowerBound( infix )a

For example

lowerBound( infix ){〈x , y , z 〉, 〈x , y , y , z 〉} = {〈 〉, 〈x 〉, 〈y〉, 〈z 〉, 〈x , y〉, 〈y , z 〉}

Law 36.23 The chain of infix lower bounds has a greatest lower bound, the
‘longest common infix’, for non-empty infix-chains.

[X ] ` chain1( infix )[X ] ⊆ dom(lub( infix )[X ])

For example

glb( infix ){〈x 〉, 〈z , x 〉, 〈z , x , y〉} = 〈x 〉

Greatest lower bounds may also exist for non infix-chains.

For example

glb( infix ){〈x , y〉, 〈y , z 〉} = 〈y〉

•
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Infix upper bounds

Intent

The infix upper bounds of a set of streams are all those streams that have as infixes
every stream in the set.

Laws

Law 36.24 The set of infix upper bounds of a set of finite streams is a non-empty
set. (The set of upper bounds contains at least every concatenation of all elements
of a.)

[X ] a : P1 strX ` upperBound( infix )a 6= ∅

For example

upperBound( infix ){〈x 〉, 〈y , z 〉} =
{〈x , y , z 〉, 〈y , z , x 〉, 〈z , x , y , z 〉, 〈z , y , z , x 〉, 〈x , z , y , z 〉, . . .}

upperBound( infix ){〈x , y〉, 〈z , x , y〉} =
{〈z , x , y〉, 〈z , x , y , x 〉, 〈x , z , x , y〉, 〈z , x , y , y〉, . . .}

upperBound( infix ){〈x , x , x , . . .〉, 〈y , y , y , . . .〉} = ∅

Law 36.25 The set of infix upper bounds has a least upper bound if the argument
is a non-empty infix-chain.

[X ] ` chain1( infix )[X ] = dom(lub( infix )[X ])

For example

lub( infix ){〈x 〉, 〈z , x , y〉} = 〈z , x , y〉

•
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Manipulating streams and
sequences

In this chapter we define relations designed mainly for work with streams or se-
quences. However, if they are capable of being used in more general contexts, we
give more general definitions, and do not restrict the arguments to be streams or
sequences.

In other cases the given definition applies only to streams or sequences, but we
frame it to allow extension to more general cases by providing a weaker declaration
and choosing as far as possible forms of definition which generalise easily. Sensible
generalisations of the definitions should let the various laws remain true on the
extended domains (for example, a sensible generalisation of the definition of rev
should preserve the law that it is self-inverse).

• reverse a finite numbered set: rev

• head, tail, last, front

• extraction, coextraction: ( � ), ( � )

• filtering, cofiltering: ( � ), ( � )

• paths

Reversal

Intent

Reverse the order that the range elements appear in a finite numbered set, pre-
serving the domain.
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Definition

[X ]
rev : (A 7→ X ) 7→ (A 7→ X )

( λ f : R 7 7→ X •
{ x , y : dom f | #{ z : dom f | z < x } = #{ z : dom f | y < z } •

x 7→ f y } )
⊆ rev

Examples

1. rev{-2 7→ a, 3 7→ b, π 7→ c, 42 7→ d} = {-2 7→ d , 3 7→ c, π 7→ b, 42 7→ a}
2. rev n〈a, b, c, d〉 = n〈d , c, b, a〉
3. rev〈a, b, c, d〉 = 〈d , c, b, a〉

Laws

Law 37.1 Reversal is a bijection.

[X ] ` (R 7 7→ X ) C rev ∈ (R 7 7→ X ) �→ (R 7 7→ X )

Law 37.2 Reversal is self-inverse.

[X ] s : R 7 7→ X ` rev(rev s) = s

Law 37.3 Reversal preserves the domain of the function.

[X ] s : R 7 7→ X ` dom s = dom(rev s)

Law 37.4 Reversing the empty and singleton functions has no effect; reversing a
concatenation is the same as concatenating the reversals in the other order.

[X ] ` rev ∅[R× X ] = ∅[R× X ]

[X ] i : R; x : X ` rev{i 7→ x} = {i 7→ x}
[X ] s , t : strX | (s , t) ∈ dom( a ) ` rev(s a t) = rev t a rev s
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Law 37.5 Performing an operation pointwise on the members of a stream, then
reversing it, yields the same result as reversing it first, then performing the opera-
tion.

[X ,Y ] s : R 7 7→ X ; f : X → Y ` rev(f ◦ s) = f ◦ (rev s)

Law 37.6 For finite streams and sequences, reversal reduces to the simpler defi-
nition:

[X ] s : strX ` rev s = λ n : dom s • s(max(dom s)− n + min(dom s))

[X ] s : seqX ` rev s = λ n : dom s • s(#s − n + 1)

•

head, last, tail, front

Intent

We define some operations for taking apart streams and sequences.

Definition

head can be applied to any numbered set whose domain has a minimum element:
it gives the value indexed by that minimum element.

head[X ] == λ s : A 7→ X | dom s ∈ dom min • s(min(dom s))

tail can be applied to any numbered set with an enumerable domain. It removes
the head element and moves all the indices down one place.

tail[X ] == λ s : A 7→ X | dom s ∈ enumerableChain( < ) •
{ x , y : dom s | x < y ∧ ¬ ( ∃ z : dom s • x < z < y ) • x 7→ s y }

last can be applied to any numbered set whose domain has a maximum element:
it gives the value indexed by that maximum element.

last[X ] == λ s : A 7→ X | dom s ∈ dom max • s(max(dom s))

front can be applied to any numbered set with a domain totally ordered by ‘less
than’. It includes all elements except the last one, if any (that is, the one where
there is no element with a greater index).
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front[X ] == λ s : A 7→ X | (dom s)2× ∩ ( < ) ∈ totalOrder(dom s) •
{ p, q : s | p.1 < q .1 • p }

Laws

Law 37.7 For streams, tail and front reduce to the simpler definitions:

[X ] s : streamX ` tail s = { m, n : dom s | n = m + 1 • m 7→ s n }
[X ] s : streamX ` front s = { m, n : dom s | n = m + 1 • m 7→ s m }

Law 37.8 head is a partial surjection. Its domain is any numbered set whose
domain has a minimum element; this includes all non-empty streams and sequences.

[X ] ` head[X ] ∈ (A 7→ X ) 7→→ X

[X ] ` dom head = { s : A 7→ X | dom s ∈ dom min }
[X ] ` stream1 X C head ∈ stream1 X →→ X

Law 37.9 tail is a partial function. Its domain is any numbered set with an
enumerable domain; this includes all streams and sequences.

[X ] ` tail[X ] ∈ (A 7→ X ) 7→ (A 7→ X )

[X ] ` dom tail = { s : A 7→ X | dom s ∈ enumerableChain( < ) }
[X ] ` streamX C tail ∈ streamX →→ streamX

Law 37.10 last is a partial surjection. Its domain is any numbered set whose
domain has a maximum element; this includes all non-empty finite streams and
sequences.

[X ] ` last[X ] ∈ (A 7→ X ) 7→→ X

[X ] ` dom last = { s : A 7→ X | dom s ∈ dom max }
[X ] ` str1 X C head ∈ str1 X →→ X

Law 37.11 front is a partial function. Its domain is any numbered set with a
domain totally ordered by ‘less than’; this includes all streams and sequences.

[X ] ` front[X ] ∈ (A 7→ X ) 7→ (A 7→ X )

[X ] ` dom front = { s : A 7→ X | (dom s)2× ∩ ( < ) ∈ totalOrder(dom s) }
[X ] ` streamX C front ∈ streamX →→ streamX
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Law 37.12 For a non-empty sequence, the head is the element indexed by 1. For
a non-empty finite sequence, the last is the element indexed by the largest index,
which is the length of the sequence.

[X ] s : sequence1 X ` head s = s 1

[X ] s : seq1 X ` last s = s(#s)

Law 37.13 The head element of a reversed stream is the last element of the orig-
inal stream; the tail of a reversed stream is the reverse of the front of the original
stream.

[X ] s : str1 X ` head(rev s) = last s

[X ] s : str1 X ` last(rev s) = head s

[X ] s : str1 X ` tail(rev s) = rev(front s)

[X ] s : str1 X ` front(rev s) = rev(tail s)

Law 37.14 For numbered sets with a maximum domain element, front is simply
the same set with that maximum element removed:

[X ] s : A 7→ X | dom s ∈ dom max ` front s = {max(dom s)} −C s

Law 37.15 The head and last of a singleton sequence are simply that element.
The tail and front of a singleton sequence are the empty sequence.

[X ] x : X ` head〈x 〉 = last〈x 〉 = x

[X ] x : X ` tail〈x 〉 = front〈x 〉 = 〈 〉

Law 37.16 tail is prefix and suffix order-preserving (§26).

[X ] s : seq1 X ; t : sequence1 X | s prefix t ` (tail s) prefix(tail t)

[X ] s , t : sequence1 X | s suffix t ` (tail s) suffix(tail t)

Law 37.17 front is prefix and suffix order-preserving (§26).

[X ] s , t : seq1 X | s suffix t ` (front s) suffix(front t)

[X ] s , t : seq1 X | s suffix t ` (front s) suffix(front t)
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Law 37.18 The head of a non-empty concatenation is the head of the first se-
quence; the tail of a non-empty concatenation is the tail of the first sequence
concatenated with the second sequence. The last of a non-empty concatenation is
the last of the second sequence; the front of a non-empty concatenation is the first
sequence concatenated with the front of the second sequence.

[X ] s : seq1 X ; t : sequenceX ` head(s a t) = head s

[X ] s : seq1 X ; t : sequenceX ` tail(s a t) = tail s a t

[X ] s : seqX ; t : seq1 X ` last(s a t) = last t

[X ] s : seqX ; t : sequence1 X ` front(s a t) = s a front t

Law 37.19 Concatenating the head and tail of a non-empty stream yields the
original stream. Concatenating the front and last of a non-empty finite stream
yields the original stream.

[X ] s : stream1 X ; n : Z | n = min(dom s) ` s = n〈head s〉a tail s

[X ] s : str1 X ; n : Z | n = min(dom s) ` s = front s a
n〈last s〉

•

Extraction and filtering

Intent

Form a new sequence by removing selected items from a sequence.

Definition

extraction, coextraction:

function 40 leftassoc ( � )

function 40 leftassoc ( � )

[X ]
� , � : P A× (A 7→ X ) 7→ (A 7→ X )

( λ a : P A; f : A 7→ X | a C f ∈ dom squash • squash(a C f ) )
⊆ ( � )

∀ a : P A; f : A 7→ X | (A \ a, f ) ∈ dom( � ) •
a � f = (A \ a) � f
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Extraction takes a set of indices and a numbered set, retains only those tuples from
the numbered set whose indices are in the index set, and squashes the result, to
yield an sequence.

Coextraction is similar, except that it removes tuples whose indices are in the index
set.

We define extraction only for squashable arguments. We define coextraction in
terms of extraction, so any later extension of extraction automatically extends the
definition of coextraction suitably.

filtering, cofiltering:

function 40 leftassoc ( � )

function 40 leftassoc ( � )

[X ]
� , � : (A 7→ X )× P X 7→ (A 7→ X )

( λ f : A 7→ X ; b : P X | f B b ∈ dom squash • squash(f B b) )
⊆ ( � )

∀ f : A 7→ X ; b : P X | (f ,X \ b) ∈ dom( � ) •
f � b = f � (X \ b)

Filtering is similar to extraction, except that the filter set is a set of sequence
elements, rather than sequence indices.

Examples

1. {2, 3, 8} � 〈a, b, c, d , e, f 〉 = 〈b, c〉
2. {2, 4, 8} � {4 7→ a, 2 7→ b, 1 7→ c} = 〈b, a〉
3. {2, 3} �〈a, b, c, d , e, f 〉 = 〈a, d , e, f 〉
4. 〈a, b, c, d , e, f 〉 � {e, f , h} = 〈e, f 〉
5. 〈a, b, c, d , e, f 〉 �{e, f , h} = 〈a, b, c, d〉
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Laws

Law 37.20 Coextraction can be expressed in terms of squash. Cofiltering can be
expressed in terms of squash.

[X ] a : P A; f : A 7→ X | a −C f ∈ dom squash ` a � f = squash(a −C f )

[X ] f : A 7→ X ; b : P X | f −B b ∈ dom squash ` f � b = squash(f −B b)

Law 37.21 Extracting and filtering the empty sequence has no effect.

[X ] a : P A ` a � ∅[A× X ] = ∅[A× X ] = a � ∅[A× X ]

[X ] b : P X ` 〈 〉 � b = 〈 〉 = 〈 〉 � b

Law 37.22 Extracting and filtering on the empty set retains nothing. Coextract-
ing and cofiltering on the empty set removes nothing.

[X ] f : A 7→ X ` ∅ � f = 〈 〉 = f � ∅
[X ] s : sequenceX ` ∅ � s = s = s � ∅

Law 37.23 Extraction retains everything if the extracting set contains all the
sequence indices. Filtering retains everything if the filtering set contains all the
sequence elements.

[X ] a : P A; f : A 7→ X | a C f ∈ dom squash ` dom f ⊆ a ⇔ a � f = f

[X ] f : A 7→ X ; b : P X | f B b ∈ dom squash ` ran f ⊆ b ⇔ f � b = f

Law 37.24 Filtering twice filters on the intersection.

[X ] s : sequenceX ; a, b : P X ` (s � a) � b = s � (a ∩ b)

Law 37.25 Extracting and filtering preserve injectivity.

[X ] a : P A; f : A 7� X | a C f ∈ dom squash ` a � f ∈ A 7� X

[X ] a : P A; f : A 7� X | a −C f ∈ dom squash ` a � f ∈ A 7� X

[X ] f : A 7� X ; b : P X | f B b ∈ dom squash ` f � b ∈ A 7� X

[X ] f : A 7� X ; b : P X | f −B b ∈ dom squash ` f � b ∈ A 7� X
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Law 37.26 Extracting and filtering do not increase the length of the sequence.

[X ] a : P A; s : seqX ; b : P X `
max{#(a � s), #(a � s), #(s � b), #(s � b)} ≤ #s

Law 37.27 Filtering distributes through concatenation.

[X ] s : seqX ; t : sequenceX ; b : P X ` (s a t) � b = (s � b) a (t � b)

[X ] s : seqX ; t : sequenceX ; b : P X ` (s a t) � b = (s � b) a (t � b)

•

Paths and steps

Intent

A path in a homogeneous relation is a finite sequence of vertices, each adjacent
pair in the sequence being connected by an arc in the relation.

The steps of a stream is the relation comprising the set of consecutive pairs of
elements of the stream.

Definition

paths:

path[X ] == λ r : X ↔ X •
{ s : seqX | ∀m, n : dom s | m + 1 = n • s m 7→ s n ∈ r }

non-empty paths:

path1[X ] == λ r : X ↔ X • path r \ {∅}

injective paths:

ipath[X ] == λ r : X ↔ X • path r ∩ iseqX

non-empty injective paths:

ipath1[X ] == λ r : X ↔ X • ipath r \ {∅}
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non-trivial paths:

path2[X ] == λ r : X ↔ X • { p : path r | 2 ≤ #p }

non-trivial injective paths:

ipath2[X ] == λ r : X ↔ X • { p : ipath r | 2 ≤ #p }

steps:

steps[X ] == λ s : streamX • { m, n : dom s | m + 1 = n • s m 7→ s n }

Examples

1. ∀ r : X ↔ X • 〈 〉 ∈ path r

2. ∀ x : X ; r : X ↔ X • 〈x 〉 ∈ path r

3. {〈2, 4, 16, 256〉, 〈3, 9, 81〉} ⊆ path square

4. steps〈 〉 = ∅
5. steps〈2〉 = ∅
6. steps〈2, 4, 16, 256〉 = {2 7→ 4, 4 7→ 16, 16 7→ 256}

Laws

Law 37.28 path is a total function.

[X ] ` path ∈ (X ↔ X ) → P(seqX )

Law 37.29 The relational iterations of a relation is the set of all (head, last) pairs
of length n + 1.

[X ] r : X ↔ X ; n : N ` rn = { s : path r | #s = n + 1 • head s 7→ last s }

For example

{3 7→ 9, 9 7→ 81, 81 7→ 6561} ⊆ square
〈3, 9, 81, 6561〉 ∈ path square
3 7→ 6561 ∈ square3
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Law 37.30 The transitive closure of a relation is the set of all (head, last) pairs
from all the non-trivial paths.

[X ] r : X ↔ X ` r+ = { s : path2 r • head s 7→ last s }

Law 37.31 The reflexive transitive closure of a relation is the set of all (head,
last) pairs from all the non-empty paths.

[X ] r : X ↔ X ` r ∗ = { s : path1 r • head s 7→ last s }

Law 37.32 The intransitive relations are those that have paths with (head, last)
pairs also in the relation only if those paths are of length two.

[X ] ` intransitiveX =
{ r : X ↔ X | ∀ s : path1 r | head s 7→ last s ∈ r • #s = 2 }

Law 37.33 The acyclic relations are those that have only injective paths.

[X ] ` acyclicX = { r : X ↔ X | path r = ipath r }

Law 37.34 The strongly connected relations are those that have a non-empty
path from every domain vertex to every range vertex.

[X ] ` stronglyConnectedX =
{ r : X ↔ X | ∀ x : dom r ; y : ran r •

∃ p : path1 r • x = head p ∧ y = last p }

Law 37.35 steps is the inverse of path

[X ] s : seqX | 2 ≤ #s ` s ∈ path(steps s)

Law 37.36 For a non-empty finite stream, the length of the stream is one more
than the size of the induced relation. (So if p is a path, then #p is the number of
vertices, which is one more than the number of links, or steps.)

[X ] s : str1X ` #s = 1 + #(steps s)

Law 37.37 The steps of a path comprise a subset of the original relation.
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[X ] r : X ↔ X ` ∀ s : path r • steps s ⊆ r

Law 37.38 For every non-empty path s in relation r , there is a non-empty injec-
tive path s ′ in r that beginnings and ends at the same place as s , but uses only
some of the steps. (The injective path misses out any “loops” in the non-injective
path.)

[X ] r : X ↔ X ` ∀ s : path1 r •
∃ s ′ : ipath1 r | steps s ′ ⊆ steps s • head s ′ = head s ∧ last s ′ = last s

•



Chapter 38

Sequenced families of sets

Earlier we introduced the functions +/ and ∗/, for distributed sum and product,
and the function distributeOverLabelledSet, for general distribution of an abelian
monoid. Now we relax the requirement that the monoid be abelian.

The minimum assumptions to allow meaningful distribution are that the function
is a monoid, and that we are distributing over a finite sequence (since the sequence
gives an order, the monoid does not have to be abelian). The more general function
distributeOverSeq allows us to define distributed functions when the monoid is not
abelian.

• distribute a monoid over a finite sequence: distributeOverSeq

• distributed overriding: ⊕/

• distributed composition: o
9/, ◦/

• distributed concatenation: a/

APL uses the convention of modifying an infix function to show distribution across
a finite sequence by appending the character ‘/’ [Iverson 1962]. It is there referred
to as ‘reduction’, and the name ‘reduce’ is also used in other languages such as
Common Lisp [Steele, Jr. 1990]. In other literature on functional programming,
the operation is sometimes referred to as ‘folding’ (see for example [Bird & Wadler
1988]).

Distributed override is also defined in [Hayes 1987, p60], and in [Sufrin 1986, 2.6.11]
named with a ‘fat’ override symbol.

Distributed composition is also defined in [Hayes 1987, p15], and in [Sufrin 1986,
2.6.11] named with a ‘fat’ composition symbol.
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Distributing a monoid over a sequence

Definition

distributeOverSeq[X ] ==
{ Monoid[X ]; � / : seqX 7→ X |

� / ∈ seq g → g
∧ � / 〈 〉 = e
∧ ( ∀ x : g • � / 〈x 〉 = x )

∧ ( ∀ s , t : seq g • � / (s a t) = � / s � � / t ) }

Laws

Law 38.1 distributeOverSeq is a total function, that yields a total surjection on
the semigroup set g .

[X ] ` distributeOverSeq[X ] ∈ Monoid[X ] → seqX 7→ X

[X ] Monoid[X ] ` distributeOverSeq θ Monoid[X ] ∈ seq g →→ g

Law 38.2 The relationship between distributeOverSeq and distributeOverLabelled-
Set is:

[X ] AbelianMonoid[X ] `
distributeOverSeq θ AbelianMonoid[X ]

= distributeOverLabelledSet(N1, g , ( � ))

Law 38.3 distributeOverSeq can be broken up as follows:

[X ] `
distributeOverSeq[X ] =

{ Monoid[X ]; � / : seqX → X |
� / 〈 〉 = e
∧ ( ∀ s : seq1 X •

� / (〈head s〉a tail s) = head s �(� / (tail s)) ) }

•
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Distributed override

Intent

Distributed override acts on a sequence of relations, of which an important special
case is when they are functions. The operation does an effective override on them,
beginning to end.

Definition

⊕/ [X ,Y ] == λ s : sequence(X ↔ Y ) •
{ r :

⋃
(ran s) | ∃ n : dom s | r ∈ s n •
∀m : dom s | m > n • r .1 6∈ dom(s m) }

The argument can be a possible infinite sequence of relations.

Laws

Law 38.4 Distributed override is a total surjection.

[X ,Y ] ` ⊕/ ∈ sequence(X ↔ Y ) →→ (X ↔ Y )

Law 38.5 Overriding the empty sequence gives the empty relation; overriding the
singleton sequence gives the element; overriding a length two sequence gives the
two elements composed by the binary form of the operator.

