
Using PVS to Prove a Z Renement:

A Case Study

David W.J. Stringer{Calvert1, Susan Stepney2, Ian Wand1 ?

1 Department of Computer Science, University of York, U.K.
2 Logica UK Ltd., Cambridge, U.K.

fdavesc,icwg@minster.york.ac.uk, stepneys@logica.com

To be presented at FME 97, University of Graz, Austria.
September 1997

Abstract. The development of critical systems often places undue trust
in the software tools used. This is especially true of compilers, which are a
weak link between the source code produced and the object code which is
executed. Stepney [23] advocates a method for the production of trusted

compilers (i.e. those which are guaranteed to produce object code that
is a correct renement of the source code) by developing a proof of a
small, but non trivial compiler by hand in the Z specication language.
This approach is quick, but the type system of Z is too weak to ensure
that partial functions are correctly applied.
Here, we present a re{working of that development using the PVS spec-
ication and verication system. We describe the problems involved in
translating from the partial set theory of Z to the total, higher order logic
of the PVS system and the strengths and weaknesses of this approach.

1 Introduction

Computer systems are increasingly being used in applications where their failure
could lead to nancial or environmental disaster, or even to loss of life. Such
systems are called Critical and as such must be engineered to the highest quality,
to anticipate potential faults and to reduce the possibility of errors in the system.

The major enemy in seeking assurance in a computer system is complexity.
Complex systems are dicult to specify and to reason about, hence mistakes
and omissions will be made during the design and implementation process. One
characteristic of a good design process is that it should provide for validation
and verication of the `product' at every stage, so as to catch introduced errors

? Logica UK Ltd carried out the original work on the compiler method for RSRE (now
DRA Malvern), and is continuing the development for AWE plc. D.W.J. Stringer{
Calvert is funded by a CASE studentship from the Engineering and Physical Sciences
Research Council and Siemens Plessey Systems.

earlier (allowing solutions to be implemented more cheaply) and to provide a
trace of the development, which may be used in a safety argument.

At the highest level of rigour, we would use a renement process to provide
a fully formal development route from the requirements specication (expressed
in some suitable formal notation), via formal renement rules (which have been
proven to preserve meaning), to code in a high level language, say Ada.

Having now, at great expense, formally rened our requirements into a con-
crete implementation in Ada, we have a dilemma. As noted, Ada is a high level

language, indicating that it contains constructs intended to make the program-
ming task easier and less error prone. However, nothing comes for free and the
payment for this is made by the need to use a compiler or interpreter (a large
and complex piece of software) in order for the program we have written to be
executed on a real computer. Thus, the compiler and associated tools (including
an assembler, linker and libraries) are in a position of great trust in the building
of our software system.

Formal methods are often seen as the solution to the problem of assurance
in critical systems, but their application is usually limited to the most critical
parts of a system, as they are mostly seen as costly and dicult to use. Thus
a cost/rigour tradeo has developed, with `formalised' methods (such as Z [22]
with hand proofs) which provide less than full verication, becoming the popular
choice in industry.

Recent developments in full strength mechanised verication have lent more
credibility to the possible use of full formal verication on larger numbers of crit-
ical systems developments. Systems such as the Prototype Verication System
(PVS) [16,19] provide the necessary automation of much of the tedious detail of
fully formal proofs, and also allow for the construction of proof strategies specic
to the problem domain where necessary.

This paper presents the initial stages of our work on compiler correctness,
moving from a specication in Z, with hand proofs, through to a rigorous treat-
ment with PVS. This treatment has revealed several errors in the original hand
development, and forms the basis for further investigation into the extent to
which mechanisation can be applied to automate proofs in this problem domain.

2 The Starting Point

In this paper we build on the work of Stepney [23] who has developed a demon-

strably correct compiler for a simple (but non-trivial) language Tosca, targeted
at an imaginary assembler Aida (similar to that used on the Viper [5] proces-
sor). Tosca contains the usual features of a high level language | sequencing,
assignment, choice, while loops, and a simple model of input/output based on
streams of integers. The target language (Aida) is a simple assembly language
with load/store, input/output, and arithmetic/logical operations.

2

Both languages are dened denotationally (using the Z specication language
[22]), and the source language is given an operational semantics in terms of
templates of target instructions, thereby dening a compiler. Correctness proofs
are discharged by hand, using the principle of structural induction over source
language constructs.