[X ,Y ] ` ⊕/ ∅[A× (X ↔ Y )] = ∅[X × Y ]

[X ,Y ] r : X ↔ Y ` ⊕/ 〈r〉 = r

[X ,Y ] r , s : X ↔ Y ` ⊕/ 〈r , s〉 = r ⊕ s

Law 38.6 Many of the properties of binary overriding can be generalised to dis-
tributed overriding. Law 20.11, that the domain of an overriding is the union of
the individual domains, generalises to:

[X ,Y ] s : seq(X ↔ Y ) ` dom(⊕/ s) =
⋃

(ran(dom ◦ s))

Law 38.7 Our definition of ⊕/ is bigger than that obtained by using distribute-
OverSeq:
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[X ,Y ] `
distributeOverSeq〈| g == X ↔ Y , � == ( ⊕ )[X ,Y ], e == ∅[X × Y ] |〉

⊆ ⊕/

Law 38.8 Complete distributed override is linked to maximal iteration, do, by
relational iteration:

[X ] r : X ↔ X ` do r = ⊕/( λ n : N • rn )

•

Distributed composition

Intent

Distributed composition acts on a finite sequence of homogeneous relations, and
forms the result of composing them all with each other, beginning to end. We can
pronounce the application of this function as ‘compose up’.

Definition

distributed relational composition:

o
9/ [X ] ==

distributeOverSeq〈| g == X ↔ X , � == ( o
9 )[X ,X ,X ], e == idX |〉

distributed functional composition:

◦/ [X ] ==
distributeOverSeq〈| g == X ↔ X , � == ( ◦ )[X ,X ,X ], e == idX |〉

Laws

Law 38.9 Distributed relational composition is a total surjection.

[X ] ` o
9/ [X ] ∈ seq(X ↔ X ) →→ (X ↔ X )

Law 38.10 Composing the empty sequence gives the identity; composing the sin-
gleton sequence gives the element; composing a length two sequence gives the two
elements composed by the binary form of the operator.



388 Chapter 38. Sequenced families of sets

[X ] ` o
9/ 〈 〉 = idX

[X ] r : X ↔ X ` o
9/ 〈r〉 = r

[X ] r , s : X ↔ X ` o
9/ 〈r , s〉 = r o

9 s

Law 38.11 Some of the properties of binary composition can be generalised to
distributed composition. Law 20.23, that inverting a composition is the same as
composing the inversions in the other order, generalises to:

[X ] s : seq(X ↔ X ) ` (o
9/ s)∼ = o

9/ (rev(( ∼) ◦ s))

Law 38.12 Relational iteration can be expressed as a distributed relational com-
position.

[X ] r : X ↔ X ; n : N ` rn = o
9/( λ i : 1 . . n • r )

Similar laws to those given above for distributed relational composition apply to
distributed functional composition.

•

Distributed concatenation

Definition

a/[X ] ==
λ s : sequence(sequenceX ) |

s ∈ seq(sequenceX ) ∧ ran(front s) ⊆ seqX
∨ ran s ⊆ seqX •

{ m : dom s ; n : N+ | n ∈ dom(s m) •
Σ ( λ i : 1 . . (m − 1) • #(s i) ) + n 7→ s m n }

The argument s can be a finite sequence of sequences where only the last of the
constituent sequences is allowed to be infinite, or can be a possibly infinite sequence
of finite sequences.

The application of this function may be pronounced ‘concatenate up’.



389

Laws

Law 38.13 Distributed concatenation is a partial surjection.

[X ] ` a/[X ] ∈ sequence(sequenceX ) 7→→ sequenceX

Law 38.14 Many of the properties of binary concatenation can be generalised to
distributed concatenation. Law 35.3, that the length of a concatenation is the sum
of the individual lengths, generalises to:

[X ] s : seq seqX ` #(a/ s) = Σ (# ◦ s)

Law 38.15 Our definition of a/ is bigger than that obtained by using distribute-
OverSeq:

[X ] ` distributeOverSeq〈| g == seqX , � == ( a )[X ], e == ∅[A× X ] |〉
⊆ a/

•
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Bags

A set is an unordered collection of distinct elements. We model order using se-
quences. The usual way to model the number of occurrences of each element is to
use a bag, or multi-set.

A natural way to model a bag in Z is to use a function with some numerical range,
X 7→ A. The domain is the bag elements, each mapped to the number of times it
occurs in the bag.

[Hayes 1990] suggests that Z bags not be restricted to a natural number range (as
they are in ZRM, [Spivey 1992]). Hayes widens the range to Z, defines a rich set
of bag operations, and gives a variety of examples of their use. We have started
from this idea, and choose a wider bag domain still, in our case R.

• bags, non-empty bags, finite bags: bag X , bag1 X , fbag X

• number of elements in a bag: count

• bag sum: ( ] )

• building a bag: items

• bag display

• mean, median, mode

• prime factors

Bags

Intent

A bag is a function from items to non-zero real numbers. Each item is mapped to
the number of times that item occurs in the bag (zero if it is not in the domain of
the bag).

390



391

We choose to use a partial function, with zero not in the range, rather than a
total function, to have the desirable property that X ⊆ Y ⇒ bag X ⊆ bag Y .
This follows from the order-preserving property of 7→ (law 21.6), whereas → is not
order preserving on its domain argument (law 21.14).

Hence a bag is not a suitable model in cases where we wish to distinguish an
element being present zero times from an element being absent.

Definition

bags:

generic (bag )

bag X == X 7→ R±

non-empty bags:

bag1 X == bag X \∅

finite bags:

fbag X == X 7 7→ R±

number of elements in a bag:

We define a totalised version of the bag function, count , to give an always-applicable
number of occurrences of an element in a bag (that is, including the case of zero).

count[X ] == λ b : bag X • ( λ x : X • 0 )⊕ b

If count is used on a bag on numbers, it may be advisable to instantiate its generic
parameter explicitly, as for example count[R], since otherwise the whole of A will
be implied, which may not be what was wanted.

Examples

1. {∅ 7→ 1, {x , y , z} 7→ 2, {x} 7→ 2, {x , y} 7→ 3} ∈ bag P X

2. {∅ 7→ -1, {x , y , z} 7→ 2÷ 3, {x} 7→ π, {x , y} 7→ 3} ∈ bag P X

3. {-3 7→ 1, 3 7→ 2, π 7→ 2, 2 7→ 3} ∈ bag R
4. count{∅ 7→ 1, {x , y , z} 7→ 2, {x} 7→ 2, {x , y} 7→ 3}∅ = 1

5. count{∅ 7→ 1, {x , y , z} 7→ 2, {x} 7→ 2, {x , y} 7→ 3}{y} = 0
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Laws

Law 39.1 count is a total surjection.

[X ] ` count ∈ bag X →→ X → R

Law 39.2 If we apply count to a bag, then range subtract the zero elements, we
restore the original bag.

[X ] b : bag X ` (count b)−B {0} = b

•

Functions of a single bag

Intent

To apply any function f : R → R to bag frequencies we write f ◦ b. So to multiply
all bag frequencies by some constant r : R (known as bag scaling, ⊗, in ZRM) we
write

( λ x : R • r ∗ x ) ◦ b

•

Functions of two bags

Intent

Apply a numeric operation to two bags.

Definition

bag compose:

To apply a numeric relation r to the frequencies of a pair of bags, b and c, we first
convert the bags to total functions suitable for bicomposition, then bicompose,
then convert the result back to a bag.

bagcompose[X ] ==
λ r : A2× ↔ A • λ b, c : bag X •

bicompose r(count b, count c)−B {0}
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sum of two bags:

function 30 leftassoc ( ] )

] [X ] == λ b, c : bag X • bagcompose( + )(b, c)

Examples

1. {x 7→ 4} ] {x 7→ 5} = {x 7→ 9}
2. {x 7→ -4} ] {x 7→ 5} = {x 7→ 1}
3. {x 7→ -4} ] {x 7→ 4} = ∅
4. {x 7→ -4} ] {y 7→ 4} = {x 7→ -4, y 7→ 4}
5. To subtract bag frequencies of two bags, allowing negative results:

bagcompose( − )(b, c)

6. To subtract bag frequencies of two bags, rounding negative results up to zero
(known as bag subtraction, ∪-, in ZRM):

bagcompose( λ x , y : R • max{x − y , 0} )(b, c)

7. To form a bag that, for each item, picks the larger frequency of its argument
bags:

bagcompose( λ x , y : R • max{x , y} )(b, c)

8. To form a bag that, for each item, picks the smaller frequency of its argument
bags:

bagcompose( λ x , y : R • min{x , y} )(b, c)

Laws

Law 39.3 ] is a total surjection.

[X ] ` ( ] )[X ] ∈ (bag X )2× →→ bag X

•



394 Chapter 39. Bags

Building a bag

Intent

Define items , to convert a labelled set of items (including a finite stream or se-
quence) into the corresponding bag (whose range is necessarily confined to natural
numbers).

Definition

items[L,X ] == λ f : L 7→ X | ( ∀ x : X • finite(f B {x}) ) •
( λ x : X • #(f B {x}) )

Compared with the version in ZRM, our definition has an extra generic parameter,
since we allow any labelled family, not just a sequence.

Examples

1. items〈 〉 = ∅
2. items〈a, b, a, b, c, a, b, c, a〉 = {a 7→ 4, b 7→ 3, c 7→ 2}

Laws

Law 39.4 items is a function. Its domain is those labelled sets where each labelled
element occurs only a finite number of times. Its range is bags whose ranges
themselves are confined to natural numbers.

[L,X ] ` items[L,X ] ∈ (L 7→ X ) 7→ bag X

[L,X ] ` dom items[L,X ] = { f : L 7→ X | ∀ x : X • f B {x} ∈ dom # }
[L,X ] ` ran items[L,X ] = X 7→ N1

Law 39.5 The domain of the bag formed from a stream is the same as the range
of the stream.

[X ] s : strX ` dom(items s) = ran s

Law 39.6 Concatenating streams, then forming a bag, gives the same result as
forming the individual bags, then adding them.
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[X ] s , t : strX ` items(s a t) = items s ] items t

Law 39.7 Two streams form the same bag precisely when they are permutations.

[X ] s , t : strX ` items s = items t ⇔ ( ∃ f : dom s �→ dom t • s = t ◦ f )

•

Bag display

Intent

Write an explicit bag.

Definition

There are two simple ways to explicitly describe an arbitrary bag:

1. using a set display, for example: {x 7→ 3, y 7→ 2, z 7→ 1}
2. for positive integer frequencies only, by applying items to a sequence display,

for example: items〈x , x , x , y , y , z 〉

The second of these is more economical when it applies at all and when the average
bag frequency is less than 2, but for high bag frequencies only the first is viable.
For example the bag {x 7→ 3472, y 7→ 2963, z 7→ 1444} is easily described as such,
but not reasonably by the second method. The second method is not possible for
negative and fractional bag frequencies.

In ZRM special bags brackets [[ and ]] are defined, equivalent in meaning to the
second display method above, that is as items applied to a sequence display. Stan-
dard Z gives us the power to define such bag brackets by use of a template, if we
so choose.

For example, as

function ([[, , ]])
[[, , ]] [X ] == λ s : seqX • items s

We chose not to make this definition here, because of its limited applicability and
the existence of suitable alternatives. So the symbols [[ and ]] are still available for
other uses.
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Examples

1. items〈x , x , x , y , z , z 〉 = {x 7→ 3, y 7→ 1, z 7→ 2}
2. items〈x , x , z 〉 ] items〈y , x 〉 = items〈x , x , x , y , z 〉

•

Further bag operations

Intent

We provide examples of how further operations may be defined on bags.

Examples

1. To add up the total number of elements in a finite bag b, we write

sizebag [X ] == λ b : fbag X • +/ b

2. To add up the total numeric value of a finite bag of numbers b:

sumbag == λ b : fbag R • +/( λ x : dom b • x ∗ (b x ) )

3. To multiply up the total numeric value of a finite bag of numbers b:

productbag == λ b : fbag R • ∗/( λ x : dom b • x ∗∗(b x ) )

Averages example

The arithmetic mean of a finite bag of real numbers can be defined as the total
numeric value divided by the total number of elements:

mean == λ b : fbag R | +/ b 6= 0 • +/( λ x : dom b • x ∗ (b x ) )÷+/ b

This definition works for negative and fractional occurrences, too, to give a weighted
mean.

1. mean(items〈0, 3, 4, 1, 2, 2〉) = 2

2. x : R; y : R± ` mean{x 7→ y} = x
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3. x , x ′, y , y ′ : R | y +y ′ 6= 0 ` mean{x 7→ y , x ′ 7→ y ′} = (x ∗y +x ′∗y ′)÷(y +y ′)

4. mean{2 7→ 1, 4 7→ 1} = (2 ∗ 1 + 4 ∗ 1)÷ (1 + 1) = 3

5. mean{-2 7→ 1, -4 7→ 1} = (-2 ∗ 1 + -4 ∗ 1)÷ (1 + 1) = -3

6. mean{2 7→ -1, 4 7→ -1} = (2 ∗ -1 + 4 ∗ -1)÷ (-1 + -1) = 3

7. mean{2 7→ -2, 4 7→ 1} = (2 ∗ -2 + 4 ∗ 1)÷ (-2 + 1) = 0

The median (middle) of a bag of totally ordered elements can be defined as:

median[X ] == λ to : totalOrderX • λ b : X 7 7→ R •
{ m : dom b |

+/(successors(to \ idX )m C b)
≤ +/(predecessors(to ∪ idX )m C b)

∧ +/(predecessors(to \ idX )m C b)
≤ +/(successors(to ∪ idX )m C b) }

This definition makes no restrictions on the frequencies (not even that they be
non-zero). It says that for every median value m, the number of bag elements
strictly greater than m (according to the order) do not exceed the number below
and including m, and also the number of bag elements strictly less than m do not
exceed the number above and including m.

When the generic parameter is (real) numbers, and total order is the usual order
on those numbers, to = ( < )[R] or to = ( ≤ )[R] , this definition reduces to

medianR == λ b : R 7 7→ R • { m : dom b |
+/({ x : R | m < x }C b) ≤ +/({ x : R | x ≤ m }C b)
∧ +/({ x : R | x < m }C b) ≤ +/({ x : R | m ≤ x }C b) }

If the frequencies are all (and at least one) positive, the result is a set of one or
two elements.

1. medianR{x 7→ 1} = {x}
2. medianR(items〈0, 0, 2, 3, 7〉) = {2}
3. medianR(items〈0, 0, 2, 3, 7, 9〉) = {2, 3}
4. medianR{1 7→ 1÷ 4, 2 7→ 3÷ 4, } = {2}

If the frequencies are all non-negative, and at least one positive, as when one
writes median to(count b), or median( < )(count[R]b) for a bag of numbers, the
result may be a singleton set, or one containing two values corresponding to positive
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frequencies together with all values of the type between those values corresponding
to zero frequencies. This may allow appropriate interpolation.

If any frequencies are negative, the behaviour and its interpretation are left as an
exercise for the reader.

The mode (most commonly occurring elements) of a bag of items can be defined
as:

mode[X ] == λ b : bag X • { x : X | ∀ y : X • count b y ≤ count b x }

1. mode ∅ = ∅
2. mode(items〈0, 3, 3, 1, 1, 2, 3〉) = {3}
3. mode(items〈∅, {x , y , z}, {x , y , z}, {x}, {x}, {x , y}〉) = {{x}, {x , y , z}}
4. mode{x 7→ 1, y 7→ 2} = {y}
5. mode{x 7→ -1, y 7→ -2} = X \ {x , y}

since all the other elements are present zero times, more than either x or y

All of sizebag , sumbag , productbag , mean and median to are functions on finite sets
which could be made arguments to makeComplete, thus extending them to apply
to infinite sets where there is convergence.

Prime factors example

Any positive integer greater than one has a unique decomposition into prime fac-
tors. For example, 60 = 2∗2∗3∗5; 45 = 3∗3∗5. In fact, unique factorisation into
powers of primes also applies to all positive rationals, and to all rational powers
of positive rationals. So we can represent such a number by the bag of its prime
factors. Recall that productbag maps a bag of numbers to the product of those
numbers; its inverse maps a number into the bag of its factors. We restrict it
to those numbers that can be uniquely factorised, thuse ensuring that we get a
function.

factor == productbag∼ B (prime 7→ Q)

factor 60 = {2 7→ 2, 3 7→ 1, 5 7→ 1}
factor 45 = {3 7→ 2, 5 7→ 1}
factor 1 = ∅
factor(3÷ 4) = {3 7→ 1, 2 7→ -2}
factor(

√
6) = {2 7→ 1÷ 2, 3 7→ 1÷ 2}
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We can multiply two numbers by adding the relevant prime factors:

n,m : N ` factor(n ∗m) = factor n ] factorm

60 ∗ 45
= productbag(factor 60 ] factor 45)
= productbag({2 7→ 2, 3 7→ 1, 5 7→ 1} ] {3 7→ 2, 5 7→ 1})
= productbag{2 7→ 2, 3 7→ 3, 5 7→ 2}
= 2 ∗∗ 2 ∗ 3 ∗∗ 3 ∗ 5 ∗∗ 2
= 2700

We can raise a number to a power by using bag scaling, multiplying each occurrence
in the bag of factors by that power:

n,m : N ` factor(n ∗∗m) = (factor n) o
9 ( λ x : R • m ∗ x )

factor(60 ∗∗ 3) = {2 7→ 6, 3 7→ 3, 5 7→ 3}
factor(60 ∗∗ -1) = {2 7→ -2, 3 7→ -1, 5 7→ -1}
factor(45 ∗∗ 2) = {3 7→ 4, 5 7→ 2}
factor(45 ∗∗ 1÷ 2) = {3 7→ 1, 5 7→ 1÷ 2}

The greatest common divisor and least common multiple can be found from the
factor representation:

gcd == λ n,m : N1 •
productbag(bagcompose( λ x , y : R • min{x , y} )(factor n, factorm))

lcm == λ n,m : N1 •
productbag(bagcompose( λ x , y : R • max{x , y} )(factor n, factorm))

gcd(60, 45) = productbag{3 7→ 1, 5 7→ 1} = 15
lcm(60, 45) = productbag{2 7→ 2, 3 7→ 2, 5 7→ 1} = 180

Two numbers are coprime if they have no factors in common:

` (coprime ) = { n,m : N2 | disjoint〈dom(factor n), dom(factorm)〉 }

•



400 Chapter 39. Bags



Part VI

Example Specifications





Chapter 40

Changing representations: a
memory map

This chapter illustrates a use of streams and distributed concatenation.

There are many occasions where it is useful to swap between two representations of
a data structure, one in terms of a stream of variable sized structures, one in terms
of a stream of fixed sized primitive elements, often bytes or words. For example:

• Java byte code’s Constant Pool contains a collection of structures, many of
which contain indexes that point to other parts of the pool considered as an
array of words, which indexes must point to the beginning of valid structures.

• Many low level assembly languages with variable length instructions have
flow of control jumps to a memory location, not to an instruction.

Without assuming anything about the detailed internals of the structures and
primitives, we can define a general way of mapping between them.

[STRUCT ,BYTE ]

Let us assume we have some ‘obvious’ flattening of structures into a non-empty
finite sequence of bytes:

flatten : STRUCT → seq1 BYTE

The function is total: all structures can be flattened. Also, all structures have
some content: no structure flattens to an empty sequence. The function may
also be injective, when there is no overloading of structures, so all structures are
represented as different byte streams. (This occurs in the Java Constant Pool case,
where the different kinds of structure include a ‘tag’. C-style unions, on the other
hand, do not include such information, and so their flatten function is not injective,
and hence not invertible.)

403
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We can capture both components of the dual representation in a schema.

• struct is the structured representation

• array is the byte representation

• index provides a mapping from each entry in the structured form to the
corresponding position in the byte form.

StructuredArray1
struct : seq STRUCT
array : seqBYTE
index : iseq N1

array = a/(struct o
9 flatten)

dom index = dom struct

index = { s : seq STRUCT | s ⊂ struct •
1 + #s 7→ 1 + #(a/(s o

9 flatten)) }

Because index is an injection, it is invertible, and so also provides a mapping from
indexes in the byte form back to the corresponding structure. The range of index
is precisely those array indexes that map back to the beginning of valid structures.

In general, the indexing of the structure and byte streams need not start at one.
The byte stream in particular often starts at zero. Let us say that the structures
start indexing at is and the byte representation at ia :

is , ia : Z

We can then write:

StructuredArray
struct : str STRUCT
array : strBYTE
index : istr Z

array = ( λ i : Z • i + ia − 1 ) o
9 (a/(struct o

9 flatten))

dom index = dom struct

struct 6= ∅ ⇒ min(dom struct) = is ∧ min(dom array) = ia

index = { s : str STRUCT | s ⊂ struct •
is + #s 7→ ia + #(a/(s o

9 flatten)) }
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Neural networks

41.1 Introduction

This chapter illustrates a simple use of real numbers, and a use of homogenous
binary relations as graphs, or networks.

41.2 A network

Neural networks are used as pattern recognisers and classifiers. They are so called
because they are (simplistic) models of the way the brain neurons may work.

We model a neural network as a connected graph of nodes.

[NODE ]

41.2.1 A simple network

A Net has the following components.

• net captures the relation between the nodes

• val is the current activation value of the nodes, represented as a mapping
from nodes to their real-valued activations

ActVal == NODE 7→ R

• The connections between nodes have a weight , describing how much of a
node’s activation is passed to the connected node, represented as a mapping
from pairs of nodes to their real-valued weights

Weight == NODE 2× 7→ R
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• The activation function defines how a node’s own activation is related to the
inputs it receives.

• Subsets of the nodes are designated as the input nodes, where the pattern to
be recognised is input to the network, and output nodes, where the network’s
response to the pattern is generated.

Net
net : NODE ↔ NODE

val : ActVal
weight : Weight
activation : R → R
in, out : P NODE

domweight = net ∈ connectedNODE

dom val = vertex net

in ∪ out ⊆ vertex net

The activation function enables thresholding: output from a node occurs only when
the inputs reach some threshold. (In practice the function is usually a differentiable
sigmoid function.)

41.2.2 A feed forward network

A feed forward network has no nodes with outputs feeding back to themselves or
earlier nodes.

FeedForwardNet
Net

net ∈ acyclicNODE

in = root net∼

out = root net

In this case the output nodes are ones not connected to further nodes, that is, the
roots of the graph (remember our convention that the graph relation points from
the leaves to the roots). Similarly, the input nodes are the leaves (or roots of the
inverse graph).
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41.2.3 A layered network

A layered network is a feed forward network where the nodes are arranged in layers,
and nodes in a layer are connected only to nodes in the next layer.

LayeredNet
FeedForwardNet

∃1 s : seq P NODE •
s partition(vertex net)
∧ net ⊆ {i : 1 . . (#s − 1) • s i × s (i + 1) }

Equality holds in the net predicate when each layer is fully connected to the next.

41.3 Pattern Recognition

A recognition step involves presenting the network with some pattern at its input
nodes, and reading off the output it calculates.

Recognise
∆Net
in?, out ! : ActVal

dom in? = in

val ′ = in? ∪ ( λ n : dom val \ in •
Σ λm : predecessors net n • (val ⊕ in?)m ∗ weight(m, n) )

ΞNet \ (val)

out ! = out C val ′

The value of each node becomes the weighted sum of its inputs, passed through
the activation function. The output is then simply the value of the output nodes.
No other component of the net changes during recognition.

41.4 Net Training

In order to recognise patterns successfully, a neural network must be trained; it
must have its weights adjusted to appropriate values.
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Train
∆Net
train : ActVal2× ×Weight → Weight
actual?, correct? : ActVal

dom actual? = dom correct? = out

weight ′ = train((actual?, correct?),weight)

ΞNet \ (weight)

The inputs consist of the actual output the network provided, and the correct
output that it should have provided. The training function uses these and the
current weights, to calculate a better set of weights.

Various training functions are used, depending on network topology and error prop-
erties. One of the most popular is ‘back propagation’, which minimises the squared
error in a layered network with a monotonic, differentiable activation function, by
using a ‘hill climbing’ algorithm. The details of the algorithm are beyond the scope
of this example.

41.5 Further Reading

[Bishop 1995] is a comprehensive textbook on the use of neural networks for pattern
recognition. [Machado & Meira 1995] use MooZ, an object oriented extension to
Z, to classify the various kinds of neural nets in an inheritance hierarchy.
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Kinship

And so do his sisters, and his cousins, and his aunts!

His sisters, and his cousins,

Whom he reckons up by dozens,

And his aunts!

— W. S. Gilbert, H.M.S. Pinafore, 1878

42.1 Introduction

This chapter provides an exploration of the possibilities and nomenclature of kin-
ship, using a Z model. We need not specify how our abstraction maps onto the
real world, but the intention is to mirror English kinship language as applied to
human beings, and to many animals.

We make heavy use of sequences and relational composition, and the properties of
trees and irreflexives orders.

42.2 Ancestors

We start with the set of all individuals

[BODY ]

Everything which follows is equally valid whether BODY is finite or infinite. We
divide the set BODY into two sexes in the usual way

female,male : P BODY

〈female,male〉 partitionBODY

so every BODY is either female or male and no BODY is both.
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mother is a function from somebody to their mother, who is female; the relationship
is acyclic (nobody is their own mother, or grandmother, and so on). Similarly for
father , who is male.

A parent is a mother or a father. An ancestor is a parent, or a parent’s parent,
and so on.

mother : BODY 7→ female
father : BODY 7→ male
parent , ancestor : BODY ↔ BODY

parent = mother ∪ father ∈ acyclicBODY

parent ∈ locallyFiniteBODY

ancestor = parent+

We require the parent relationship to be acyclic. This requirement, forbidding
anybody to be their own ancestor, we refer to as the ‘axiom of ancestry’. From it
we can deduce that the ancestor relationship is an irreflexive order.

` ancestor ∈ irreflexiveOrderBODY

We also require parent to be locally finite: parents have only a finite number of
children.

From the axiom of ancestry, and from the functionality of the mother and father
relations, we can deduce that these relations are forests.

` {mother , father} ⊆ forestBODY

mother and father are partial functions, since that is sufficient for what we need to
say. To define something as a partial function in Z is to leave open the question as
to whether it is total, not to deny it. If BODY is finite and non-empty, however,
neither mother nor father can be total: somebody must be parentless (that is, the
root of the graph), given the lack of cyclic relationships (law 24.55).

It would be possible to start with the parent-child relationship the other way round,
but then we would have to state separately that anybody has only one mother and
only one father. As it is we go from parent to child by inverting the parent relation.

Mitochondrial DNA is transmitted from mother to child, with no contribution from
the father. The mitochondrial DNA in all humans alive today is descended entirely
from one woman, dubbed mitochondrial Eve, changed only by mutation.
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We can use the relationships defined so far to specify this mitochondrial Eve, the
most recent common female-line ancestor of a population.

mitochondrialEve == λ popn : F BODY |
( ∃mums : treeBODY | mums ⊆ mother • popn ⊆ dommums ) •

lubmother ∗popn

For non-trivial populations, Mitochondrial Eve must have had two daughters (if
she had only one, that daughter would instead be mitochondrial Eve).

popn : F BODY ; mE : female |
popn 7→ mE ∈ mitochondrialEve
∧ mE 6∈ popn ∪mother(| popn ∩male |)

`
2 ≤ inDegree(female C mother)mE

42.3 The royal house of Thebes

It is usual to illustrate kinship case-studies from a royal family. We follow that
convention, using the royal family of ancient Thebes in Greece (not the ancient
Thebes in Egypt, where the pharaohs’ family trees were sometimes even more
complicated). This gives us some interesting relationships to study, since Jocasta
married her own son, Oedipus, by whom she had daughters Antigone and Ismene.

Let BODY be a type containing at least the seven distinct elements

{antigone, creon, haemon, ismene, jocasta,menoeceus , oedipus}

with

female = {antigone, ismene, jocasta}
male = {creon, haemon,menoeceus , oedipus}

The mother and father relationships are

mother = {antigone 7→ jocasta, ismene 7→ jocasta, oedipus 7→ jocasta}
father = {antigone 7→ oedipus , creon 7→ menoeceus , haemon 7→ creon,

ismene 7→ oedipus , jocasta 7→ menoeceus}

that is, antigone’s mother is jocasta, and so on. These relations obey the required
constraints: they are forests (functional acyclic graphs) with female and male
ranges respectively.
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BODY

• •

•

antigone ismene

jocasta

oedipushaemon

creon

menoceus

Figure 42.1 The parent relation for the royal house of Thebes. The mother forest is
shown with dashed arrows; the father forest is shown with solid arrows. Members of the
set female are indicated by slanted text; members of the set male are indicated by roman
text.

The parent relation is the union of these two (figure 42.1), namely:

parent = {antigone 7→ jocasta, antigone 7→ oedipus , creon 7→ menoeceus ,
haemon 7→ creon, ismene 7→ jocasta, ismene 7→ oedipus ,
jocasta 7→ menoeceus , oedipus 7→ jocasta}

and we see it is indeed acyclic.

The ancestor relation is the irreflexive transitive closure of parent , namely:

ancestor = {antigone 7→ jocasta, antigone 7→ oedipus , antigone 7→ menoeceus ,
creon 7→ menoeceus , haemon 7→ creon, haemon 7→ menoeceus ,
ismene 7→ jocasta, ismene 7→ menoeceus , ismene 7→ oedipus ,
jocasta 7→ menoeceus , oedipus 7→ jocasta, oedipus 7→ menoeceus}

and we see that it is indeed an irreflexive partial order.

42.4 The ancestral line

Ancestors are established by a chain of parenthood. We define the ancestral line,
a sequence going from the ancestor down through the descendants:

line == path1 parent

Since the parent relation is acyclic (the axiom of ancestry), lines are injective paths
of ancestors:

` line = ipath1 parent
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We choose to write seq1 (non-empty, finite sequence) to show that we are not
interested in empty lines, but that we do require them to be finite, because we
are interested in the head and last elements of these lines. The axiom of ancestry
implies that we can write iseq (injective sequence) for any permissible line, as the
ancestral line may contain no duplicates. With inbreeding, however, one body may
be the ancestor of another in more than one way; there may be several different
lines, not necessarily of the same length, connecting the same pair of bodies.

The lines we can generate from our example are:

〈menoeceus , creon, haemon〉
〈menoeceus , jocasta, antigone〉
〈menoeceus , jocasta, ismene〉
〈menoeceus , jocasta, oedipus , antigone〉
〈menoeceus , jocasta, oedipus , ismene〉

together with all the infix sequences embedded within these lines.

The ancestor relation is transitive, that is:

ancestor o
9 ancestor = ancestor

We can use the definition of line to give an alternative formulation of ancestor , in
terms of the begining and end body in a line.

` ancestor = { l : line | 2 ≤ #l • last l 7→ head l }

Sketch Proof that ancestor ’s definition could be replaced by the line formulation:

The current definition is

ancestor = parent+ =
⋃{ n : N+ • parentn }

The definition of relational iteration is in terms of relational composition, which in
turn is defined in terms of the existence of a linking element, which becomes the
constituent of our line.

We can show by induction on n that there is a line within parentn whose length is
n + 1. This allows us to say

parentn = { l : line | #l = n + 1 • last l 7→ head l }

So we express ancestor as⋃{ n : N+ • { l : line | #l = n + 1 • last l 7→ head l } }
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which we rewrite as

{ l : line | ( ∃ n : N+ • #l = n + 1 ) • last l 7→ head l }

which reduces to the new formulation.

To show that the new formulation is equivalent to the definition, proceed in a
similar manner as above.

�

42.5 Matrilineal and patrilineal relations

We can make the more restricted definitions:

motherLine == { l : line | ran(front l) ⊆ female }
fatherLine == { l : line | ran(front l) ⊆ male }

For example:

〈menoeceus , oedipus , antigone〉 ∈ fatherLine

〈jocasta, oedipus〉 ∈ motherLine

Between any pair of bodies there can be at most one mother’s line and at most
one father’s line.

a, b : BODY ` #{ ml : motherLine | headml = a ∧ lastml = b } ≤ 1
∧ #{ fl : fatherLine | headfl = a ∧ lastfl = b } ≤ 1

We could define matrilineal or patrilineal ancestors, using motherLine or fatherLine
respectively instead of line in the definition. This might be useful for describing,
for example, mitochondrial DNA inheritance in the matrilineal case, or the trans-
mission of Y chromosomes or British surnames in the patrilineal case. We gave
a definition of mitochondrial Eve earlier, using mother . An alternative definition,
using motherLine, is:
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MitochondrialEve
eve : female
lines : F motherLine
kin : F BODY

∀ l : lines • 〈eve〉a l ∈ motherLine

2 ≤ #{ l : lines • first l }
kin = { l : lines • last l }

We observe that different human societies differ in the relative importance they
attach to the different lines. Some societies stress the father’s line to the practical
exclusion of the mother’s. Conversely there have been, and still are, societies which
do not recognise the existence of paternity at all, and where the mother’s line is
therefore all there is.

Other languages may distinguish matrilineal from patrilineal relations. Swedish,
for example, has different words for grandparents on mother’s side from those on
father’s side: farfar, ‘father’s father’; morfar, ‘mother’s father’; farmor, ‘father’s
mother’; mormor, ‘mother’s mother’.

Latin distinguises the matrilineal from the patrilineal case for aunts, uncles and
cousins. The English word ‘aunt’ comes from the Latin amita, ‘father’s sister’;
‘mother’s sister’ is matertera. The English word ‘uncle’ comes from the Latin
avunculus, ‘mother’s brother’; ‘father’s brother’ is patruus.

The English word ‘cousin’, which means a collateral relative more distant than
a brother or sister, comes from the Latin consobrinus/consobrina, ‘(first) cousin’,
Modern English usage is often restricted to first cousin. However, in mediaeval
times, the word was often taken to be from the Latin consanguineus, ‘related by
blood’, and hence used to refer to any kinsman or kinswoman.

In fact, the Latin legal terminology for cousins is more complicated, distinguishing
three (non-disjoint) cases: fratres patrueles/sorores patrueles for male/female chil-
dren of two brothers (hence, my father’s brother’s children); consobrinus/consobrina
for a male/female child of two sisters (hence, my mother’s sister’s child); and amit-
inus/amitina for a male/female child of a father’s sibling.

Most of the following theory holds without change for matrilineal or patrilineal
relationships. We note some of the differences where they occur.
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42.6 Specialisations of the ancestor relation

Grandparents could be defined as fixed compositions of the parent relation, but it
gives more flexibility if we make explicit reference to lines.

greatNthGrandparent : N → BODY ↔ BODY

∀ n : N •
greatNthGrandparent n = { l : line | #l = n + 3 • last l 7→ head l }

In the definition of greatNthGrandparent , we use a number to count the number of
occurrences of the word ‘great’ in the ordinary English term, from zero upwards.
(Latin uses simple prefixes instead of a string of repeated ‘great’s: ‘great’ is pro-;
‘great2’ is ab-; ‘great3’ is ad- (or at-); ‘great4’ is tri- (or trit-). Hence ‘(paternal)
great-aunt’ is proamita, ‘(maternal) great-great-uncle’ is abavunculus, ‘great-great-
great-grandmother’ is atavia, and ‘great-great-great-great-grandson’ is trinepos.)

Thus we express ‘grandparent’ as greatNthGrandparent 0, ‘great-great-great-grand-
parent’ as greatNthGrandparent 3, and so on. A similar convention is followed for
all relationships which may involve repeated occurrences of the word ‘great’ such
as ‘great-aunt’. In all such cases we have the option of declaring the more usual
nomenclature by saying, for example:

grandparent == greatNthGrandparent 0

greatGrandparent == greatNthGrandparent 1

and so on. In our example

grandparent = {antigone 7→ jocasta, antigone 7→ menoeceus ,
haernon 7→ menoeceus , ismene 7→ jocasta,
ismene 7→ menoeceus , oedipus 7→ menoeceus}

greatGrandparent = {antigone 7→ menoeceus , ismene 7→ menoeceus}

Grandmothers and grandfathers, and so on, can be described by range restricting
the above relations, or by including qualifications such as:

head l ∈ female

head l ∈ male

in the definitions.
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The transitivity of the ancestor relation now takes the form of simple theorems
such as:

n : N ` parent o
9 greatNthGrandparent n

= greatNthGrandparent n o
9 parent

= greatNthGrandparent(n + 1)

m, n : N ` greatNthGrandparent m o
9 greatNthGrandparent n

= greatNthGrandparent(m + n + 2)

42.7 Descendants

Children, descendants and grandchildren can be defined as the inverse of parents,
ancestors and grandparents.

child , descendant : BODY ↔ BODY
greatNthGrandchild : N → BODY ↔ BODY

child = parent∼

descendant = ancestor∼

∀ n : N • greatNthGrandchild n = (greatNthGrandparent n)∼

In our example

child = {creon 7→ haemon, jocasta 7→ antigone, jocasta 7→ ismene,
jocasta 7→ oedipus , oedipus 7→ antigone, oedipus 7→ ismene,
menoeceus 7→ creon,menoeceus 7→ jocasta}

We can now define daughters and sons, granddaughters and grandsons, and so on,
by range restriction, or other means.

There are similar transitivity properties for descendants as for ancestors .

42.8 Collateral relations

We want to define general ‘collateral’ relationships. A collateral relationship is one
of common descent, but in different lines. So siblings are collaterally related, as
are aunt and nephew, but father and daughter are not, because the father’s line is
an infix of the daughter’s line.
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So two bodies are collaterally related if they have a common ancestor, but by
different lines. Their relationship in general is defined by their nearest common
ancestor: two bodies are siblings if they have common parents, and hence common
grandparents; they are cousins if they have common grandparents but different
parents.

42.8.1 Disjoint lines

Two bodies are related if they are at the end of two lines that share a head body,
but have no other bodies in common.

CollateralAncestor
hd : BODY
l1, l2 : line
kin : BODY × BODY

{〈hd〉a l1, 〈hd〉a l2} ⊆ line

disjoint〈ran l1, ran l2〉
kin = (last l1, last l2)

The disjointness predicate in CollateralAncestor prevents spurious recognition of
more distant relationships between two bodies where the real relationship is closer;
we want a sensible nomenclature even when the population is highly inbred. It
emerges as we pursue the issue that this predicate is perhaps too weak, but it will
do for the time being. In any case we are not prevented from recognising multiple
collateral links between the same pair of bodies.

hd is prevented from occurring in l1 or l2, from the definition of line.

Below we define common named relationships. When we define the set of kin
comprising the relationship aunt say, then the existence of the kin pair (a, b) in
the relationship means that a is the aunt of b.

42.8.2 Common ancestors

There may be a common female ancestor, a common male ancestor, or both. We
define schemas expressing the existence of a common female or male ancestor:

FemaleAncestor == [ CollateralAncestor | hd ∈ female ]

MaleAncestor == [ CollateralAncestor | hd ∈ male ]
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If we were developing the theory of matrilineal, or of patrilineal relationships, we
should use the appropriate one of these two, but using motherLine or fatherLine
instead of line within the schemas. For our sexless theory, however, we put them
together using schema disjunction. The resultant schema describes a situation
where the two lines, l1 and l2, have at their heads a common female ancestor, a
common male ancestor, or both.

We can alternatively put these schemas together using schema conjunction. The
resultant schema describes a situation where the two lines, l1 and l2, have at their
heads both a common female ancestor and a common male ancestor (for example,
the same mother, and the same father).

AncestorPair == FemaleAncestor ∧ MaleAncestor

To express the situation where there is a female common ancestor or a male com-
mon ancestor, but not both, at the heads of the same lines (for example, the same
mother, but a different father), we use a conjunction with a schema negation.

SingleAncestor == CollateralAncestor ∧ ¬ AncestorPair

42.9 Siblings

Siblings (brothers and sisters) of various sorts are one’s parents’ children, excluding
oneself.

Sibling
CommonAncestor

#l1 = 1 = #l2

We define some variants: sib for pairs with a common mother or father, maternalSib
for pairs with a common mother, paternalSib for pairs with a common father, fullSib
for pairs with a common mother and father, halfSib for pairs with a common mother
or father but not both.
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sib,maternalSib, paternalSib, fullSib, halfSib : BODY ↔ BODY

sib = { Sibling • kin }
maternalSib = { FemaleAncestor ; Sibling • kin }
paternalSib = { MaleAncestor ; Sibling • kin }
fullSib = { AncestorPair ; Sibling • kin }
halfSib = { SingleAncestor ; Sibling • kin }

All sibling relations are symmetric (I am always my sibling’s sibling), but not all
are transitive (if I have a paternal half sibling, they may have a maternal half
sibling to whom I am not necessarily related).

We can turn the definitions of siblings into ones for sisters and brothers by modi-
fication of Sibling or of the definitions, adding the predicate

last l2 ∈ female
last l2 ∈ male

or by the appropriate range restrictions.

The definitions of sibling and other collateral relationships are made more complex
than they might be by the way in which our culture and our language recognise
monogamy as the norm. Were that not so, we should have simple words for half-
sister and half-brother, and being a full sibling would be regarded as a coincidental
case where two bodies were related twice over.

The word ‘uterine’ is sometimes used for the qualification we have called ‘mater-
nal’. The old-fashioned phrases ‘sister german’ and ‘brother german’ mean fullSib.
(In this sense, ‘german’, a variant spelling of ‘germane’, comes from the Latin ger-
manus, ‘having the same parents; genuine, real’.) Qualifications such as ‘half’ and
‘full’ are not used in normal English for relations other than siblings.

42.10 Aunt, uncle, niece, nephew, cousin

We define the remaining collateral relations using CollateralAncestor , which is
adequate for modelling English kinship language. For other purposes we might
wish to define separate categories of collateral relations using AncestorPair and
SingleAncestor .

The aunt-or-uncle, and niece-or-nephew relationships (figure 42.2) are defined as:
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niece
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hd

l1 l2
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Figure 42.2 Great-aunt, aunt and niece relationships are shown as dashed lines. The
solid lines indicate the mother relation.

greatNthAuntUncle : N → BODY ↔ BODY
greatNthNieceNephew : N → BODY ↔ BODY

∀ n : N •
greatNthAuntUncle n =

{ CollateralAncestor | #l1 = n + 2 ∧ #l2 = 1 • kin }
∧ greatNthNieceNephew n =

{ CollateralAncestor | #l1 = 1 ∧ #l2 = n + 2 • kin }

We can specialise into aunts, uncles, nieces and nephews separately, by range
restriction or by adding the sex qualification into the predicate.

The aunt-or-uncle relation is the inverse of the niece-or-nephew relation:

n : N ` greatNthAuntUncle n = (greatNthNieceNephew n)∼

The old phrase ‘cousin german’ means first cousin. The cousin relationships (fig-
ure 42.3) are defined as:
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• •
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1st cousin
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2nd cousin
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l1 l2
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• •

••

••

•

1c1ru

3rd cousin
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• •
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Figure 42.3 Cousin relationships are shown as dashed lines. 1c1rd : 1st cousin once
removed downwards; 1c1ru: 1st cousin once removed upwards; 1c2ru: 1st cousin twice
removed upwards; 2c1rd : 2nd cousin once removed downwards. The solid lines indicate
the parent relation.

nthCousin : N+ → BODY ↔ BODY
nthCousinMTimesRemovedUpwards : N+ → N+ → BODY ↔ BODY
nthCousinMTimesRemovedDownwards : N+ → N+ → BODY ↔ BODY

∀ n : N+ • nthCousin n =
{ CollateralAncestor | #l1 = n + 1 ∧ #l2 = n + 1 • kin }

∀m, n : N+ •
nthCousinMTimesRemovedUpwards n m =

{ CollateralAncestor | #l1 = m + n + 1 ∧ #l2 = n + 1 • kin }
nthCousinMTimesRemovedDownwards n m =

{ CollateralAncestor | #l1 = n + 1 ∧ #l2 = m + n + 1 • kin }

Cousinship upwards is the inverse of cousinship downwards:

m, n : N+ ` nthCousinMTimesRemovedUpwards n m
= (nthCousinMTimesRemovedDownwards n m)∼

Notice that English has no sex-free term for niece-or-nephew, or for aunt-or-uncle.
On the other hand, it has no term to distinguish male cousins from female cousins.
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If we were designing relationship terminology from scratch, instead of formalis-
ing exisiting terminology, we could name all the collateral relationships in a uni-
form manner, by redefining sibling, aunt-or-uncle and niece-or-nephew as ‘zeroth
cousins’:

• sibling becomes zeroth cousin

• aunt-or-uncle becomes zeroth cousin once removed upwards

• great-n-aunt-or-uncle becomes zeroth cousin n times removed upwards

• niece-or-nephew becomes zeroth cousin once removed downwards

• great-n-niece-or-nephew becomes zeroth cousin n times removed downwards

42.11 General theorem of blood relationship

We define a general category for all the collateral relations:

collateral : BODY ↔ BODY

collateral = { CollateralAncestor • kin }

We have given names to various special kinds of collateral relationships, which
partition the complete set into ‘sisters and cousins and aunts’ (along with the male
variants and the inverses):

` collateral =
sib
∪ { n : N • greatNthAuntUncle n ∪ greatNthNieceNephew n }
∪ { n : N+ • nthCousin n }
∪ { m, n : N+ • nthCousinMTimesRemovedUpwards n m

∪ nthCousinMTimesRemovedDownwards n m }

We now come to the general theorem of blood-relationship, namely:

` collateral
⊆ ancestor o

9 descendant
⊆ idBODY ∪ ancestor ∪ descendant ∪ collateral

Sketch Proof of the theorem of blood relationship:

The first half of the theorem follows straight from the definition. The second half
is shown as follows:
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Take an arbitrary pair from ancestor o
9 descendant . Relational composition implies

the existence of a linking member, which must be female or male. We detach this
member from the lines of the ancestor and descendant, whose length is at least
2, and call the beheaded lines l1 and l2, with length at least 1. This gives us the
structure of Collateral except perhaps for its disjointness predicate.