The work described here is a re-engineering of those hand proofs within the
framework of the PVS specication and verication system. The specication
language of PVS is based on classical, typed, higher order logic. It contains
constructs intended to ease the natural development of specications such as
parameterised modules, records, subtypes, and abstract datatypes. Unlike Z,
the PVS logic does not admit partial functions, although this can be modelled
using subtypes and dependent types.

The PVS proof checker is interactive, using a sequent style presentation.
It provides powerful basic commands, and a mechanism for building re-usable
strategies based on these. The power of the system comes from the use of decision
procedures to automate eciently the decidable aspects of the logic, and their
close integration with rewriting.

As the type system of the PVS logic is so rich and expressive, type checking is
undecidable. To overcome this, the type checker emits type correctness conditions
(TCCs) to which the full weight of the theorem prover can be applied. Most of
these TCCs are discharged automatically by standard strategies. TCCs are also
emitted during proof as extra subgoals where required to ensure type correctness,
for example when instantiating a lemma.

PVS was chosen over, say, a Z-based prover such as Z/EVES [20] because
we anticipated that the automation it provided would make the verication task
easier. In addition, we expected that the PVS type system would make the
development less error prone than a hand development in Z, as PVS has both
domain checking (i.e. ensuring that functions are applied only to arguments
within their domain) and conservative denitions.

The remainder of this paper provides a short outline of the original Z develop-
ment, followed by a discussion of some of the problems encountered in translating
this into the PVS system. A brief discussion of related work is included, together
with our future plans for research in this area.

3 Z Development

In this section we give an overview of the original Z development of the compiler,
with an explanation of why the various design decisions were made. More detail
is given elsewhere [23].

The development of a compiler by this method has three components:

1. Specication: The denotational semantics of both the high level source
language (Tosca), and the low level assembly language (Aida), are specied
in Z, as is the operational semantics of the high level language in the form
of a set of templates of low level language instructions.

3

2. Implementation: The Z specication of the Tosca semantics are translated
into Prolog, where they are executable. Executing the denotational semantics
gives an interpreter; executing the operational semantics gives a compiler.

3. Proof: The operational semantics are proved to be equivalent to the deno-
tational semantics: the compiler transformation is meaning preserving, and
hence the compiler is correct.

For example, the meaning of Tosca's assignment statement x := e is a state
change: the state  is updated so that x maps to the value of the expression e.
In Z this can be written as1:

M[[assign(x; e)]] =   fx 7! M[[e]]g

In Prolog this becomes

meaning(assign(Name,Expr),Pre,Post):-

meaning(Expr,Pre,Value),

update(Name,Value,Pre,Post).

Similarly, the meaning of Aida's store instruction (store the contents of the
accumulator at the location l) updates its store2. In Z:

A[[store l]] = (  fl 7! Ag)

Here,  represents the Aida store,  the environment mapping from program
labels to continuations,  the current continuation, and the term A the value
contained in the accumulator.

The operational semantics dene the sequence of Aida instructions corre-
sponding to the translation of each Tosca instruction. The assignment statement
is translated into a sequence of instructions to evaluate the expression, followed
by an instruction to store that value at the appropriate location. In Z:

Ohj assign(x; e) ji = Ohj e ji a hstore x i

In Prolog this becomes

compile(assign(Name,Expr),[InstrList,store(Name)]):-

compile(Expr,InstrList).

1 The square brackets [[]] are the conventional denotational semantics brackets, not

Z's bag brackets.
2 The semantics of Aida is more complicated than Tosca's, and needs to use `contin-

uation' arguments, because the assembly language allows arbitrary jumps. See [23]
for more explanation.

4

To show that the compiler is correct, we need to show that the translation into
Aida preserves the semantics of the Tosca instruction. We do so by structural
induction over Tosca's abstract syntax, proving that for each construct, the
Aida meaning of the translation template is the same as the Tosca meaning of
the original instruction. For the assignment example we need to prove that:

` M[[assign(x; e)]] = A[[Ohj assign(x; e) ji]]

As we can see from above, the specications serve (at least) three conicting
purposes in this approach:

1. Language denition: the denotational semantics act as the language def-
inition, and so the specication style should be as clear and abstract as
possible, to make the denition comprehensible to human readers [1].