Consider each domain-range pair in the light of this predicate.

Where the predicate is true, we have a member of the set collateral .

Otherwise the intersection set is non-empty. Choose the BODY , b say, from this
set with highest index in l1. This must be the same BODY as has highest index
in l2, since otherwise we can show a violation of the axiom of ancestry.

If the chosen b = last l1 = last l2, then it is equal to both elements of our kin pair,
and we have a member of idBODY .

If the chosen b = last l1 6= last l2, then it is the same as the first member of our
kin pair. There is a segment of line from the occurrence of this BODY in l2 to its
end, and we have a member of the set descendant . (And similarly the other way
around for ancestor .)

If the chosen b 6= last l1 ∧ b 6= last l2, consider it as the common element in
CollateralAncestor , and the segments of l1 and l2 beyond its occurrence in them as
the new values of l1 and l2;. All the conditions of Collateral are now met, including
the disjointness of the ranges, and we have a member of the set collateral .

�

42.12 Antigone’s relations

42.12.1 Antigone’s grandparents’ grandchildren

Antigone’s grandparents’ grandchildren might be expected to be her cousins, or
her siblings.

Antigone’s grandparents are {jocasta,menoeceus} and their grandchildren are:

• antigone: herself, so here the kin pair is a member of idBODY .

• haemon: who is related through the l1 line and the l2 line, which are disjoint,
so Haemon is Antigone’s first cousin.

• ismene, who is related twice over. In the first case, the l1 line goes up through
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〈menoeceus , jocasta, antigone〉 and back down through 〈menoeceus , jocasta,
ismene〉, which lines intersect in jocasta, so we ignore menoeceus , take jocasta
as the common head, and use the lines which are now of length 1.
In the second case the l1 line goes up through 〈jocasta, oedipus , antigone〉 and
back down through 〈jocasta, oedipus , ismene〉, so we similarly take oedipus as
the common head and have lines of length 1.
We observe that the two pairs of lines are the same, so we have an AncestorPair ,
and thus establish that Antigone and Ismene are full sisters (with mother Jo-
casta and father Oedipus).

• oedipus . The lines from antigone to oedipus intersect in jocasta, so Oedipus
is also Antigone’s half-brother.

42.12.2 Antigone’s great-grandparents’ great-grandchildren

Antigone’s great-grandparents’ great-grandchildren might be expected to be her
cousins (suitably removed), or her siblings, but some relationships turn out to be
rather more complicated.

We extend the lines to suppose that Menoeceus had a parent, thus:

〈unknown,menoeceus , creon, haemon〉
〈unknown,menoeceus , jocasta, antigone〉
〈unknown,menoeceus , jocasta, ismene〉
〈unknown,menoeceus , jocasta, oedipus , antigone〉
〈unknown,menoeceus , jocasta, oedipus , ismene〉

Antigone’s great-grandparents are {unknown,menoeceus}, and their great-grand-
children are:

• antigone herself

• creon: the lines to and from creon intersect in menoeceus , so we shorten them
by 1 and establish that Creon is Antigone’s uncle.

• haemon: the lines to and from haemon are disjoint, so Haemon is Antigone’s
cousin once removed. (Note that these lines also establish that Creon is
Antigone’s great-uncle).

• ismene: the lines to and from ismene intersect in jocasta, so we shorten by
1 and see that Ismene is Antigone’s aunt.

• jocasta: the lines to and from jocasta intersect in both menoeceus and jocasta,
reducing to the fact that Jocasta is Antigone’s mother.
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• oedipus : the lines to and from oedipus intersect in both jocasta and oedipus ,
reducing to the fact that Oedipus is Antigone’s father.

42.12.3 Summary

Summarising Antigone’s relations, we end up with:

• Antigone is herself

• Creon is her uncle and great-uncle

• Haemon is her first cousin and first cousin once removed

• Ismene is her full sister, niece, and aunt

• Jocasta is her mother and grandmother

• Menoeceus is her grandfather and great-grandfather

• Oedipus is her father and half-brother

As readers of Sophocles will be aware, Haemon is also Antigone’s fiancé.

42.13 Monotonic functions on sets

We might take the view that Ismene, being full sister to Antigone, should not also
be considered to be her aunt and niece. It is possible, by modifying the predicate
in CollateralAncestor, to arrive at a formulation where Ismene is Antigone’s sister
only. (We leave further investigation of possible modifications to the definitions
as an exercise to the reader.) We should be wary of such a redefinition, however,
because it would prevent our collateral relationships from being monotonic.

Our relationships are defined with respect to the information in the type BODY
and the two base relations mother and father . If we add more information into
those sets (for example, by adding in Menoeceus’s parents), there are two possi-
bilities: either this new information causes us to contradict any conclusions about
relationships which we have made, or it simply adds new conclusions.

We call our relationships monotonic if adding any new information does not cause
us to contradict any conclusions. So if we change to new base sets mother ′ and
father ′, with

mother ⊆ mother ′ ∧ father ⊆ father ′

and if kin stands for any of the kinship relations we have defined above, then kin
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is monotonic if we also have

kin ⊆ kin ′

It is clear that most of our relations are indeed monotonic. If we have established
that Jocasta is Antigone’s grandmother, no extra information about who is parent
to whom can alter that fact.

An example of a relation which would not be monotonic in this sense would be
unrelated . Any statement that two bodies are unrelated is always at risk from
the production of new evidence. In fact unrelated is anti-monotonic, always safe
against the deletion of evidence, or the removal of members from the base relations
mother and father .

The only definitions we have given above which are not monotonic are Single-
Ancestor, and thus also halfSib. This corresponds to the fact that if two bodies
have a parent in common, and we have no information about the other parent, we
might provisionally declare the bodies to be half-sibs. If they then turned out to
have the other parent in common as well, we should have to change our minds.

Returning now to the ‘Ismene as aunt to Antigone’ question, it is apparent that
we might know only enough to assert that they were aunt and niece, either way
round. If the discovery of further information (that they are sisters) caused us to
rescind this decision, we should have lost monotonicity. Being monotonic may be
a desirable quality, and tends to lead to simpler theories, but it is not essential.
In this case it would probably accord better with commonsense language to have
a definition of collateral relationships that is not monotonic. (The details are left
as an exercise for the reader.)

42.14 Other compositions

42.14.1 Composition of descendant with ancestor

If we consider the relational composition

descendant o
9 ancestor

we build up relationships describing the ancestors of our descendents. We encounter
the striking fact that in English, and other languages, there are no words to describe
these relationships. Even the relation ‘other parent of my child’ lacks a single name
(‘spouse’ is the correct term only in a totally monogamous society, of which there
are no examples), as does ‘other grandparents of my grandchildren’, a relationship
usually therefore described in very much those words.
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42.14.2 Composition with collateral

The other compositions which are guaranteed to yield something are:

ancestor o
9 collateral

collateral o
9 descendant

ancestor o
9 collateral o

9 descendant

As with ancestor o
9descendant , however, the resultant relationship is not necessarily

the obvious one: it might be something closer.

All remaining compositions, such as

collateral o
9 collateral

collateral o
9 ancestor

descendant o
9 collateral

in general yield nothing which is recognised by our kinship vocabulary.

42.15 Enriching the model

42.15.1 Including birth order

In a more powerful model we might wish to rank the children of any parent in order
of age, which we would need in order to encompass things like the inheritance of
titles in modern Britain, and the inheritance of property in earlier days. That could
be done by defining injections between each parent and the sequence of children in
age order.

Some languages would require such an enriched model; for example, Mandarin
Chinese distinguishes elder and younger siblings: ko-ko, ‘elder brother’ and ti-ti,
‘younger brother’. In fact, an even richer model would be required for Chinese,
which also distinguishes elder and younger cousins: t’ang-chieh, ‘father’s brother’s
daughter, older than oneself’ and t’ang-mei, ‘father’s brother’s daughter, younger
than oneself’.

42.15.2 Including relationship by marriage

We have considered only blood relationship above. We could consider relationship
by marriage, too. Then we would need to extend our model to capture who was
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married to whom, and define ‘in-law’ relations. Again, the complexity of modelling
depends on the detail that needs to be captured. For example, modern English
uses ‘mother-in-law’ to denote just ‘spouse’s mother’, while Mandarin Chinese
distinguishes yueh-mu, ‘wife’s mother’ from p’o-p’o, ‘husband’s mother’.

If we allow remarriage, we also need ‘step-’ relations; if we allow divorce, we also
need ‘ex-’ relations.

A new class of confusing relationships can occur in this enriched model. For exam-
ple, if a mother and daughter marry a son and father respectively, they are each
their own step-grandparent.

42.15.3 Relaxing the axiom of ancestry

Recall that the ‘axiom of ancestry’, the lack of cycles in the ancestor relation, is
used to ensure that nobody is their own ancestor.

In what is possibly the ultimate in time-travel stories, ‘–All You Zombies–’ by
Robert A. Heinlein, it turns out that the main character is not only their own
mother, but also their own father. This amazing feat requires not only a sex
change, but also judicious use of a time machine.

If we wanted to model such science-fictional relationships, we would need to make
two changes to our model: the mother and father relations would not be restricted
to being acyclic, and male and female could not be fixed sets given in an axiomatic
definition, but would be modelled by schemas, with a corresponding ChangeSex
operation.

The resulting family relationships would become even more entangled than poor
Antigone’s!

42.16 Further reading

For a discussion of the various kinship relationships distinguished in various cul-
tures, see, for example, [Fox 1967].

[Mommsen et al. 1985, section 38.10] is a primary source for Latin kinship termi-
nology. [Bradley 1991] is a less complete, but more readable, summary.

[Hervey 1979] describes 140 Mandarin Chinese kinship terms, ranging from mu-
ch’in, ‘mother’, to piao-po-mu, ‘wife of son of paternal grandfather’s sister or pa-
ternal grandmother’s sibling, when son is older than one’s own father’.
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English kinship language has little convenient terminology to refer to ‘step-’ and
‘ex-’ relationships. For an irreverant discussion of how the language needs to be
extended (in order to refer, for example, to one’s ex-husband’s current wife’s ex-
husbands’ children) in a society of multiple divorces and remarriages, see [Kaye
1986]. Even without the complication of divorce, it is still the case that grandpar-
ents might want to refer to their late son’s widow’s (new) husband’s children by
his (deceased) previous wife.

The time travel story ‘–All You Zombies–’ can be found in [Heinlein 1959].
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Chess

43.1 Introduction

We give a specification of the rules of the game of chess [Kazic et al. 1985]. Chess
serves as a good example because it is a real problem, already well understood, but
not trivial. We can concentrate on describing it accurately without being distracted
by design issues, as its design has already taken place. We give a complete definition
of the logical game, abstracted from its physical representation and from the rules
governing the conduct of the players.

43.2 The board

The chessboard is an eight by eight array of squares. The logical game can ignore
the fact that the squares are alternately black and white, which is for the sole
purpose of assisting the human player in the visual recognition of positions. We
represent each square by its two coordinates, row number and file number respec-
tively, so a particular square could be represented by (1, 1) or (5, 8), for example.
The set of all squares is the Cartesian product of the row numbers, 1 to 8 inclusive,
with the file numbers, also 1 to 8 inclusive. So we define

square == 1 . . 8× 1 . . 8

In conventional chess terminology, rows are fixed in the board, numbering from
white’s first rank, while ranks, which we introduce below, are dependent on whose
turn it is. Files are fixed in the board, numbering from the queen’s side. We define
selector functions to give the components of the square:

row , file : square → 1 . . 8

∀ s : square • s = (row s , file s)
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We have numbered the files from 1 to 8 for the convenience of this model. In
fact the systems in general use are either to use the letters A to H, the algebraic
system as it is known, or to identify each file by the piece that appears on it in the
initial position, described below. It is an elementary exercise to formalise those
descriptions, but they are not required for this specification. Note also that ranks
are used in preference to rows. We define ranks below.

43.3 The chessmen

There are exactly six sorts of chessman, distinct from each other and everything
else.

MAN ::= pawn | rook | knight | bishop | queen | king

A “piece” is any chessman except a pawn, but we need not formalise that.

Chessmen come in two colours, black and white. A chessman not on the board
plays no part in the logical game, and therefore we only need information about a
chessman’s colour when considering it as an occupant of a square on the board. It is
convenient at the same time to formalise the fact that a square may be unoccupied,
which leads us to the following definition:

OCCUPANT ::= empty | black〈〈MAN 〉〉 | white〈〈MAN 〉〉

This defines occupant as a set with thirteen members, one called empty and six
each corresponding to the black and white chessmen. black and white are functions
from MAN to OCCUPANT . We use them as the definition of the teams:

team == {black ,white}

team is the set containing the injections black and white.

43.4 Board positions

We define a board configuration as a total function from a square to its occupant:

position == square → OCCUPANT

A playPosition is a position together with the information as to whose turn it is
to move next:



433

playPosition == team × position

We define selector functions for the play position:

turn : playPosition → team
board : playPosition → position

∀ pp : playPosition • pp = (turn pp, board pp)

A game is a non-empty sequence of playPositions with alternation of play.

game == { g : seq1 playPosition |
∀ r , s : dom g | s = r + 1 • turn(g r) 6= turn(g s) }

43.5 The starting position

We define the initial position, and thus the initial game.

initGame : game
initPos : position
backrow == 〈rook , knight , bishop, queen, king , bishop, knight , rook〉

∀ n : 1 . . 8 • initPos(1, n) = white(backrow n)
∧ initPos(2, n) = white pawn
∧ ( ∀m : 3 . . 6 • initPos(m, n) = empty )
∧ initPos(7, n) = black pawn
∧ initPos(8, n) = black(backrow n)

initGame = 〈(white, initPos)〉

backrow is equal to an explicit sequence of chessmen. We spread it along row 1 in
its white form, and row 8 in its black. Rows 2 and 7 are filled with pawns, and the
middle four rows are empty.

The initial game is defined to be the sequence comprising the single playPosition
that has the initial position and white to move.

43.6 Moves in general

Now we specify the valid moves. We express this using schemas to describe and
constrain particular aspects of the game.
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We detach the most recent board position, pos , from the end of the game sequence.
We declare another board position, pos ′, which will be appended to the game
sequence. We also sort out whose move it is.

Player
g , g ′ : game
pos , pos ′ : position
player , opponent : team

(player , pos) = last g

g ′ = g a 〈(opponent , pos ′)〉

g represents the current game sequence, the last element of which is the current
player and board position pos . Then next board position pos ′ is appended to the
game sequence to give the new game sequence g ′. The declaration g ′ : game allows
us to infer properties such as opponent 6= player

Let us give ourselves the capability to talk in terms of rows or of ranks, whichever
is more convenient.

Ranks
Player
rank : square → 1 . . 8

player = black ⇒ ( ∀ s : square • rank s + row s = 9 )

player = white ⇒ ( ∀ s : square • rank s = row s )

In general, a move involves a chessman that starts on a particular square, the
from square, which is moved to a different square, the to square. To analyse the
geometry of the move, we split each dimension (along the row and file) of the
move into a direction and a distance. The direction is 0 (no movement in that
dimension), −1 (a move decreasing the row or file or rank number) or +1 (a move
increasing the row or file or rank number), and always defined. The distance, the
number of squares moved in the direction, is strictly positive, but irrelevant where
the direction is 0. rankdir and rowdir are of the same magnitude but may be of
opposite sign.



435

Target
Ranks
from, to : square
rdist , fdist : 1 . . 7
rowdir , rankdir , filedir : {−1, 0, 1}

from 6= to

file to = file from + filedir ∗ fdist

row to = row from + rowdir ∗ rdist

rank to = rank from + rankdir ∗ rdist

We now identify the chessman that is to move. Typical moves require that the
to square is either occupied by an opposing chessman, which is “taken”, or is
empty. Taking a chessman is fairly undramatic in this model. It occurs simply
by producing a new board position in which the taken chessman does not appear.
In general the new position is the same as the old position except with the from
square empty and the to square occupied by the moved chessman. Castling and
most pawn moves are exceptions to this, and therefore do not use this next schema.

Taker
Target
m : MAN

pos from = player m

pos to 6∈ ran player

pos ′ = pos ⊕ {(from, empty), (to, player m)}

Clear constrains a move to be vertical, horizontal or diagonal, and the intervening
space to be empty. The knight’s move therefore does not use it. (Recall that for
horizontal move that rowdir = 0, so the value of rdist is irrelevant; similarly for
vertical moves and fdist .)
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Clear
Target
dist : 1 . . 7

dist = rdist = fdist

∀ n : 1 . . dist − 1 •
pos(row from + rowdir ∗ n, file from + filedir ∗ n) = empty

43.7 Moves in particular

We now deal with the moves appropriate to each specific kind of chessman.

Rooks can move vertically or horizontally, any distance. Diagonal movement is
disallowed by the predicate 0 ∈ {rowdir , filedir}.

RookMover
Taker
Clear

m = rook

0 ∈ {rowdir , filedir}

Knights move one square vertically and two horizontally, or vice versa.

KnightMover
Taker

m = knight

0 6∈ {rowdir , filedir}
{fdist , rdist} = {1, 2}

Bishops move diagonally, any distance. The predicate 0 6∈ {rowdir , filedir} ensures
diagonal movement.
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BishopMover
Taker
Clear

m = bishop

0 6∈ {rowdir , filedir}

The queen moves vertically, horizontally or diagonally, any distance.

QueenMover
Taker
Clear

m = queen

The king moves vertically, horizontally or diagonally, to an adjacent square.

KingMover
Taker
Clear

m = king

dist = 1

A pawn may moves one square forwards onto an empty square, or one square
diagonally forwards to take. If a pawn reaches its eighth rank by either method it
is “promoted” to a non-king piece. m ′ is the possibly promoted pawn, declared as
being a member of the set MAN excluding the element king .
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MainPawnMover
Target
Clear
m ′ : MAN \ {king}

pos from = player pawn

filedir = 0 ⇔ pos to = empty

rankdir = 1

dist = 1

m ′ = pawn ⇔ rank to 6= 8

pos ′ = pos ⊕ {(from, empty), (to, player m ′)}

The usual realisation of the logical game, with chessmen that are picked up and
moved about a flat board, might suggest that there is some constraint on the total
number of occurrences of any kind of chessman to the number physically provided,
such as the number of each kind required for the initial position. There is no such
constraint. It is theoretically possible to have nine queens of the same colour on
the board, if all eight pawns have been promoted.

A pawn may move forward two squares on its first move, provided it is not taking.

FirstPawnMover
Taker
Clear

m = pawn

filedir = 0

pos to = empty

rank from = 2

rank to = 4

The enPassant move applies directly after the double move option for a pawn’s
first move is taken. If that original pawn had instead moved forward only one
space to a square where it could have been taken by an opposing pawn, then the
other player may as their immediately following move take that pawn, themselves
moving as if the original pawn had moved only the one space.
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EnPassant
Target
victim : square

pos from = player pawn

rank from = 5

rank to = 6

filedir 6= 0

rankdir = 1

fdist = 1

file to = file victim

(front g , pos , victim) ∈ {FirstPawnMover • (g , pos ′, to)}
pos ′ = pos ⊕ {(victim, empty), (to, player pawn), (from, empty)}

We have defined all moves except castling. Castling requires us to define what it
is to be in check, and we can do this now, since castling itself can never directly
threaten a king, and so does not affect the definition of check. First we disjoin the
moves defined so far:

PlainMover == RookMover ∨ KnightMover ∨ BishopMover
∨ QueenMover ∨ KingMover
∨ MainPawnMover ∨ FirstPawnMover ∨ EnPassant

A player is in check if the king could be taken (hence is not on the board) on the
next move. We define this formally as a set of playPositions with the vulnerable
player as the first of the pair.

check == {PlainMover | opponent king 6∈ ran pos ′ • (opponent , pos)}
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Castler
Clear
k , r : square

rank from = rank to = rank k = rank r = 1

file from = 5

file to = 1 ∧ file k = 3 ∧ file r = 4
∨ file to = 8 ∧ file k = 7 ∧ file r = 6

∀ pp : ran g • (board pp)from = player king
∧ (board pp)to = player rook

(player , pos) 6∈ check

(player , pos ⊕ {(from, empty), (r , player king)}) 6∈ check

pos ′ = pos ⊕ {(from, empty), (r , player rook),
(k , player king), (to, empty)}

That is:

• The whole move takes place on the player’s first rank

• Castling takes place on the queen’s side or the king’s side, using the files
given.

• The pieces involved are a king and a rook, neither of which may have moved
since the beginning of the game.

• Neither the current position nor that formed by putting the king on the
intermediate square over which it passes may be in check

• The king and the rook swap over, to the stated positions.

We add castling in using schema disjunction again:

Mover == PlainMover ∨ Castler

43.8 Legal moves

A move is legal if it is carried out in accordance with Mover and does not leave
the last player in check.
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Legal
Mover

(player , pos ′) 6∈ check

legalMove == { Legal • g 7→ g ′ }

Legal play is the transitive closure of legal moves, that is, what we get by making
any number of legal moves in succession.

legalPlay == legalMove+

and we can characterise starting correctly:

legalGame == successors legalPlay initGame

The set of legal games is the image of the initial game through all possible legal
plays.

43.9 Winning

We define the games that are in check, and hence checkmate.

checkGame == { g : game | last g ∈ check }
mate == checkGame \ dom legalMove

If mate is achieved, the game is finished, with the player in check having lost.

win : team → P game

win = λ t : team • { g : mate | turn(last g) 6= t }

43.10 Draws

If no move is possible but the player is not in check we have stalemate.

stalemate == game \ checkGame \ dom legalMove
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Stalemate is counted as a draw.

Another form of draw occurs where the board is so denuded that no mate is possible
by means of legal play.

noMate == { g : game | ¬ ( ∃ g ′ : mate • g 7→ g ′ ∈ legalPlay ) }

Stalemate is in fact a special case of this.

A repeatDraw occurs where the same position is repeated three times.

repeatDraw == { g : game | ∃ i , j , k : dom g | i < j < k • g i = g j = g k }

To consider the next form of draw, we need to categorise reversible moves.

reversible == { Legal |
( ∃ t : square � square • pos ′ = t o

9 pos )
∧ pos B {player pawn} = pos ′ B {player pawn} •

g 7→ g ′ }

This says that there is an injection that relates the old and new positions by
mapping squares to squares, and also that the positions range-restricted to pawns
are equal. Thus, a move in which no man is taken, and where no pawn is moved,
is counted as reversible. Taking the transitive closure

revPlay == reversible+

allows us to define

slowDraw == { g , h : game | (g , h) ∈ revPlay ∧ #(h \ g) = 50 • h }

which says that we have a draw where there have been fifty successive reversible
moves.

So finally we can say

draw == stalemate ∪ noMate ∪ repeatDraw ∪ slowDraw
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43.11 Other endings

One aspect of the game that we have not modelled is the human protocol, although
that would also be possible. This means, however, that we have not formalised
the fact that the player and the opponent are separate persons each in control of
their separate moves. Consequently we have not formalised the ending of a game
by resignation, nor that of a draw by mutual agreement.

Another form of draw quoted in the books is “perpetual check”. This also cannot
be incorporated in our model because of the element of negotiation involved. The
draw arises not when perpetual check is possible, which would be easy to formalise,
but only if one of the players chooses to assert his or her intention to cause it. If the
assertion is accepted, we can count that a draw by agreement. If not, the player
can easily turn it into a repeatDraw or a slowDraw .

43.12 Optimal play

We have now given a complete description of legal play and its consequences,
which could be refined into a game referee, for example. The purpose of the game,
however, is to win, or if one cannot win, to draw. We define the function winnable,
which gives the games that may be won by a particular team in a particular number
of moves, assuming correct play for that team.

winnable : team → N → P game

∀ t : team • winnable t 0 = win t

∀ t : team; n : N1 •
winnable t n = { g : game \ draw |

(turn(last g) = t ⇒ successors legalMove g ∩ winnable t(n − 1) 6= ∅)
∧ (turn(last g) 6= t ⇒ successors legalMove g ⊆ winnable t(n − 1)) }

We also define advantage, which gives the games that may be won in any number
of moves.

advantage == λ t : team • ⋃{ n : N • winnable t n }

evenGame is the set of games that are not at the mercy of either side.

evenGame == game \ advantage white \ advantage black
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The three categories evenGame, advantage white and advantage black form a par-
tition of game.

` 〈evenGame, advantage white, advantage black〉 partition game

Optimal play can be defined as play that keeps the game in the same category
as it was, since by the definitions a player can never move into a more favourable
category; progress can only be made if one’s opponent makes a mistake.

The definition of optimal play can feasibly be refined into a computer program only
in endgame positions. In the early and middle games the size of the quantifications,
although finite, is beyond the power of any computer. In fact it is an open question
which category initGame belongs to. Although one might guess that it is a member
of evenGame or advantage white, this has not been proved.

So, except for the endgame, the formalisation given for optimal play is notable
in its uselessness. In order to get any further, we should have to make a formal
model not only of the actual state of play, but also of our knowledge of the state
of play, and of the actual computational power at our disposal. This might lead
on to the heuristic methods actually used in play, like the concept of a “strong” or
“weak” position, in contrast to the stark categories of complete knowledge, where a
position is either won, lost or drawn. These are the concepts of real chess programs.
A formal model of partial chess understanding has never been attempted, as far as
we know. It might be quite illuminating, even if unreliable.
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Appendix A

Diagrammatic conventions

A.1 Introduction

This chapter describes the various diagram conventions we use throughout the
document.

A.2 Venn diagrams

In a real specification most sets have internal structure, so it is rare to have to
draw diagrams of simple sets. However, on occasion, such diagrams can be a useful
aid for visualising the effect of an operation.

We emphasise that the cardinality of a set is in general infinite, or indeterminate,
and that finite sets are a special case (§15). In particular, a given set that is not
further constrained (for example, by being defined using a free type) is neither
provably finite nor infinite. This should be borne in mind when interpreting the
(necessarily finite) diagrams.

Venn diagrams were proposed by the English logician John Venn, 1834–1923. A
Venn diagram (figure A.1) is a sound way of diagramming one or more sets of the
same type, where any internal structure that the elements may have is ignored.
A Venn diagram consists of a rectangular box representing the whole type, X ,
containing a number of ellipses, each of which represents membership of some
subset of the type. The name of the set represented by the ellipse can be written
anywhere inside, or close outside, the ellipse, positioned such that it cannot be
confused with that of another ellipse.

A set element can be marked as a small spot or cross within the relevant area of
the diagram. The appearance of such a marked element on the diagram shows that
the existence of a corresponding element in the set is consistent with the diagram,
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X

a b

x•

Figure A.1 An example of a Venn diagram, a diagrammatic convention for simple sets.
The ellipses marked a and b represent subsets of the type X . x is an element in a but
not in b; x ∈ a, x 6∈ b.

but it does not prove that such an element exists in all cases; a particular region
of the diagram may be realised by the empty set.

In a properly formed diagram, each ellipse is drawn to overlap all others except
where there is a demonstrable constraint to the contrary. The size, position, and
orientation of each ellipse is unimportant; the only relevant factor is the pattern of
overlap. The result of set operations may consist of separate areas (for example, see
figure 13.13). That these resultant spaces may be neither elliptical, nor connected,
is unimportant. If we consider specific points in a Venn diagram, the only relevant
factor is which ellipses contain, or do not contain, them.

A Venn diagram is not just an example; it is a general diagram valid for all its
possible instances. A properly formed Venn diagram is (very nearly) sufficient on
its own as a proof, or as a counter-example in propositional calculus or set theory
(for example, see figure 13.8).

A.3 Diagrams for relations

There are two diagrammatic conventions useful for sketching relations.

A.3.1 Venn diagrams

Relations can be sketched using two Venn diagrams, one for the source set, and
one for the target set, with the relation shown as lines linking source elements to
target elements (figure A.2).
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X Y

•
•
•
•
•

•
•
•
•
•
•

r

x y

dom  r ran  r

Figure A.2 Venn diagram convention for relations. The pair (x , y) is in the relation
r : X ↔ Y .

X  x Y

r

(x, y )•

Y

X
a

b

Figure A.3 Cartesian diagram convention for relations. The pair (x , y) is in the relation
r : X ↔ Y . The set a is a named subset of X , and b is a named subset of Y .

So operations like domain and range restriction and subtraction can be represented
by the appropriate set intersection or difference in one of the two subdiagrams.

A.3.2 Cartesian diagrams

The French philosopher René Descartes, 1596–1650, showed the utility of using
two orthogonal coordinates in geometrical description. A Cartesian diagram (fig-
ure A.3) represents the Cartesian product set X × Y as a rectangular box whose
horizontal base line represents the source set X , and whose vertical side line repre-
sents the target set Y . A relation r is a subset of X ×Y , and so is represented as
an ellipse, or other shaped blob, within this rectangular X × Y plane. As with a
Venn diagram, the shape of this blob has no significance. In our example diagrams
we sometimes use a particular shaped blob to clarify the effect of an operation, but
no significance should be read into such a shape.
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A Cartesian diagram represents a simple set as a line segment, and subsets as
subsegments of this line, drawn thicker and labelled appropriately. As with a Venn
diagram’s ellipse, the size and position of this line has no significance except to
show the required pattern of overlap. A diagram may need to use a discontinuous
line to represent the overlap; this discontinuity has no significance. The order of
the elements along the line is not significant, and the finite extent of such a line
should not be taken to imply that the set being represented is itself finite.

Dashed lines may be used to indicate the projection of some subset of X or Y on
the X ×Y plane. Individual pairs (x , y) may be marked; the relation may contain
other pairs not so marked.

A Cartesian diagram, like a Venn diagram, is not just an example; it is a general
diagram valid for all its possible instances.

A.4 Functions

The conventions that apply to relations are inherited by functions.

With Venn diagrams, the diagrams are of a similar appearance but there is only
one range element corresponding to each domain element.

With Cartesian diagrams, the blob reduces to a line in the X × Y plane. Again,
no particular order of the elements in the X and Y sets, or any properties of
continuity, should be assumed to hold in the diagrams.

A.5 Homogeneous relations

A.5.1 Venn diagrams

Since the source and target sets are the same type, we can specialise the Venn
diagram convention for general relations (figure A.4a).

We show the relation with arcs that emanate from ‘source’ elements in the ellipse
representing the domain, curve back to the same rectangle, and end on ‘sink’
elements in the ellipse representing the range. Elements in the overlap region
representing both the domain and range are both ‘sources’ and ‘sinks’.
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r
X

X

X

dom  r ran  r

••
•

•

Figure A.4 Diagrammatic conventions for homogeneous relations: (a) Venn diagram
(b) Cartesian diagram

A.5.2 Cartesian diagrams

We use the same convention for drawing the relation as part of the plane; we now
have the X × X plane (figure A.4b).

Although we still assume no particular order of the elements along the X lines, we
do now assume that it is the same order along each X line. Hence the diagonal
represents all elements like (x , x ).

A.6 Orders

A.6.1 Cartesian diagrams

The Cartesian diagram conventions for order relations are the same as for homo-
geneous binary relations, except that now the order of elements along the set lines
is significant: we use the order defined by the relation.

For a partial order, not all elements need be comparable. However, if two elements
are related by the order, a l b, we place a to the left of b on the horizontal
axis, and a below b on the vertical axis. Hence any points representing a pair in
the order fall in the upper-left triangle only; for a total order, where every pair is
comparable, the points fill the upper-left triangle (and hence the diagram shows
nothing interesting).
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• • ••

• • ••

•

2 3 5 7

10964

8

Figure A.5 Network diagram convention for orders: the numbers 2. .10 partially ordered
by ‘is a factor of’.

A.6.2 Network diagrams

More useful for drawing orders than Venn diagrams or Cartesian diagrams is the
network diagram convention (figure A.5). This is a further convention for Venn
diagrams that omits much ‘clutter’ that is common to orders.

A network diagram includes only the intransitive residue. The elements in the
order are drawn on the page so that b is higher on the page than a if a l b. b
is joined to a by a line if there is no c such that a l c l b. Hence we can omit
the arrowheads from the arcs, because they always point up the page, we can omit
the transitive arcs, and we can omit the domain and range ellipses, because all the
leaves are at the bottom and all the roots at the top.
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Summary of operator templates

In this appendix we summarise the various operator templates defined in earlier
chapters.

relation ( 6∈ )
relation ( 6= )
function ( 2×)

function 30 leftassoc ( ∪ )
function 40 leftassoc ( ∩ )
function 30 leftassoc ( \ )
function 30 leftassoc ( 	 )

relation ( ⊆ )
relation ( ⊂ )

generic (F )
relation (finite )

generic 5 rightassoc ( ↔ )
generic 5 rightassoc ( 7 7↔ )
function 10 leftassoc ( 7→ )
function ( ∼)

function 65 rightassoc ( C )
function 65 rightassoc ( −C )
function 60 leftassoc ( B )
function 60 leftassoc ( −B )
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function ( (| |))

relation ( ≈ )
function 50 leftassoc ( ⊕ )
function 40 leftassoc ( o

9 )
function 40 leftassoc ( ◦ )

function 40 leftassoc (
→
o
9 )

function 40 leftassoc (
←
o
9 )

relation ( functionalAt )
generic 5 rightassoc ( 7→ )
generic 5 rightassoc ( → )
generic 5 rightassoc ( 7 7→ )
generic 5 rightassoc ( 7→→ )
generic 5 rightassoc ( →→ )
generic 5 rightassoc ( 7 7→→ )
generic 5 rightassoc ( 7� )
generic 5 rightassoc ( � )
generic 5 rightassoc ( 7 7� )
generic 5 rightassoc ( 7�→ )
generic 5 rightassoc ( �→ )
generic 5 rightassoc ( 7 7�→ )
function 30 leftassoc ( �x )
function 30 leftassoc ( �y )

function 30 leftassoc ( � )
generic (idempotent )
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generic (wellRooted )
generic (id )
generic (reflexive )
generic (irreflexive )
generic (symmetric )
generic (antisymmetric )
generic (transitive )
function ( +)
function ( ∗)
generic (intransitive )
generic 80(locallyFiniteOut )
generic 80(locallyFiniteIn )
generic 80(locallyFinite )
generic (equivalence )
generic (acyclic )

generic (stronglyConnected )
generic (connected )
generic (forest )
generic (tree )

generic (order )
generic (reflexiveOrder )
generic (irreflexiveOrder )
generic (totalOrder )
generic (reflexiveTotalOrder )
generic (irreflexiveTotalOrder )
generic (preorder )
generic (wellOrder )

function 30 leftassoc ( +̇ )
function 40 leftassoc ( ∗̇ )
function (-̇ )
function ( ˙ 1)
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relation ( < )
relation ( ≤ )
function 40 leftassoc ( ∗ )
function (- )
function ( −)
function ( +)
function ( ⊕)
function ( ±)
function ( 1)
function 30 leftassoc ( − )
function 40 leftassoc ( ÷ )
relation ( ≥ )
relation ( > )

function (sign )
function (abs )
function (b c)
function (d e)
function 40 leftassoc ( div )
function 40 leftassoc ( mod )
function 20 leftassoc ( . . )
function (# )

generic (
→
# )

function (min )
function (max )
relation (coprime )
function (

√
)

function ( )

relation (disjoint )
relation ( partition )

function (factorial )
function 45 rightassoc ( ∗∗ )
function (exp )
function (ln )
function (log )
function (sin )
function (cos )
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generic (stream )
generic (istream )
generic (sequence )
generic (isequence )
generic (str )
generic (istr )
generic (seq )
generic (iseq )
function 60 leftassoc ( shift )
function ( 〈, , 〉)
function (〈, , 〉)

function 30 leftassoc ( a )
generic (enumerableOrder )
generic (reflexiveEnumerableOrder )
generic (irreflexiveEnumerableOrder )

relation ( prefix )
relation ( suffix )
relation ( infix )

function 40 leftassoc ( � )
function 40 leftassoc ( � )
function 40 leftassoc ( � )
function 40 leftassoc ( � )

generic (bag )
function 30 leftassoc ( ] )
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Appendix D

Proofs

Proof of law 6.14, that universal quantification over the empty set is always true

( ∀ x : ∅[X ] • P )
⇔ ( ∀ x : X | x ∈ ∅[X ] • P ) normalise
⇔ ( ∀ x : X | false • P ) prop. ∅
⇔ ( ∀ x : X • false ⇒ P ) law 6.12
⇔ ( ∀ x : X • true ) prop. ⇒
⇔ true law 6.11

�

Proof of law 9.10, that power set distributes through intersection:

P(
⋂

α)
= { b : P X | b ⊆

⋂
α) } law 9.7

= { b : P X | ( ∀ x : b • x ∈
⋂

α) ) } law 14.1
= { b : P X | ( ∀ x : b • ∀ a : α • x ∈ a ) } defn.

⋂
= { b : P X | ( ∀ a : α • ∀ x : b • x ∈ a ) } rearrange
= { b : P X | ( ∀ a : α • b ⊆ a ) } defn. ⊆
= { b : P X | ( ∀ a : α • b ∈ P a ) } property P
= { b : P X | ( ∀β : { a : α • P a } • b ∈ β ) } change variable
=
⋂
{ a : α • P a } defn.

⋂
�

Proof of law 9.13, that power set never distributes through (symmetric) set difference:

Every power set contains at least the empty set, therefore the (symmetric) difference of two power
sets does not, therefore the (symmetric) difference cannot equal the power set of anything.
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Proof of law 12.1, that > is true

>
⇒ [ | true] definition
⇒ θ[ | true ] ∈ [ | true ] expand schema predicate
⇒ θ[ | true ] ∈ {〈| |〉} expand empty schema
⇒ 〈| |〉 ∈ {〈| |〉} expand θ

⇒ true expand membership
�

and that ⊥ is false

⊥
⇒ [ | false ] definition
⇒ θ[ | false ] ∈ [ | false ] expand schema predicate
⇒ θ[ | false ] ∈ { } expand empty schema
⇒ false expand membership

�

Proof of law 13.6, that generalised union of a set comprehension can be reduced to a set com-
prehension⋃

{ a : α • f a }
= { y : Y | ( ∃ b : { a : α • f a } • y ∈ b ) } defn.

⋃
= { y : Y | ( ∃ b : P Y • b ∈ { a : α • f a } ∧ y ∈ b ) } expand
= { y : Y | ( ∃ b : P Y • ( ∃ a : α • b = f a ) ∧ y ∈ b ) } rearrange
= { y : Y | ( ∃ a : α • y ∈ f a ) } rearrange; eliminate b

�

Proof of law 13.7, that nested generalised unions can be flattened.⋃
{ a : α •

⋃
{ b : β • f (a, b) } }

=
⋃
{ a : α • { z ′ : Z | ( ∃ b : β • z ′ ∈ f (a, b) ) } } simplify

= { z : Z | ( ∃ a : α • z ∈ { z ′ : Z | ( ∃ b : β • z ′ ∈ f (a, b) ) } ) } simplify
= { z : Z | ( ∃ a : α • ( ∃ b : β • z ∈ f (a, b) ) ) } simplify
=
⋃
{ a : α; b : β • f (a, b) }

⋃
-reduction law 13.6

�

Proof of law 13.9, that ∩ distributes through
⋃⋃

α ∩
⋃

β

= { x : X | ( ∃ a : α • x ∈ a ) ∧ ( ∃ b : β • x ∈ b ) } defn.
⋃

, ∩
= { x : X | ( ∃ a : α; b : β • x ∈ a ∩ b ) } ∃ law; defn ∩
=
⋃
{ a : α; b : β • a ∩ b }

⋃
-reduction law 13.6

�
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Proof of law 13.11, that
⋃

(
⋃

(| A |)) =
⋃

(
⋃

A)⋃
(
⋃

A)
=
⋃
{ a : P X | ( ∃α : A • a ∈ α ) } defn.

⋃
= { x : X | ( ∃ a : P X | ( ∃α : A • a ∈ α ) • x ∈ a ) }

⋃
law 13.6

= { x : X | ( ∃ a : P X • ∃α : A • a ∈ α ∧ x ∈ a ) } ∃ law
= { x : X | ( ∃α : A • ∃ a : α • x ∈ a ) } rearrange
= { x : X | ( ∃α : A • x ∈ { y : Y | ( ∃ a : α • y ∈ a ) } ) } law set comp.
= { x : X | ( ∃α : A • x ∈

⋃
a ) } defn.

⋃
=
⋃
{ α : A •

⋃
a }

⋃
law 13.6

=
⋃

(
⋃

(| A |)) (| |) law 19.3
�

Proof of law 13.14, that distribution occurs when pairwise disjoint⋃
α ∩

⋃
β

= { x : X | ( ∃ a : α • x ∈ a ) ∧ ( ∃ a : β • x ∈ a ) } defn.
⋃

, ∩
= { x : X | ( ∃ a : P X | a ∈ α ∧ a ∈ β • x ∈ a ) } hyp. a 6= b ⇒ a ∩ b = ∅
=
⋃
{ a : P X | a ∈ α ∧ a ∈ β }

⋃
law 13.6

=
⋃

(α ∩ β) defn. ∩
�

Proof of law 13.22, that generalised intersection of a set comprehension can be reduced to a set
comprehension⋂

{ a : α • f a }
= { y : Y | ( ∀ b : { a : α • f a } • y ∈ b ) } defn.

⋂
= { y : Y | ( ∀ b : P Y | b ∈ { a : α • f a } • y ∈ b ) } expand
= { y : Y | ( ∀ b : P Y | ( ∃ a : α • b = f a ) • y ∈ b ) } rearrange
= { y : Y | ( ∀ b : P Y • ( ∀ a : α • b 6= f a ) ∨ y ∈ b ) } expand ⇒
= { y : Y | ( ∀ b : P Y ; a : α | b = f a • y ∈ b ) ) } rearrange
= { y : Y | ( ∀ a : α • y ∈ f a ) } eliminate b

�

Proof of law 13.23, that nested generalised intersections can be flattened⋂
{ a : α •

⋂
{ b : β • f (a, b) } }

=
⋂
{ a : α • { z ′ : Z | ( ∀ b : β • z ′ ∈ f (a, b) ) } } simplify

= { z : Z | ( ∀ a : α • z ∈ { z ′ : Z | ( ∀ b : β • z ′ ∈ f (a, b) ) } ) } simplify
= { z : Z | ( ∀ a : α • ( ∀ b : β • z ∈ f (a, b) ) ) } simplify
=
⋂
{ a : α; b : β • f (a, b) }

⋂
-reduction law 13.22

�
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Proof of law 13.24, that ∪ distributes through
⋂

:⋂
α ∪

⋂
β

= { x : X | ( ∀ a : α • x ∈ a ) ∨ ( ∀ b : β • x ∈ b ) } defn.
⋂

, ∪
= { x : X | ( ∀ a : α; b : β • x ∈ a ∨ x ∈ b ) } ∀ law 6.16
= { x : X | ( ∀ a : α; b : β • x ∈ a ∪ b ) } defn. ∪
=
⋂
{ a : α; b : β • a ∪ b }

⋂
-reduction law 13.22

�

Proof of law 13.28, that
⋂

(
⋂

(| A |)) =
⋂

(
⋃

A)⋂
(
⋃

A)
=
⋂
{ a : P X | ( ∃α : A • a ∈ α ) } defn.