2. Implementation: the various semantics are translated into an executable
language, and so should be written in a concrete, algorithmic, style that fa-
cilitates this translation. The declarative language Prolog, rather than some
imperative language, is chosen as the target language in order to minimise
this implementation step.

3. Proof: the various semantics need to be manipulated mathematically, in or-
der to perform the correctness proofs, and so should be written as abstractly
as possible.

In the original work the only tool available was f uzz, a Z type checker [21]: no
proof tools were used, and hence `suitable for tools' was not a design criterion.
In particular, Z's partial functions were exploited to structure the specications,
and to provide Tosca with various static checking semantics.

4 Translation to PVS

The rst attempt to translate the Z specications into PVS took a direct naive

approach, where the specications were relatively quickly translated into the
logic of the PVS system with little modication. With this approach the main
branch of the correctness theorems followed closely the original hand proofs,
except for a few cases where unproven assumptions had been made, where the
translation had been incorrect and also where the detail of a series of complex
reasoning steps was omitted and presented as one step.

We therefore set about re-working the specication to allow the correctness
theorems to be proved. This work involved the tightening of the specication,
thereby making assumptions explicit, as will be shown in the following sections.

5

4.1 PVS Types

Whilst augmenting the functions in the specication, we found it very useful to
also augment the types of those functions. As type information is available to the
ground prover in PVS, this approach minimises the number of type correctness
conditions generated as side eects of proof steps. For example, the following
function shows the use of a dependently typed argument, and a predicate subtype
for the range:

OE(epsilon : Expr)(rho_o : Inj_Env)

(SP : fl : Locn | l >= top(rho_o)g) :

RECURSIVE fl : list[Instr] | cons?(l) AND sequential?(l)g =

...

Here, the function OE returns a list of Instr, which satises the predicates cons?

(i.e. it is a non-empty list), and sequential?, a predicate which we have dened
to mean the list contains no jump or goto instructions.

In the remainder of this section we discuss some of the more interesting
aspects of this conversion from Z to PVS, highlighting some of the original
assumptions and describing the approaches taken to overcome them. Fragments
of PVS specications appear as boxed gures.

4.2 Total functions

Partial functions are a natural method for modelling many situations, and heavy
use is made of them in Z specications. It is dicult however to provide sup-
port for mechanical reasoning using partial functions, and as such PVS does not
support their use. Therefore, the most challenging part of translating a Z speci-
cation into the logic of the PVS system is removing the use of such functions.

There are three basic methods for making a partial function into a total one:

1. Cause the function to return a specic, ctitious value (a bottom) for unde-
ned cases.

2. Cause the function to return an arbitrary value of the correct type for un-
dened cases.

3. Constrain the type of the function arguments so that it is a total function
over a restricted domain.

The second option can be achieved by the use of Hilbert's epsilon operator [13],
which, given a predicate, returns a value which satises that predicate (if possi-
ble) and if it is not satisable returns an arbitrary value of the appropriate type.
Epsilon is a useful specication tool, as it allows for a clever abstraction from
detail, but for our purposes here, options one and three seem more appropriate3.

3 See section 2.4.2 of [19] for more discussion on the use of the epsilon operator in PVS

6

In our specication of the compiler problem in PVS, we have experimented
with the use of methods one and three from the above list. We believe there is
a tradeo in their use between the readability of the specication, and ease of
proof. Whereas both of these methods make explicit the inherent partial nature
of a function, the use of a bottom element (method one) tends to clutter the
body of the function, and the use of complex types (method three) tends to make
the function `head' quite opaque and results in extra type correctness conditions
to ensure applications of the function are within its domain.

After experimenting with the use of both approaches (as will be seen later in
this paper), we would now advocate the use of complex types to approach this
problem. If we use a bottom element, the tool can give us no assistance in noting
our mistakes and inconsistencies, but the correctness conditions generated by the
use of complex types are extremely valuable for locating errors and omissions.

Such support leads us to believe that PVS would be a useful tool for lan-
guage designers starting from scratch, using the PVS type system to explore and
dene various static semantics for the language after noting where and which
obligations were generated.

4.3 Store

The most signicant change to the specication involved the memory maps at
both the Tosca and Aida levels. Pictorially, they are as shown in gure 1.