⋃
= { x : X | ( ∀ a : P X | ( ∃α : A • a ∈ α ) • x ∈ a ) } law

⋂
= { x : X | ( ∀ a : P X • ( ∀α : A • a 6∈ α ) ∨ x ∈ a ) } expand ⇒
= { x : X | ( ∀ a : P X • ∀α : A | a ∈ α • x ∈ a ) } law ∀
= { x : X | ( ∀α : A • ∀ a : α • x ∈ a ) } rearrange
= { x : X | ( ∀α : A • x ∈ { y : Y | ( ∀ a : α • y ∈ a ) } ) } law set comp.
= { x : X | ( ∀α : A • x ∈

⋂
a ) } defn.

⋂
=
⋂
{ α : A •

⋂
a } law

⋂
=
⋂

(
⋂

(| A |)) law (| |)
�

Proof of law 13.44, that distribution through \ gives distribution through ∩:

f (a ∩ b)
= f (a \ (a \ b)) identity
= f a \ f (a \ b) hypothesis
= f a \ (f a \ f b) hypothesis
= f a ∩ f b identity

�

Proof of law 16.6, that (Y ×X ) \ r∼ = ((X ×Y ) \ r)∼

((X ×Y ) \ r)∼

= { x : X ; y : Y | x 7→ y ∈ (X ×Y ) \ r • y 7→ x } defn. ∼

= { x : X ; y : Y | x 7→ y ∈ (X ×Y ) ∧ x 7→ y 6∈ r • y 7→ x } defn. \
= { y : Y ; x : X | y 7→ x ∈ (Y ×X ) ∧ y 7→ x 6∈ r∼ } rearrange
= (Y ×X ) \ r∼ defn. \

�
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Proof of law 16.7, that ∼ distributes through
⋃

(
⋃

ρ)∼

= { x : X ; y : Y | ( ∃ r : ρ • x 7→ y ∈ r ) }∼ defn.
⋃

= { y : Y ; x : X | ( ∃ r : ρ • x 7→ y ∈ r ) } defn. ∼

= { y : Y ; x : X | ( ∃ s : ρ∼ • y 7→ x ∈ s ) } prop. ∼

=
⋃

(ρ∼)
�

Proof of law 16.8, that ∼ distributes through \

(r \ s)∼

= { x : X ; y : Y | x 7→ y ∈ r ∧ x 7→ y 6∈ s }∼ defn. \
= { y : Y ; x : X | x 7→ y ∈ r ∧ x 7→ y 6∈ s } defn. ∼

= { y : Y ; x : X | y 7→ x ∈ r∼ ∧ y 7→ x 6∈ s∼ } defn. ∼

= r∼ \ s∼

�

Proof of law 17.3, that dom distributes through
⋃

⋃
(dom(| ρ |))

=
⋃
{ r : ρ • dom r } expand (| |)

= { x : X | ( ∃ a : { r : ρ • dom r } • x ∈ a ) } defn.
⋃

= { x : X ; a : P X | a ∈ { r : ρ • dom r } ∧ x ∈ a • x } rearrange
= { x : X ; a : P X | ( ∃ r : ρ • a = dom r ) ∧ x ∈ a • x } rearrange
= { x : X ; a : P X ; r : ρ | a = dom r ∧ x ∈ a • x } rearrange
= { x : X ; r : ρ | x ∈ dom r • x } eliminate a
= { x : X ; y : Y ; r : ρ | x 7→ y ∈ r • x } defn. dom
= { x : X ; y : Y | ( ∃ r : ρ • x 7→ y ∈ r ) • x } rearrange
= dom(

⋃
ρ) defn. dom,

⋃
�

Proof of law 17.6, that of distribution property of \ through dom.

r = (r \ s) ∪ (r ∩ s) closure
dom r = dom((r \ s) ∪ (r ∩ s))

= dom(r \ s) ∪ dom(r ∩ s) dist.
dom r \ dom s = (dom(r \ s) ∪ dom(r ∩ s)) \ dom s

= dom(r \ s) \ dom s ∪ dom(r ∩ s) \ dom s dist.
= dom(r \ s) \ dom s subset-order pres.

�
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Proof of law 18.5, that C distributes through
⋃

on both arguments⋃
α C

⋃
ρ

= (
⋃

α×Y ) ∩
⋃

ρ rewrite C law 18.4
=
⋃
{ r : ρ • (

⋃
α×Y ) ∩ r } dist. ∩ −

⋃
law

=
⋃
{ r : ρ •

⋃
{a : α • a ×Y } ∩ r } dist.

⋃
−× law

=
⋃
{ r : ρ •

⋃
{a : α • (a ×Y ) ∩ r } } dist.

⋃
−∩ law

=
⋃
{ r : ρ •

⋃
{a : α • a C r } } rewrite C law 18.4

=
⋃
{ a : α; r : ρ • a C r } flatten

⋃
−
⋃

law
�

Proof of law 18.6, that C distributes through
⋂

on both arguments⋂
α C

⋂
ρ

= (
⋂

α×Y ) ∩
⋂

ρ rewrite C law 18.4
=
⋂
{ r : ρ • (

⋂
α×Y ) ∩ r } dist. ∩ −

⋂
law

=
⋂
{ r : ρ •

⋂
{a : α • a ×Y } ∩ r } dist.

⋃
−× law, α 6= ∅

=
⋂
{ r : ρ •

⋂
{a : α • (a ×Y ) ∩ r } } dist.

⋂
−∩ law

=
⋂
{ r : ρ •

⋂
{a : α • a C r } } rewrite C law 18.4

=
⋂
{ a : α; r : ρ • a C r } flatten

⋃
−
⋃

law
�

Proof of law 18.8, that −C pseudo-distributes through
⋃

⋂
α−C

⋃
ρ

=
⋃

ρ \ (
⋂

α×Y ) rewrite −C law 18.4
=
⋃
{ r : ρ • r \ (

⋂
α×Y ) ∩ r } dist. \ −

⋃
law

=
⋃
{ r : ρ • r \

⋂
{a : α • a ×Y } } dist.

⋂
−× law, α 6= ∅

=
⋃
{ r : ρ •

⋃
{a : α • r \ (a ×Y ) ∩ r } } p-dist.

⋃
−\ law

=
⋃
{ r : ρ •

⋃
{a : α • a −C r } } rewrite −C law 18.4

=
⋃
{ a : α; r : ρ • a −C r } flatten

⋃
−
⋃

law
�
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Proof of law 18.9, that −C pseudo-distributes through
⋂

⋃
α1 −C

⋂
ρ1

=
⋂

ρ1 \ (
⋃

α1 ×Y ) −C as ∩ law 18.4
=
⋂
{ r : ρ1 • r \ (

⋃
α1 ×Y ) } dist. \-

⋂
law, ρ1 6= ∅

=
⋂
{ r : ρ1 • r \

⋃
{a : α1 • a ×Y } } dist.

⋃
-× law, α1 6= ∅

=
⋂
{ r : ρ1 •

⋂
{a : α1 • r \ (a ×Y ) } } p-dist.

⋂
-\ law

=
⋂
{ r : ρ1 •

⋂
{a : α1 • a −C r } } −C as ∩ law 18.4

=
⋂
{ a : α1; r : ρ1 • a −C r } flatten

⋂
-
⋂

law
�

Proof of law 18.11, that C-distribution gives −C-distribution

a −C f (r , s)
= (X \ a) C f (r , s) law 18.2, b = X
= f ((X \ a) C r , (X \ a) C s) hyp., a ′ = X \ a
= f (a −C r , a −C s) law 18.2, b = X

�

Proof of law 18.12, that a C r = ∅ ⇔ a ∩ dom r = ∅

a C r = ∅
⇔ { p : r | p.1 ∈ a } = { p : r | false } defn. C, ∅
⇔ { x : X ; y : Y | x 7→ y ∈ r ∧ x ∈ a } = { x : X ; y : Y | false } expand p
⇔ ( ∀ x : X ; y : Y • x 7→ y ∈ r ∧ x ∈ a ⇔ false ) equal set comp.
⇔ ( ∀ x : X ; y : Y | x 7→ y ∈ r ∧ x ∈ a • false ) simplify
⇔ ( ∀ x : X | x ∈ dom r ∧ x ∈ a • false ) defn. dom
⇔ ( ∀ x : X | x ∈ a ∩ dom r • false ) defn. ∩
⇔ a ∩ dom r = ∅ defn. ∅

�

Proof of law 18.12, that a C r = r ⇔ dom r ⊆ a

a C r = r
⇔ { p : r | p.1 ∈ a } = { p : r } defn. C

⇔ { x : X ; y : Y | x 7→ y ∈ r ∧ x ∈ a } = { x : X ; y : Y | x 7→ y ∈ r } expand p
⇔ ( ∀ x : X ; y : Y • x 7→ y ∈ r ∧ x ∈ a ⇔ x 7→ y ∈ r ) equal set comp.
⇔ ( ∀ x : X ; y : Y | x 7→ y ∈ r • x ∈ a ) simplify
⇔ ( ∀ x : X | x ∈ dom r • x ∈ a ) defn. dom
⇔ dom r ⊆ a defn. ⊆

�
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Proof of law 18.14, that a C r = (a ∩ dom r) C r

(a ∩ dom r) C r
= a C r ∩ dom r C r dist.
= a C r ∩ r law 18.13
= a C r law 18.12

�

Proof of law 18.14, that a −C r = (a ∩ dom r)−C r

(a ∩ dom r)−C r
= a −C r ∪ dom r −C r pseudo-dist.
= a −C r ∪∅ law 18.13
= a −C r

�

Proof of law 18.15, that restricting twice restricts to intersection

a C b C r
= (a ×Y ) ∩ (b ×Y ) ∩ r rewrite C law; assoc. ∩ law
= ((a ∩ b)×Y ) ∩ r dist. ∩-× law
= (a ∩ b) C r rewrite C law

�

Proof of law 19.4, that (| |) distributes through
⋃⋃

ρ(|
⋃

α |)
= ran(

⋃
α C

⋃
ρ) law 18.17

= ran(
⋃
{a : α; r : ρ • a C r }) dist

⋃
-C law

=
⋃

(ran(| {a : α; r : ρ • a C r } |)) dist
⋃

-ran law
=
⋃
{a : α; r : ρ • ran(a C r) } law 19.3

=
⋃
{a : α; r : ρ • r(| a |) } law 18.17

�

Proof of law 19.6, that lower image of a function distributes through ∩ on its set argument

lowerImage f a ∩ lowerImage f b
= { x : X | ( ∃ y : a • x 7→ y ∈ f ) ∧ ( ∃ y : b • x 7→ y ∈ f ) } defn. lowerImage, ∩

For any x in this set, the corresponding y ∈ a and y ∈ b must be the same y , because f is a
function. Hence the y must be in a ∩ b.

= { x : X | ∃ y : a ∩ b • x 7→ y ∈ f }
= lowerImage f (a ∩ b) defn. lowerImage

�
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Proof of law 19.7, that a ∩ dom r ⊆ r∼(| r(| a |) |)

r∼(| r(| a |) |)
= (r o

9 r∼)(| a |) nested image law 20.31
⊇ id(dom r)(| a |) id law 24.10; ⊂-pres.
= ran a C id(dom r) (| |) law
= a ∩ dom r prop. id

�

Proof of law 19.8, that domain restriction becomes intersection

r(| a ∩ b |)
= ran((a ∩ b) C r) law 18.17
= ran(a C (b C r)) law 18.15
= (b C r)(| a |) law 18.17

�

Proof of law 19.9, that range restriction becomes intersection

(r B b)(| a |)
= ran(a C (r B b)) law 18.17
= ran((a C r) B b) assoc. law 18.19
= ran(a C r) ∩ b dual law 18.16
= r(| a |) ∩ b law 18.17

�

Proof of law 19.10, that a C r ⊆ r B r(| a |)

r B r(| a |)
= { p : r | p.2 ∈ r(| a |) } defn. B

= { p : r | p.2 ∈ { q : r | q .1 ∈ a • q .2 } } defn. (| |)
= { p, q : r | q .1 ∈ a ∧ p.2 = q .2 • p } simplify
= { p, q : r | q .1 ∈ a ∧ p.2 = q .2 ∧ (p.1 = q .1 ∨ p.1 6= q .1) • p } . . . ∧ true
= { p, q : r | q .1 ∈ a ∧ p = q • p }

∪ { p, q : r | q .1 ∈ a ∧ p.2 = q .2 ∧ p.1 6= q .1 • p } defn. ∪
⊇ { p, q : r | q .1 ∈ a ∧ p = q • p } defn. ⊆
= { p : r | p.1 ∈ a } simplify
= a C r defn. C

�
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Proof of law 19.10, that r −B r(| a |) ⊆ a −C r

r −B r(| a |)
= r \ (r B r(| a |)) partition law
⊆ r \ (a C r) \ subset-order reversing law
= a −C r partition law

�

Proof of law 19.15, that upperBound pseudo-distributes through
⋂

:⋂
{ r : ρ; a : α • upperBound r a }

=
⋂
{ r : ρ; a : α • { y : Y | a × {y} ⊆ r } } upperBound defn.

= { y : Y | ( ∀ r : ρ; a : α • a × {y} ⊆ r ) }
⋂

-simp. law
= { y : Y | ( ∀ a : α • a × {y} ⊆

⋂
ρ ) } ⊆-glb law 14.6

= { y : Y |
⋃

α× {y} ⊆
⋂

ρ } ⊆-lub law 14.5
= upperBound(

⋂
ρ)(
⋃

α) upperBound defn.
�

Proof of law 19.17, that upper bound of a range restriction is intersection of the upperbound

upperBound(r B b)a
= { y : Y | a × {y} ⊆ r B b } upperBound defn.
= { y : Y | a × {y} ⊆ r ∩ (X × b) } B-equiv. law
= { y : Y | a × {y} ⊆ r ∧ a × {y} ⊆ X × b } ⊆-∩ law
= { y : Y | a × {y} ⊆ r ∧ {y} ⊆ b } × law, a 6= ∅
= { y : Y | a × {y} ⊆ } ∩ b ∩ defn.
= (upperBound r a) ∩ b upperBound defn.

�

Proof of law 19.18, that

upperBound(b C r)a
= { y : Y | b × a ⊆ b C r } upperBound defn.
= { y : Y | b × a ⊆ (b ×Y ) ∩ r } C equiv. dual law
= { y : Y | b × a ⊆ r ∧ a ⊆ b } ⊆-∩ law; × law
= { y : Y | b × a ⊆ r } ∩ ( if a ⊆ b thenY else ∅ ) ∩ defn.; ∅ defn.
= ( if a ⊆ b then upperBound r a else ∅ ) upperBound defn.

�
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Proof of law 19.20, that

upperImage((a × b) \ r)c
= { p : (a × b) \ r | p.1 ∈ c • p.2 } defn. upperImage
= { y : Y | ( ∃ x : c • x 7→ y ∈ (a × b) \ r ) } simplify
= { y : Y | ( ∃ x : c • x ∈ a ∧ y ∈ b ∧ x 7→ y 6∈ r ) } defn. \, ×
= { y : b | ( ∃ x : c ∩ a • x 7→ y 6∈ r ) } simplify
= { y : b | ( ∃ x : c • x 7→ y 6∈ r ) } hyp. c ⊆ a
= { y : b | ¬ ( ∀ x : c • x 7→ y ∈ r ) } de Morgan
= b \ { y : Y | ( ∀ x : c • x 7→ y ∈ r ) } defn. \
= b \ (upperBound r c) law 19.14

�

Proof of law 20.9, that ⊕ distributes through
⋃

⋃
ρ⊕ s

= (dom s −C
⋃

ρ) ∪ s defn. ⊕
=
⋃
{ r : ρ • dom s −C r } ∪ s dist. −C-

⋃
law 18.5

=
⋃
{ r : ρ • (dom s −C r) ∪ s } ∪ distributes through

⋃
=
⋃
{ r : ρ • r ⊕ s } defn ⊕

�

Proof of law 20.11, that the domain of an overriding is the union of the separate domains:

dom(r ⊕ s)
= dom((dom s −C r) ∪ s) defn. ⊕
= dom(dom s −C r) ∪ dom s dist. ∪-dom law
= (dom r \ dom s) ∪ dom s −C-dom law
= dom r ∪ dom s

�

Proof of law 20.12, that C distributes through ⊕:

a C r ⊕ a C s
= dom(a C s)−C (a C r) ∪ a C s defn. ⊕
= (a ∩ dom s)−C a C r ∪ a C s law 18.16
= (a \ (a ∩ dom s)) C r ∪ a C s law 18.15
= (a \ dom s) C r ∪ a C s closure
= a C dom s −C r ∪ a C s law 18.15
= a C (dom s −C r ∪ s) law 18.5
= a C (r ⊕ s) defn. ⊕

�
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Proof of law 20.13, that a restriction outside the domain of an overriding relation is independent
of that relation.

a C (r ⊕ s)
= a C r ⊕ a C s dist.
= a C r ⊕ (a ∩ dom s) C s law 18.14
= a C r ⊕∅ C s hyp.
= a C r ⊕∅ defn. C

= a C r law 20.7
�

Proof of law 20.13, that a restriction confined within the domain of an overriding relation depends
on only that relation.

a C (r ⊕ s)
= a C ((dom s −C r) ∪ s) defn. ⊕
= a C dom s −C r ∪ a C s ∪-⊕-dist.
= (a \ dom s) C r ∪ a C s law 18.15
= ∅ C r ∪ a C s hyp.
= ∅ ∪ a C s defn. C

= a C s
�

Proof of law 20.13, that a domain subtraction covering the domain of an overriding relation is
independent of that relation.

a −C (r ⊕ s)
= a −C r ⊕ a −C s C-dist, and law 18.11
= a −C r ⊕ (a ∩ dom s)−C s law 18.14
= a −C r ⊕ dom s −C s hyp.
= a −C r ⊕∅ defn. −C
= a −C r law 20.7

�
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Proof of law 20.15, that

(r ⊕ s)(| a |)
= ran(a C (r ⊕ s) law 18.17
= ran(a C (dom s −C r ∪ s)) defn. ⊕
= ran(a C dom s −C r ∪ a C s) C− ∪ distbn.
= ran(a C dom s −C r) ∪ ran(a C s) ran−∪ distbn.
= ran((a \ dom s) C r) ∪ ran(a C s) law 18.15
= r(| a \ dom s |) ∪ s(| a |) law 18.17

�

Proof of law 20.21, that o
9 distributes through

⋃
⋃
{ r : ρ; s : σ • r o

9 s }
= { x : X ; z : Z | ( ∃ r ′ : { r : ρ; s : σ • r o

9 s } • x 7→ z ∈ r ′ ) } defn.
⋃

= { x : X ; z : Z | ( ∃ r ′ : X ↔ Z •
( ∃ r : ρ; s : σ • r ′ = r o

9 s )
∧ x 7→ z ∈ r ′ ) } expand

= { x : X ; z : Z | ( ∃ r : ρ; s : σ • x 7→ z ∈ r o
9 s ) } elim. r ′

= { x : X ; z : Z | ( ∃ y : Y ; r : ρ; s : σ • x 7→ y ∈ r ∧ y 7→ z ∈ s ) } defn. o
9

= { x : X ; z : Z | ( ∃ y : Y • x 7→ y ∈
⋃

ρ ∧ y 7→ z ∈
⋃

σ ) } defn.
⋃

=
⋃

ρ o
9

⋃
σ defn. o

9

�

Proof of law 20.24, that

r o
9 s ∩ idX = ∅

⇔ { x , x ′ : X ; y : Y | x 7→ y ∈ r ∧ y 7→ x ′ ∈ s • x 7→ x ′ } ∩ idX = ∅ defn. o
9

⇔ { x : X ; y : Y | x 7→ y ∈ r ∧ y 7→ x ∈ s • x 7→ x } = ∅ prop. id
⇔ { x : X ; y : Y | x 7→ y ∈ r ∧ x 7→ y ∈ s∼ • x 7→ x } = ∅ rewrite
⇔ r ∩ s∼ = ∅ defn. ∩

�

Proof of law 20.25, that

{ x : X ; z : Z | successors r x ∩ predecessors s z} 6= ∅ }
= { x : X ; z : Z | {y : Y | x 7→ y ∈ r ∧ y 7→ z ∈ s } 6= ∅ }

defn. upper/lowerSingImage
= { x : X ; z : Z | ∃ y : Y • x 7→ y ∈ r ∧ y 7→ z ∈ s } simplify
= r o

9 s defn. o
9

�
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Proof of law 20.26, that the range of a composition r o
9 s is the upper image of the range of r

through s.

ran(r o
9 s)
= ran{ x : X ; z : Z | ( ∃ y : Y • x 7→ y ∈ r ∧ y 7→ z ∈ s ) } defn. o

9

= { z : Z | ( ∃ x : X ; y : Y • x 7→ y ∈ r ∧ y 7→ z ∈ s ) } defn. ran
= { z : Z | ( ∃ y : ran r • y 7→ z ∈ s ) } defn. ran
= s(| ran r |) defn. (| |)

�

Proof of law 20.29, that C associates with o
9

a C (r o
9 s)

= id a o
9 (r o

9 s) law 24.10
= (id a o

9 r) o
9 s o

9-assoc law 20.18
= (a C r) o

9 s law 24.10
�

Proof of law 20.30, that B pseudo-distributes through o
9

(r B b) o
9 s

= (r o
9 id b) o

9 s law 24.10
= r o

9 (id b o
9 s) o

9 assoc law 20.18
= r o

9 (b C s) law 24.10
�

Proof of law 20.31, that nested images can be written as composition.

s(| r(| a |) |)
= s(| ran(a C r) |) law 18.17
= ran((a C r) o

9 s) law 20.27
= ran(a C (r o

9 s)) law 20.29
= (r o

9 s)(| a |) law 18.17
�

Proof of law 20.32, that overriding then composing on the right is a subset of the overriding of
the individual compositions.
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First, we prove the lemma that: ((dom s)−C r ∪ s) o
9 t ⊆ (dom(s o

9 t)−C r ∪ s) o
9 t

s B dom t ⊆ s r B b ⊆ r (dual) law 18.12
⇒ dom(s B dom t) ⊆ dom s dom ⊆-order pres. law 17.4
⇒ dom(s o

9 t) ⊆ dom s law 20.27
⇒ (dom s)−C r ⊆ (dom(s o

9 t))−C r −C ⊆-order rev.
⇒ (dom s)−C r ∪ s ⊆ (dom(s o

9 t))−C r ∪ s ∪ ⊆-order pres.
⇒ ((dom s)−C r ∪ s) o

9 t ⊆ (dom(s o
9 t)−C r ∪ s) o

9 t o
9 ⊆-order pres.

Then
(r ⊕ s) o

9 t
= ((dom s)−C r ∪ s) o

9 t defn. ⊕
⊆ (dom(s o

9 t)−C r ∪ s) o
9 t lemma

= ((dom(s o
9 t)−C r) o

9 t) ∪ (s o
9 t) o

9-∪ dist. law 20.21
= (dom(s o

9 t)−C (r o
9 t)) ∪ (s o

9 t) o
9-−C assoc. law 20.29

= (r o
9 t)⊕ (s o

9 t) defn. ⊕
�

Proof of law 20.34, that overriding then composing on the left is a superset of the overriding of
the individual compositions.

r o
9 (s ⊕ t)

= r o
9 (((dom t)−C s) ∪ t) defn. ⊕

= r o
9 ((dom t)−C s) ∪ (r o

9 t) o
9-∪ dist. law 20.21

= ((r −B dom t) o
9 s) ∪ (r o

9 t) pseudo-dist. law 20.30
⊇ (((lowerImage r dom t)−C r) o

9 s) ∪ (r o
9 t) (dual) law 19.10

= (((dom(r o
9 t))−C r) o

9 s) ∪ (r o
9 t) law 20.26

= (dom(r o
9 t)−C (r o

9 s)) ∪ (r o
9 t) o

9-−C assoc. law 20.29
= (r o

9 s)⊕ (r o
9 t) defn. ⊕

�
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Proof of law 20.37, that
→
o
9 pseudo-distributes through ∪ on its first argument

(r ∪ r ′)
→
o
9 s

= { x : X ; z : Z | ( ∀ y : Y | x 7→ y ∈ (r ∪ r ′) • y 7→ z ∈ s ) } defn.
→
o
9

= { x : X ; z : Z | ( ∀ y : Y • x 7→ y ∈ (r ∪ r ′) ⇒ y 7→ z ∈ s ) } defn. ∀
= { x : X ; z : Z | ( ∀ y : Y • x 7→ y ∈ r ∨ x 7→ y ∈ r ′ ⇒ y 7→ z ∈ s ) } defn. ∪
= { x : X ; z : Z | ( ∀ y : Y • (x 7→ y ∈ r ⇒ y 7→ z ∈ s)

∧ (x 7→ y ∈ r ′ ⇒ y 7→ z ∈ s) ) } rearrange
= { x : X ; z : Z | ( ∀ y : Y • x 7→ y ∈ r ⇒ y 7→ z ∈ s )

∧ ( ∀ y : Y • x 7→ y ∈ r ′ ⇒ y 7→ z ∈ s ) } prop. ∀
= { x : X ; z : Z | ( ∀ y : Y | x 7→ y ∈ r • y 7→ z ∈ s ) }

∩ { x : X ; z : Z | ( ∀ y : Y | x 7→ y ∈ r ′ • y 7→ z ∈ s ) } defn. ∩
= r

→
o
9 s ∩ r ′

→
o
9 s defn.

→
o
9

�

Proof of law 20.39, that

{ x : X ; z : Z | successors r x ⊆ predecessors s z }
= { x : X ; z : Z | { y : Y | x 7→ y ∈ r } ⊆ {y : Y | y 7→ z ∈ s } }

defn. upper/lowerSingImage
= { x : X ; z : Z | ∀ y : { y ′ : Y | x 7→ y ′ ∈ r } • y ∈ {y ′ : Y | y ′ 7→ z ∈ s } } law ⊆
= { x : X ; z : Z | ∀ y : Y | x 7→ y ∈ r • y 7→ z ∈ s } simplify

= r
→
o
9 s defn.

→
o
9

�

Proof of law 20.40, that right demonic composition always includes the complement of the
domain

r
→
o
9 s

= domr −C (r
→
o
9 s) ∪ dom r C (r

→
o
9 s) partition law

= domr −C { x : X ; z : Z | ∀ y : Y | x 7→ y ∈ r • y 7→ z ∈ s }
∪ dom r C (r

→
o
9 s) defn.

→
o
9

= { x : X \ dom r ; z : Z | ∀ y : Y | x 7→ y ∈ r • y 7→ z ∈ s }
∪ dom r C (r

→
o
9 s) defn. −C

= { x : X \ dom r ; z : Z | true } ∪ dom r C (r
→
o
9 s) empty ∀

= ((X \ dom r)× Z ) ∪ dom r C (r
→
o
9 s) simplify

�
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Proof of law 20.41, that functional right demonic composition reduces to composition

f
→
o
9 s

= ((X \ dom f )× Z law 20.40; defn
→
o
9

∪ { x : dom r ; z : Z | ∀ y : Y | x 7→ y ∈ f • y 7→ z ∈ s }
= ((X \ dom f )× Z

∪ { x : dom r ; z : Z | ∀ y : Y | y = f x • y 7→ z ∈ s } functional f
= ((X \ dom f )× Z

∪ { x : dom r ; z : Z | ∃ y : Y | y = f x • y 7→ z ∈ s } one point
= ((X \ dom f )× Z ∪ (f o

9 s) defn. o
9

�

Proof of law 20.42, that right demonic composition with an inverse function reduces to compo-
sition

r
→
o
9 s

= ((X \ dom r)× Z law 20.40; defn
→
o
9

∪ { x : dom r ; z : Z | ∀ y : Y | x 7→ y ∈ r • y 7→ z ∈ s }

For every z in the set, there is only one y ∈ dom s that maps to it (because s is inverse functional).
So there can be only one x ∈ dom r mapping to that y . So r must be functional at that x .

= ((X \ dom r)× Z
∪ { x : dom r ; z : Z | r functionalAt x

∧ ( ∃ y : Y | x 7→ y ∈ r • y 7→ z ∈ s ) }
= ((X \ dom r)× Z defn. o

9

∪ { x : dom r ; z : Z | r functionalAt x ∧ (x 7→ z ∈ r o
9 s) }

= ((X \ dom r)× Z defn. ∩
∪ ({ x : dom r ; z : Z | r functionalAt x } ∩ dom r C (r o

9 s))
= ((X \ dom r)× Z rearrange

∪ { x : dom r | r functionalAt x }C (r o
9 s)

�

Proof of law 20.43, that a de Morgan style law relates right demonic composition and composition

(X × Z ) \ (r o
9 ((Y × Z ) \ s))

= (X × Z ) \ { x : X ; z : Z | ∃ y : Y | x 7→ y ∈ r • y 7→ z ∈ (Y × Z ) \ s } defn o
9

= (X × Z ) \ { x : X ; z : Z | ∃ y : Y | x 7→ y ∈ r • y 7→ z 6∈ s } simplify
= (X × Z ) \ { x : X ; z : Z | ¬ ( ∀ y : Y | x 7→ y ∈ r • y 7→ z ∈ s ) } ∃ ≡ ¬ ∀¬
= (X × Z ) \ ((X × Z ) \ (r

→
o
9 s)) defn

→
o
9

= (X × Z ) ∩ (r
→
o
9 s) law \

= r
→
o
9 s simplify

�
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Proof of law 21.5, that the function constructor distributes through non-empty generalised inter-
section.⋂

α 7→
⋂

β

= { f : X ↔ Y | f ∈
⋂

α ↔
⋂

β ∧ ( ∀ p, q : f | p.1 = q .1 • p = q ) } defn. 7→
= { f : X ↔ Y | f ∈

⋂
{ a : α; b : β • a ↔ b }

∧ ( ∀ p, q : f | p.1 = q .1 • p = q ) } property ↔
= { f : X ↔ Y | ( ∀ a : α; b : β • f ∈ a ↔ b )

∧ ( ∀ p, q : f | p.1 = q .1 • p = q ) } simplify
⋃

= { f : X ↔ Y | ( ∀ a : α; b : β •
f ∈ a ↔ b
∧ ( ∀ p, q : f | p.1 = q .1 • p = q ) ) } α, β 6= ∅

= { f : X ↔ Y | ( ∀ a : α; b : β • f ∈ a 7→ b ) } defn 7→
=
⋂
{ a : α; b : β • a 7→ b } simplify

⋃
�

Proof of law 21.11, that a relation is a function precisely when the composition of its inverse
with itself yields the identity.

r∼ o
9 r = id(ran r)
⇔ { y , y ′ : Y | ( ∃ x : X • y 7→ x ∈ r∼ ∧ x 7→ y ′ ∈ r ) } defn. o

9

= { y : ran r • y 7→ y } defn. id
⇔ { y , y ′ : Y | ( ∃ x : X • x 7→ y ∈ r ∧ x 7→ y ′ ∈ r ) } prop. ∼

= { y : Y | ( ∃ x : X • x 7→ y ∈ r ) • y 7→ y } defn. ran
⇔ { y , y ′ : Y | ( ∃ x : X • x 7→ y ∈ r ∧ x 7→ y ′ ∈ r ) }

= { y , y ′ : Y | ( ∃ x : X • x 7→ y ∈ r ∧ x 7→ y ′ ∈ r ) ∧ y = y ′ } rearranging
⇔ ( ∀ y , y ′ : Y • ( ∃ x : X • x 7→ y ∈ r ∧ x 7→ y ′ ∈ r )

⇔ ( ∃ x : X • x 7→ y ∈ r ∧ x 7→ y ′ ∈ r ) ∧ y = y ′ ) set equality
⇔ ( ∀ y , y ′ : Y • ( ∃ x : X • x 7→ y ∈ r ∧ x 7→ y ′ ∈ r ) ⇔ y = y ′ ) simplifying
⇔ r ∈ X 7→ Y defn. 7→

�

Proof of law 21.14, that unequal source sets give disjoint total functions:

(a → Y ) ∩ (a ′ → Y )
= { f : a 7→ Y | dom f = a } ∩ { f : a ′ 7→ Y | dom f = a ′ } defn →
= ∅ hyp. a 6= a ′

�
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Proof of law 21.15, that → distributes through
⋂

on the left:

X →
⋂

β

= { f : X 7→ Y | f ∈ X 7→
⋂

β ∧ dom f = X } defn. →
= { f : X 7→ Y | f ∈

⋂
{ b : β • X 7→ b } ∧ dom f = X } law 21.5, β 6= ∅

= { f : X 7→ Y | ( ∀ b : β • f ∈ X 7→ b ) ∧ dom f = X } simplify
⋃

= { f : X 7→ Y | ( ∀ b : β • f ∈ X 7→ b ∧ dom f = X ) } β 6= ∅
= { f : X 7→ Y | ( ∀ b : β • f ∈ X → b ) } defn. →
=
⋂
{ b : β • X → b } simplify

⋃
�

Proof of law 21.26, that of the lack of surjections.

We proceed by reductio ad absurdum; by assuming the contrary and showing it leads to a
contradiction.

Suppose the contrary: X 7→→ P X 6= ∅. So there is at least one surjection, call it f : X 7→→ P X

Applying f to any element x : X in its domain results in a set of elements of X , which set may
or may not include x . Let ξ be the set of all x s where f x does not include x .

ξ == { x : dom f | x 6∈ f x }

From its definition, we have ξ ∈ P X . Since f is a surjection, we have ran f = P X . Hence
ξ ∈ ran f . Since f is a surjection, there must be a domain element that maps to ξ.

∃ x : dom f • f x = ξ

Let us call it xξ

xξ : dom f

f xξ = ξ

From the definition of ξ we have ∀ x : ξ • x 6∈ f x

So if xξ ∈ ξ then it is not in f xξ, so xξ ∈ ξ ⇒ xξ 6∈ f xξ

But the definition of xξ gives us f xξ = ξ. Hence xξ ∈ ξ ⇒ xξ 6∈ ξ. This tells us xξ 6∈ ξ

Returning to the definition ξ = f xξ, we have xξ 6∈ ξ ⇔ xξ 6∈ f xξ

If xξ is not in f xξ, it satisfies the definition of ξ, so xξ 6∈ f xξ ⇒ xξ ∈ ξ

Hence xξ ∈ ξ

From our assumption we have deduced xξ 6∈ ξ ∧ xξ ∈ ξ, which is false. Whence we conclude the
negation of that assumption:

X 7→→ P X = ∅
�



483

Proof of law 23.1, that a monoid has a unique identity element

e0

= e � e0 defn. e
= e hyp[e/x ]

�

Proof of law 23.2, that a monoid’s binary function is a surjection.

Follows directly from the definition of e.

�

Proof of law 23.3, that a group has a unique inverse function

inv0 x
= inv0 x � e defn. e
= inv0 x � (x � inv x ) defn. inv
= (inv0 x � x ) � inv x assoc. �
= e � inv x hyp.
= inv x defn. e

�

Proof of law 23.4, that multiplication modulo a prime forms an abelian group:

We must prove the following properties:

• (SemiGroup) The binary operation modulo multiplication is total on g :
Modulo multiplication is total because multiplication is total, and modulus is total.

• (SemiGroup) The binary operation is closed (range is a subset of g):
From the definition of mod , we know that

(n ∗m) mod p ∈ 0 . . p − 1

So we need to show

p : prime ` ∀n,m : 1 . . p − 1 • (n ∗m) mod p 6= 0

This is obviously true for n,m = 1, so assume n,m > 1. (n ∗m) mod p = 0 means that p
divides n ∗m, which requires n or m to be a (non-unit) factor of p. But p is prime, and
so has no such factors.

• (SemiGroup) The binary operation is associative:
Modulo multiplication is associative because multiplication is associative, and modulus
forms a homomorphism (law 30.12).

• (Abelian) The binary operation is commutative:
Modulo multiplication is commutative because multiplication is commutative, and modulus
forms a homomorphism (law 30.12).
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• (Monoid) The binary operation has a unit in g :
The unit is 1:

p : prime ` ∀n : 1 . . p − 1 • (1 ∗ n) mod p = n = (n ∗ 1) mod p

• (Group) The binary operation has an inverse:
First we show the operation is surjective (and hence, if it has an inverse function, that
inverse is total):

p : prime ` ∀n,n ′ : 1 . . p − 1 • ∃m : 1 . . p − 1 • (n ∗m) mod p = n ′

We use the well-known result, derived from Euclid’s algorithm for highest common factor,
that if two numbers n and p have a highest common factor of h, then

∃ a, b : Z • n ∗ a + p ∗ b = h

Here h = 1. Multiply both sides by n ′ to get

n ∗ a ∗ n ′ + p ∗ b ∗ n ′ = n ′

Take the modulus (and use n ′ < p):

(n ∗ a ∗ n ′) mod p = n ′

Hence m = (a ∗ n ′) mod p.
Next, since p is finite, the pigeonhole principle, law 15.7, gives us that the operation is
injective, and hence has a (total) inverse, as required.

�

Proof of law 24.14, that id(dom r) ⊆ r o
9 r∼

r o
9 r∼

= { x , x ′ : X ; y , y ′ : Y | x 7→ y ∈ r ∧ y ′ 7→ x ′ ∈ r∼ | y = y ′ • x 7→ x ′ } defn. o
9

= { x , x ′ : X ; y : Y | x 7→ y ∈ r ∧ x ′ 7→ y ∈ r • x 7→ x ′ } rewriting
⊇ { x : X ; y : Y | x 7→ y ∈ r • x 7→ x } defn. ⊆
= { x : dom r • x 7→ x } defn. dom
= id(dom r) defn. id

�

Proof of law 24.18, that a composition of two relations is irreflexive precisely when the cyclic
permutation of the composition is irreflexive

r o
9 s ∈ irreflexiveX

⇔ r o
9 s ∩ idX = ∅ defn. irreflexive

⇔ r ∩ s∼ = ∅ disjointness law 20.24
⇔ (r ∩ s∼)∼ = ∅∼ invert
⇔ r∼ ∩ s = ∅ order pres. law 16.7; s∼∼ = s; ∅∼ = ∅
⇔ s o

9 r ∩ idY = ∅ ∩ commutative law 13.20; disjoint law 20.24
⇔ s o

9 r ∈ irreflexiveY defn. irreflexive
�



485

Proof of law 24.22, that the composition of any relation with its inverse is symmetric.

(r o
9 r∼)∼

= r∼∼ o
9 r∼ law 20.23 with s = r∼

= r o
9 r∼ law 16.5

�

Proof of law 24.29, that any restriction of a transitive relation is transitive

(a C r B b) o
9 (a C r B b)

⊆ a C r o
9 r B b r ⊆ b; o

9 subset order preserving
⊆ a C r B b hyp; C subset order preserving

�

Proof of law 24.29, that the intersection of two transitive relations is transitive

(r ∩ s) o
9 (r ∩ s)

⊆ r o
9 r ∩ r o

9 s ∩ s o
9 r ∩ s o

9 s o
9− ∩ law

⊆ r ∩ s ∩ r o
9 s ∩ s o

9 r hyp.
⊆ r ∩ s prop. ∩

�

Proof of law 24.30, that a transitive, symmetric relation is reflexive on its domain:

x ∈ dom r
⇒ x 7→ x ′ ∈ r
⇒ x ′ 7→ x ∈ r hyp. symmetric
⇒ x 7→ x ∈ r hyp. transitive
⇒ id(dom r) ⊆ r

�

Proof of law 24.32, that any transitive function is the identity on its range

transitiveX ⇒ f o
9 f ⊆ f

transitiveX ∩X 7→ X
⇒ ( ∀ x : dom f | f x ∈ dom f • f (f x ) = f x )
⇒ ( ∀ x : dom f ; y : X | y = f x ∈ dom f • f y = y )
⇒ ( ∀ y : X | y ∈ ran f • f y = y )
⇒ ran f C f = id(ran f )

�

Proof of law 24.33, that a transitive, irreflexive function has no interior vertices:
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Let y = dom r ∩ ran r be an interior point. Then ∃ x , z : X • {x 7→ y , y 7→ z} ⊆ r

By transitivity, x 7→ y ∈ r . By functionality, y = z .

This contradicts irreflexivity, hence no such y exists.

�

Proof of law 24.38, that + is ⊆-order preserving:

Follows from the alternative definition in terms of relational iteration law 24.37, from the order-
preserving property of relational iteration law 31.5, and from the order-preserving property of
set union law 13.10.

�

Proof of law 24.40, that the transitive closure of a relation is irreflexive precisely when all the
iterates of that relation are irreflexive.

r+ ∈ irreflexiveX
⇔
⋃
{ n : N1 • rn } ∩ idX = ∅ law 24.37; defn. irreflexive

⇔
⋃
{ n : N1 • rn ∩ idX } = ∅ distributive law 13.9

⇔ ( ∀n : N1 • rn ∩ idX = ∅ ) law 13.18
⇔ ( ∀n : N1 • rn ∈ irreflexiveX ) defn. irreflexive

�

Proof of law 26.3, that r \ id a ∈ orderX .

Subsetting preserves antisymmetry, so we are left with proving transitivity. That is:

x 7→ y ∈ r \ id a ∧ y 7→ z ∈ r \ id a ⇒ x 7→ z ∈ r \ id a
x 7→ y ∈ r ∧ x 7→ y 6∈ id a ∧ y 7→ z ∈ r ∧ y 7→ z 6∈ id a ⇒ x 7→ z 6∈ id a r transitive
x 7→ z ∈ id a ⇒ x 7→ y 6∈ r ∨ x 7→ y ∈ id a ∨ y 7→ z 6∈ r ∨ y 7→ z ∈ id a ⇒ identity
x ∈ a ⇒ x 7→ y 6∈ r ∨ x 7→ y ∈ id a ∨ y 7→ x 6∈ r ∨ y 7→ x ∈ id a simplify id
x ∈ a ⇒ x 7→ y 6∈ (r ∩ r∼) ∨ x = y ∈ a defn. ∼; simplify
x ∈ a ⇒ x = y 6∈ dom(r ∩ r∼) ∨ x 6= y ∨ x = y ∈ a r antisymmetric
true simplify

�

Proof of law 26.4, that transitive, irreflexive relations are irreflexive orders.

This is an immediate consequence of law 24.56 and the definition of irreflexive order.

�

Proof of law 26.36, that graph-preserving map applied to glb gives wider bounds.
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The definition of glb gives us that it precedes every element in a set, so

( ∀ x ′ : a • glb rx a 7→ x ′ ∈ rx ) defn. glb
⇒ ( ∀ x ′ : a ∩ dom f • f (glb r a) 7→ f x ′ ∈ ry ) hyp. graph preserving
⇒ f (glb r a) 7→ glb ry(f (| a |)) ∈ ry law 26.28

�

Proof of law 26.37, that any function that distributes through least upper bound or greatest
lower bound is graph-preserving

From the hypothesis, choose the case where β = {x , y}. So

x 7→ y ∈ rx ⇒ y = lub rx{x , y} prop. lub
∧ f (lub rx α) = lub ry(f (| α |)) hyp.
x 7→ y ∈ rx ⇒ y = lub rx{x , y}
∧ f (lub rx{x , y}) = lub ry{f x , f y} choice of α

x 7→ y ∈ rx ⇒ f y = lub ry{f x , f y} rearrange
x 7→ y ∈ rx ⇒ f x 7→ f y ∈ ry prop. lub
�

Proof of law 28.1, that the additive identity element acts as a zero for multiplication

x ∗̇O = x ∗̇(O +̇O) defn. O
⇒ x ∗̇O = x ∗̇O +̇ x ∗̇O distributive
⇒ x ∗̇O +̇ -̇(x ∗̇O) = (x ∗̇O +̇ x ∗̇O) +̇ -̇(x ∗̇O)
⇒ x ∗̇O +̇ -̇(x ∗̇O) = x ∗̇O +̇(x ∗̇O +̇ -̇(x ∗̇O)) assoc.
⇒ O = x ∗̇O +̇O defn. -̇
⇒ O = x ∗̇O defn. O

�

Proof of law 28.2, that the additive inverse distributes through multiplication

O = x ∗̇O ring zero law 28.1
⇒ O = x ∗̇(y +̇ -̇ y) defn. -̇
⇒ O = x ∗̇ y +̇ x ∗̇ -̇ y distributive
⇒ -̇(x ∗̇ y) = x ∗̇ -̇ y defn -̇

�
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Proof of law 28.3, that the addition of additive inverse behaves like a binary subtraction operator

(x −̇ y) ∗̇ z
= (x +̇ -̇ y) ∗̇ z defn. ( −̇ )
= x ∗̇ z +̇ -̇ y ∗̇ z distributive
= x ∗̇ z +̇ -̇(y ∗̇ z ) ring minus law 28.2
= x ∗̇ z −̇ y ∗̇ z defn. ( −̇ )

�

Proof of law 28.4, that if every element x in a ring obeys x ∗̇ x = x , then it is a Boolean ring

x ∗̇(x +̇ x )
= x ∗̇ x +̇ x ∗̇ x distributive
= x +̇ x hypothesis

Either x = O — but x is quantified over all of g , so this is not the case — or x +̇ x = O (from a
property of rings, law 28.1).