All variables in Tosca have global scope, so they are allocated storage stati-
cally, at compile time. Aida has static storage of the equivalent Tosca variables. It
also has a stack, which grows from above the highest allocated memory location,
to store temporary variables needed during expression evaluation.

The Z specication denes a function restrict, which performs a range
restriction on the store, to yield the locations that are currently in use:

restrict : EnvO  Locn  StateI ! StateI

8o : EnvO ;  : Locn; & : StoreI ; in : Input ; out : Output 
restrict(o ; ; (&; in; out)) =

((fAg [ran o [(top : :  1)) C &; in; out)

Our new treatment introduces a stack pointer, which in conjunction with the
use of a dependent type removes the need for the restrict function. The basic
type is Inj Env:

Dead_Locn : Locn = 0

Inj_Env : TYPE =

[# top : Locn,

map : ff : [Name -> fl : Locn | l < topg] |

FORALL (xi1, xi2 : Name) :

((f(xi1) = f(xi2) AND NOT f(xi1) = Dead_Locn)

IMPLIES xi1 = xi2)g
#]

7

Top

SP

Aida Memory Map

Stack

Variables

Variables

Tosca Memory Map

Top

Fig. 1. Tosca and Aida Memory Maps

Inj Env provides the function map, which maps variable names to locations. The
range of this function is locations dependent on the rst parameter in the record,
top, but its domain includes all variable names | unused variables map to an
unused location Dead Locn. The quantied expression ensures that the function
is injective (modulo the use of Dead Locn).

The Inj Env type is combined in the Aida semantics into a type Env Store I,
which combines the concepts of environment and store into one dependent record
type:

Env_Store_I : TYPE =

[# Env : Inj_Env,

A : Value,

SP : fl : Locn | l >= top(Env)g,

Mem : [fl : Locn | l < SPg -> Value]

#]

`A' represents the accumulator, containing a single value. `SP' is a stack pointer,
which is constrained to be a location greater than or equal to the highest loca-
tion allocated to a Tosca variable. Thus, the memory (Mem) is a mapping from
locations to values, where it is only dened for locations below the stack pointer.

8

Two extra instructions were added to the instruction set of the low level ma-
chine to increment (spinc) and decrement (spdec) the stack pointer, and these
were inserted into the operational semantics at appropriate points in expression
evaluation. The decrement operation makes use of the PVS function restrict4,
which takes a function dened over a type X and gives one which has a domain
which is a subtype of X.

SP_INC(sigma_i : Env_Store_I) : Env_Store_I =

(# Env := Env(sigma_i),

A := A(sigma_i),

SP := SP(sigma_i)+1,

Mem := Mem(sigma_i) WITH [(SP(sigma_i)) := Unknown]

#)

SP_DEC(sigma_i : fe : Env_Store_I |

SP(e) - 1 >= top(Env(e))g) : Env_Store_I =

(# Env := Env(sigma_i),

A := A(sigma_i),

SP := SP(sigma_i) - 1,

Mem := restrict(Mem(sigma_i))

#)

This allows us to ensure that when the stack pointer is decremented, the domain
of the function representing the memory shrinks appropriately.

Earlier we stated that all declarations in our high-level language are static.
Now we have combined the environment and store in the same datatype, the
state transition functions in the dynamic semantics could modify the environ-
ment, both by extension or by contraction. If a state transition removes mapping
between a program variable and its location in memory, then subsequent tran-
sitions may fail.

Due to this, PVS emits TCCs during the proof, obliging us to prove that
the environment remains static. For example, the last line of this TCC asks us
to prove that the environment after executing rhoi (phi) (a continuation) is the
same as that in the initial state:

% Subtype TCC generated (line 109) for rho_i(phi)(sigma_i)

% Proved -- Complete

MI_TCC3: OBLIGATION

(FORALL (phi: Label, gamma: Instr,

rho_i: Env_I, sigma_i: State_I, vartheta: Cont):

NOT Halted?(sigma_i) AND NOT Step(sigma_i) = 0 AND gamma = goto(phi)

IMPLIES Halted?(rho_i(phi)(sigma_i))

OR Env(StoreOf_I(rho_i(phi)(sigma_i))) = Env(StoreOf_I(sigma_i)));