�

Proof of law 28.7, that O ≺ x ⇔ -̇ x ≺ O

O ≺ x assumption
⇒ (-̇ x ) +̇O ≺ (-̇ x ) +̇ x OrderedIntegralDomain axiom
⇒ -̇ x ≺ O defn. O and -̇

�

Proof of law 28.8, that g is unbounded above.

Take y ′ = x +̇ I (y ′ ∈ g follows from closure property):

O ≺ I OrderedIntegralDomain axiom
⇒ x +̇O ≺ x +̇ I OrderedIntegralDomain axiom
⇒ x ≺ x +̇ I defn. O

�

Proof of law 28.8, that g is unbounded below.

Take y = x +̇(-̇ I ) (y ∈ g follows from closure property):

O ≺ I OrderedIntegralDomain axiom
⇒ O +̇(-̇ I ) ≺ I +̇(-̇ I ) OrderedIntegralDomain axiom
⇒ O +̇(-̇ I ) ≺ O defn. -̇
⇒ x +̇O +̇(-̇ I ) ≺ x +̇O OrderedIntegralDomain axiom
⇒ x +̇(-̇ I ) ≺ x defn. O

�
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Proof of law 28.9, that O ≺ x ⇔ O ≺ x ˙1

O ≺ x assumption
⇒ O ≺ x ˙1 ⇔ O ∗̇ x ≺ x ˙1 ∗̇ x OrderedField axiom
⇒ O ≺ x ˙1 ⇔ O ≺ I defn. ∗̇ and ˙1

⇒ O ≺ x ˙1 OrderedField axiom

Similarly for x ≺ O .

�

Proof of law 28.10, that g is dense.

Take x = (y +̇ y ′) ∗̇(I +̇ I ) ˙1. We use the fact that O ≺ (I +̇ I ) ˙1, which follows from law 28.9,
and consider just the case that both elements are greater than O .

O ≺ y ≺ y ′ assumption
⇒ y ∗̇(I +̇ I ) ˙1 ≺ y ′ ∗̇(I +̇ I ) ˙1 OrderedIntegralDomain axiom
⇒ y ∗̇(I +̇ I ) ˙1 +̇ y ∗̇(I +̇ I ) ˙1 ≺ y ∗̇(I +̇ I ) ˙1 +̇ y ′ ∗̇(I +̇ I ) ˙1

OrderedIntegralDomain axiom
⇒ (y +̇ y) ∗̇(I +̇ I ) ˙1 ≺ (y +̇ y ′) ∗̇(I +̇ I ) ˙1 distributive
⇒ y ∗̇(I +̇ I ) ∗̇(I +̇ I ) ˙1 ≺ (y +̇ y ′) ∗̇(I +̇ I ) ˙1 distributive, defn. I
⇒ y ≺ (y +̇ y ′) ∗̇(I +̇ I ) ˙1 defn. ˙1

⇒ y ≺ x defn. x

We can similarly show that x ≺ y ′, as required. The case where y and y ′ are both less than O
follows in a similar manner. If y = O or y ′ = O , the arguments carry through. If y ≺ O ≺ y ′,
then x = O is a suitable choice.

�

Proof of law 29.6, that there is a bijection between the integers and natural numbers:

One such bijection is ( λ i : Z− • -2 ∗ i + 1 ) ∪ ( λ i : N • 2 ∗ i )

�

Proof of law 29.9, that there is a bijection between the natural numbers and pairs of naturals:

Law 21.44 shows that it is sufficient to show the existence of a total injection in both directions.

• Case 1: Consider ( λn : N • (n,n) ) ∈ N � N2×

• Case 2: Consider ( λn,m : N • 2∗∗n ∗ 3∗∗m ) ∈ N2× � N

�

Proof of law 29.9, that there is a bijection between the natural numbers and the rationals:

Law 21.44 shows that it is sufficient to show the existence of a total injection in both directions.
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• Case 1: Consider id N ∈ N � Q

• Case 2: Consider

g = {0 7→ (0, 0)} ∪ { q : Q; n,m : N | coprime(n,m) ∧ q = n ÷m • q 7→ (n,m) }
∈ Q � N2×

Compose g and a bijection between pairs and naturals, to construct the required injection Q � N.

�

Proof of law 29.12, that there is a bijection between the power set of natural numbers and the
reals:

Law 21.44 shows that it is sufficient to show the existence of a total injection in both directions.

• Case 1: ∃ f : P N � R • true

We use a Gödelisation to construct a distinct real from each set of naturals: the 2nth position in
the binary expansion of the real is 1 precisely when n is in the particular set of naturals; all the
odd positions in the binary expansion are zero (which avoids the problem of 0.1 and 0.01111 . . .
representing the same number). So take

f = λ a : P N • / + ( λn : a • 2∗∗(-2 ∗ n) )

• Case 2: ∃ f : R � P N • true : Take f = { x : R • x 7→ {q : Q • x < q } }

This is injective (each real maps to a different set of rationals) because the rationals are dense in
R.

�

Proof of law 30.42, that p is prime precisely when p divides (p − 1)! + 1

When p = 2 we have (1! + 1) mod 2 = 2 mod 2 = 0. So in what follows we assume p > 2.

p ∈ prime
⇔ (factorial(p − 1) + 1) mod p = 0
⇔ factorial(p − 1) mod p = p − 1
⇔ factorial(p − 2) mod p = 1

We take the two cases of the double implication in turn:

• factorial(p − 2) mod p = 1 ⇒ p ∈ prime
Assume p 6∈ prime, so p = n ∗m. We take the two cases n = m and n 6= m separately.

– n = m, p is a square.
Consider n = 2, p = 4. Then (p − 2)! = 2 6= 1.
If p is a square > 4, then p must divide (p − 2)!, because the factorial includes both
n and 2 ∗ n. Contradiction.

– n 6= m, with n being the smaller factor, so n ∗ n ≤ p. Then p must divide (p − 2)!,
because the factorial includes both n and m. Contradiction.
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So p ∈ prime.

• p ∈ prime ⇒ factorial(p − 2) mod p = 1
Multiplication modulo p forms a group (law 23.4), so there is an inverse function:

∀n : 1 . . p − 1 • ∃m : 1 . . p − 1 • (n ∗m) mod p = 1

We have that ((p−1)∗ (p−1))modp = (p ∗p−2∗p +1)modp = 1, and also that (1∗1)modp =
1 mod p = 1.

No other elements are self inverse: Consider an element n : 2. .
√

p. n∗n ∈ 4. .p, so (n∗n)modp 6=
1. So all elements 1 < n <

√
p must have a (unique) inverse

√
p < m < p − 1. And hence all

elements
√

p < m < p − 1 have an inverse 1 < n <
√

p.

So we have

∀n : 2 . . p − 2 • ∃m : 2 . . p − 2 | m 6= n • (n ∗m) mod p = 1

So all the (even number of) factors in 2 . . p − 2 can be paired up with their inverses, and hence
vanish.

�

Proof of law 31.5, that n is ⊆-order preserving.

Base case, n = 0:
r0 = idX = s0

Case n > 0; inductive hypothesis rn ⊆ sn :
rn+1

= r o
9 rn

⊆ s o
9 sn law 20.22 with r ⊆ s and rn ⊆ sn

⊆ sn+1

�

Proof of law 31.7, that iteration preserves commutativity.
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Base case n = 0 (and hence m = 0 by renaming):
r0 o

9 s
= idX o

9 s definition r0

= s property of id
= s o

9 idX
= s o

9 r0

Case n = 1; m > 0; inductive hypothesis r o
9 sm = sm o

9 r :
r o

9 sm+1

= r o
9 s o

9 sm definition sm+1

= s o
9 r o

9 sm theorem hypothesis
= s o

9 sm o
9 r induction hypothesis

= sm+1 o
9 r

Case n > 1; inductive hypothesis rn o
9 sm = sm o

9 rn :
rn+1 o

9 sm

= r o
9 rn o

9 sm definition rn+1

= r o
9 sm o

9 rn induction hypothesis
= sm o

9 r o
9 rn case n = 1

= sm o
9 rn+1

�

Proof of law 31.8, that iteration preserves distributivity.

Base case n = 0:
(r o

9 s)0

= idX definition r0

= idX o
9 idX property of id

= r0 o
9 s0

Case n > 0; inductive hypothesis (r o
9 s)n = rn o

9 sn :
(r o

9 s)n+1

= r o
9 s o

9 (r o
9 s)n definition rn+1

= r o
9 s o

9 rn o
9 sn induction hypothesis

= r o
9 rn o

9 s o
9 sn previous law 31.7

= rn+1 o
9 sn+1

�

Proof of law 36.13, that the chain of prefix lower bounds has a glb.

Prefix lower bounds form a non-empty enumerable chain (law 36.12), and hence an enumerable
order. ( prefix ) is also a reflexive order (law 36.1). Hence prefix lower bounds form a well
order (law 35.6). A well order has a minimum (by definition). An order is antisymmetric (by
definition). Hence that minimum is the glb (law 26.27).

�
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>, 318
B, 166
−B, 166
�, 207
�→, 207
7�, 207
7�→, 207
7 7�, 207
7 7�→, 207
≥, 318
>>, 79
?, 103
!, 103
A, 311
∀, 58, 75
⊥, 111
∃, 59, 75
∃1, 61, 75
F, 145
F1, 145
N, 311
N1, 313
N2, 331
Π, 341
P, 94
P1, 141
Q, 315
R, 316
Σ, 339
>, 111
Z, 313
, 49

a, 355
a/, 389
\, 80
\, 126
√, 333√ , 333
⊂, 140
⊆, 137
χ, 64
∈, 62
6∈, 112
λ, 66
µ, 67
n , 334
∩, 122

⋂
, 122

◦, 187
◦/, 388
π, 347
σ, 110
θ, 83
∪, 117
], 394⋃

, 117
×, 96
∼, 154
2× , 113

A, 311
∀, 58, 75
Abel, Niels Henrik, 222
AbelianGroup, 226
AbelianMonoid, 223
AbelianSemiGroup, 222
abs, 320
acyclic, 258
&, 90
anti-chain, 272
antisymmetric, 247
arithmos, 311
axiom of ancestry, 410
AxiomaticDeclaration, 43, 44

B, 111
bag, 392
bag display, 396
bag sum, 394
bagcompose, 393
bicompose, 196
bijection, 207
BindingConstruction, 74, 83
BindingExtension, 74, 85
BindingSelection, 74, 88
Boole, George, 111
BooleanRing, 298
bound, greatest lower, 283
bound, least upper, 283
bound, lower, 172
bound, upper, 172

calendar, 86
cardinality, 326
cardinality, total, 328
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Cartesian diagram, 449
Cartesian square, 113
CartesianProduct, 65, 96
ceiling, 321
chain, 276
chain1, 276
characteristic tuple, 64
χ, 64
closure property, 135
closure, reflexive transitive, 251
closure, symmetric, 247
closure, transitive, 251
coextract, 378
cofilter, 379
common logarithm, 346
comparable, 270
compatible relations, 182
complete distributed product, 341
complete distributed sum, 339
CompleteField, 304
component, 264
composite, 127, 331
composition, distributed functional, 388
composition, distributed relational, 388
composition, functional, 187
composition, left demonic, 192
composition, relational, 187
composition, right demonic, 192
composition, schema, 79
concatenation, distributed, 389
concetenation, 355
ConditionalExpression, 65, 68
Conjecture, 43, 47
conjunction, 55
conjunction, low-precedence, 55, 104
conjunction, schema, 77
connected, 264
connected1, 264
coprime, 331
cos, 347
cosine, 347
count, 392

de Morgan’s laws, 56, 59, 77, 175, 178
de Morgan, Augustus, 56
decoration stroke, 103
degree, 336
demonic composition, 192

Descartes, René, 449
Dijkstra, Edsgar, 260
disjoint, 218
disjunction, 55
disjunction, schema, 77
display, bag, 396
display, sequence, 354
display, stream, 354
distributed concatenation, 389
distributed functional composition, 388
distributed override, 387
distributed product, complete, 341
distributed product, finite, 231
distributed relational composition, 388
distributed sum, complete, 339
distributed sum, finite, 230
distributeOverLabelledSet, 228
distributeOverSeq, 386
distribution properties, 133
distribution property, 142
div, 322
division, integer, 322
do, 261
dom, 158
domain, 158
domain restriction, 161
domain subtraction, 161
dual laws, 156

∃, 59, 75
∃1, 61, 75
empty set, 116
enumerableChain, 359
enumerableOrder, 358
enumerate, 360
equality, 62
EqualityDeclaration, 44
equivalence, 57
equivalence class, 258
equivalence relation, 257
equivalence, schema, 77
Euclid, 261
even, 127
existential quantification, 59
existential schema quantification, 75
exp, 344
exponential function, 344
Expression, 44, 46, 54, 65
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exterior vertex, 236
extract, 378
extremum, 236

F, 145
F1, 145
factor, 399
factorial, 342
false, 55
fbag, 392
Field, 301
filter, 379
finite distributed product, 231
finite distributed sum, 230
finite function, 204
finite injection, 207
finite relation, 153
finite subset, 145
finite surjection, 205
finite surjective injection, 207
finiteness predicate, 145
first component, 152
floor, 321
forest, 266
formSequence, 360
FreeType, 43, 90
front, 375
function, 200
function keyword, 49
function, finite, 204
function, partial, 200
function, total, 202
functional composition, 187
functional composition, distributed, 388
functionalAt, 199
Fundamental Theorem of Arithmetic, 332

Galois, Evariste, 304
gcd, 400
generalised set intersection, 122
generalised set union, 117
generic keyword, 49
GenericAxiomaticDeclaration, 43, 46
GenericConjecture, 43, 47
GenericHorizontalDeclaration, 43, 46
GenericOperatorDeclaration, 43
GenericSchemaBoxDeclaration, 43, 46
GivenSet, 43, 89

glb, 283
GraphPreservingInjection, 287
GraphPreservingMap, 287
GraphReversingInjection, 290
GraphReversingMap, 290
greatest common divisor, 400
greatest lower bound, 283
Gregory XIII, 86
Group, 226

hard newline, 104
head, 375
hiding, schema, 80
homomorphism, 212
HorizontalDeclaration, 43, 44

id, 239
idempotent, 221, 250, 252
identity relation, 239
if-then-else expression, 68
image, lower, 168
image, lower singleton, 181
image, relational, 169
image, upper, 168
image, upper singleton, 180
implication, 57
implication, schema, 77
incomparable, 270
inDegree, 336
induction principle, 145, 286
induction, transfinite, 286
inequality, 113
infix, 365
injection, 207
injection, finite, 207
injection, finite surjective, 207
injection, partial, 207
injection, partial surjective, 207
injection, total, 207
integer division, 322
integer part, 321
integer range, 324
IntegerProperties, 312
IntegralDomain, 300
interior vertex, 236
intersection, 122
intersection, generalised, 122
intransitive, 254
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intransitive residue, 255
inverse, relational, 154
ipath, 381
irreflexive, 243
irreflexiveEnumerableOrder, 358
irreflexiveOrder, 271
irreflexiveTotalOrder, 274
iseq, 353
isequence, 351
isomorphism, 214
istr, 352
istream, 349
items, 395
iteration, maximal, 261
iteration, relation, 334

Julius Caesar, 86

λ, 66
LambdaExpression, 65, 66
last, 375
lcm, 400
leaf, 236
leap year, 86
least common multiple, 400
least upper bound, 283
left demonic composition, 192
leftassoc keyword, 49
LetExpression, 65, 67
line breaking, 104
ln, 345
locallyFinite, 256
locallyFiniteIn, 256
locallyFiniteOut, 256
logn , 346
logarithm, common, 346
logarithm, natural, 345
low-precedence conjunction, 55, 104
lower bound, 172
lower bound, greatest, 283
lower image, 168
lower shadow, 177
lower singleton image, 181
lub, 283

µ, 67
makeComplete, 338
maplet, 154

max, 330
maximal iteration, 261
maximum, 236, 281
mean, 397
median, 398
membership, 62
merge, 195
min, 330
minimum, 236, 281
mitochondrial Eve, 410
mod, 322
mode, 399
modulus, 322
Monoid, 223
MuExpression, 65, 67

N, 311
N1, 313
N2, 331
natural logarithm, 345
negation, 55
negation, schema, 77
network diagram, 452
newline, hard, 104
newline, soft, 104
node, 236
non-empty finite subset, 145
non-empty subset, 141
non-membership, 112
normalised schema, 110

odd, 127
OperatorTemplate, 43, 49
order, 270
OrderedField, 303
OrderedIntegralDomain, 302
outDegree, 336
override, 184
override, distributed, 387

Π, 341
P, 94
π, 347
P1, 141
Paragraph, 42, 43
partial, 269
partial function, 200
partial injection, 207
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partial surjection, 204
partial surjective injection, 207
partition, 219
path, 381
pi, 347
pigeonhole principle, 146
piping, schema, 79
Pope Gregory XIII, 86
poset, 273
poset1, 273
power function, completed, 345
power function, integer exponent, 343
PowerSet, 65, 94
pre keyword, 80
precondition, schema, 80
Predicate, 47, 54
predicate paragraph, 14
predicate, schema, 62
prefix, 364
preorder, 277
prime, 127, 331
product, complete distributed, 341
product, finite distributed, 231
productbag , 397
projection, schema, 80
proper subset, 140

Q, 315
quantification, existential, 59
quantification, existential schema, 75
quantification, unique existential, 61
quantification, unique existential schema, 75
quantification, universal, 58
quantification, universal schema, 75

R, 316
ran, 158
range, 158
range restriction, 166
range subtraction, 166
range, integer, 324
RationalProperties, 315
RealProperties, 316
reflexive, 241
reflexive transitive closure, 251
reflexiveEnumerableOrder, 358
reflexiveOrder, 271
reflexiveTotalOrder, 274

Relation, 54, 62
relation arrow, 153
relation iteration, 334
relation keyword, 49
relation, finite, 153
relation, identity, 239
relational composition, 187
relational composition, distributed, 388
relational image, 169
relational inverse, 154
relational override, 184
relations, compatible, 182
remainder, 322
residue, intransitive, 255
restriction, domain, 161
restriction, range, 166
rev, 374
reverse, 374
right demonic composition, 192
rightassoc keyword, 49
Ring, 298
root, 236, 238
Russell, Bertrand, 234

Σ, 339
σ, 110
schema composition, 79
schema conjunction, 77
schema disjunction, 77
schema equivalence, 77
schema hiding, 80
schema implication, 77
schema negation, 77
schema piping, 79
schema precondition, 80
schema predicate, 62
schema projection, 80
SchemaBoxDeclaration, 43, 44
SchemaCombination, 74, 79
SchemaConstruction, 74, 83
SchemaExpression, 65, 74
SchemaPropositional, 74, 77
SchemaQuantification, 74, 75
SchemaRenamingExpression, 74, 82
SchemaRestriction, 74, 80
SchemaText, 44, 46, 54, 64
second component, 152
Section, 42



499

SemiGroup, 222
seq, 353
sequence, 350
sequence display, 354
set difference, 126
set difference, symmetric, 132
set display, 71
set intersection, 122
set intersection, generalised, 122
set union, 117
set union, generalised, 117
SetComprehension, 65
SetExtension, 65, 71
shadow, lower, 177
shadow, upper, 176
shift, 354
sign, 319
signature, 110
sin, 347
sine, 347
singleton image, lower, 181
singleton image, upper, 180
sink, 236
sizebag, 397
soft newline, 104
Sort, 295
source, 236
Specification, 42
split, 195
square root, 333
squash, 361
StableSort, 296
steps, 382
str, 352
stream, 349
stream display, 354
stroke, 103
stronglyConnected, 264
subscript stroke, 103
subset, 137
subset, finite, 145
subset, non-empty, 141
subset, non-empty finite, 145
subset, proper, 140
subtraction, domain, 161
subtraction, range, 166
suffix, 364

sum, bag, 394
sum, complete distributed, 339
sum, finite distributed, 230
sumbag , 397
surjection, 204
surjection, finite, 205
surjection, partial, 204
surjection, total, 204
surjective injection, 207
symmetric, 245
symmetric closure, 247
symmetric set difference, 132

tail, 375
θ, 83
Thebes, 411
time machine, 429
total cardinality, 328
total function, 202
total injection, 207
total surjection, 204
totalOrder, 274
transfinite induction’, 286
transitive, 249
transitive closure, 251
tree, 267
true, 55
TupleComponentSelection, 65, 69
TupleExpression, 65, 68

union, 117
union, generalised, 117
unique existential quantification, 61
unique existential schema quantification, 75
universal quantification, 58
universal schema quantification, 75
upper bound, 172
upper bound, least, 283
upper image, 168
upper shadow, 176
upper singleton image, 180

Venn diagram, 447
Venn, John, 447
vertex, 236, 237
vertex degree, 336

wellFoundedChain, 286
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wellFoundedChain1, 286
wellOrder, 285
wellRooted, 238

×, 96

Z, 313