These TCCs are easily proved, but it is also straightforward to avoid their gen-
eration at proof time by constraining the type of state transition functions so

4 This is not related to the Z function restrict dened earlier.

9

that they cannot modify the environment. The following denition is the type
of arbitrary state transitions (continuations) in the low level language:

Cont : TYPE = [s1 : State_I -> s2 : State_I |

(Halted?(s1) IMPLIES Halted?(s2)) AND

(Env(StoreOf_I(s1)) = Env(StoreOf_I(s2))) AND

(Step(s1) = 0 IMPLIES s1 = s2)]

4.4 Halting

The original Z specication made heavy use of partial functions to structure the
specication. For example, the dynamic meaning of Tosca's assignment state-
ment (x := e) is partial: it says nothing about what state change occurs if,
say,

{ the lhs-name (x) is undeclared
{ there are some uninitialised values in the rhs-expression e

{ the lhs and rhs have dierent types

Making the dynamic meaning function total to include these checks would clutter
the specication, and compromise the understandability of the language deni-
tion. So instead, the complete Tosca specication includes several other, static,
meaning functions, such as type checking, and declaration-before-use checking,
dened in a manner very similar to the dynamic meaning. If an assignment state-
ment passes these checks in the context of some program, then it is guaranteed
to be in the domain of the dynamic meaning function.

We have already noted that PVS does not admit partial functions, and as
such the direct implementation of the Aida semantics generated many type cor-
rectness conditions highlighting the partial areas of the specication. Many of
these cases were dealt with by augmenting the original semantics with sensible
extensions, but there were several areas which dealt with `exceptional' behaviour,
for example arithmetic overow/underow. To deal with these cases, we added
a Halted? ag to the low level state, which is set True when an error occurs. A
similar concept is introduced at the high level, where a ag Okay? is introduced
into the state. A high level state which is NOT Okay? is equivalent to any low
level state which is Halted?.

4.5 Termination

The largest assumption made in the hand proof is that loops and hence programs
terminate, therefore it is a `partial-correctness' proof. The following denition
of the dynamic semantics of loops gives a potentially innite recursion:

10

MC [[loop (; )]] =
if ME [[]] = boolv T

then MC [[loop(; )]](MC [[]])
else 

The termination assumption is necessary in order to use proof by induction, and
if the loop is non-terminating then this induction is not well founded. In [23,
Appendix B], a non-recursive denition of the dynamic semantics of loops is
given, using an innite family of functions:

W : N ! (CMD  EXPR) ! Env 7! State 7! State

8n : N;  : CMD ;  : EXPR;  : Env ;  : State 
W0(; ) = ?[State  State]
^ Wn+1(; ) =

if ME [[]] = boolv T then Wn (; )(MC [[]]) else 

MC [[loop(; )]] = [fn : N  Wn(; )g

This denition does not easily translate into the logic of the PVS system, so we
took a slightly dierent approach based on a loop counter.

The loop counter is made part of the state at the Tosca and Aida levels,
and decrements by one every time a loop body is executed. Thus, we can use
induction over the naturals to prove that 8n : n unfoldings of the loop are
correctly translated. The dynamic semantics of loops at the Tosca level therefore
becomes:

MC(gamma : Cmd)(sigma : State) : RECURSIVE State =

CASES gamma OF

...

loop(epsilon,gamma) :

IF ME(epsilon)(sigma) = BoolV(TRUE) THEN

MC(loop(epsilon,gamma))

(MC(gamma)(sigma) WITH [(Step) := Step(MC(gamma)(sigma)) - 1])

ELSIF ME(epsilon)(sigma) = BoolV(FALSE) THEN

sigma

ELSE

sigma WITH [(Okay?) := FALSE]

ENDIF

...

END CASES

This form of denition also allows the recursive function MC to be guaranteed to
terminate. Non-terminating recursive functions are in essence partial functions,
and as such are not permitted in PVS. A termination TCC is generated to ensure
that, on each recursive call to a function that its measure decreases. A measure
function is attached to every recursive function in PVS, and here we use:

11

MEASURE sizeof(gamma) + Step(sigma)

sizeof is a function we have dened which gives the `size' of a Tosca command
(which is represented as an abstract datatype). This decreases on the recursive
call (for evaluating embedded commands) in every case except loop, where the
`embedded' command is not just the loop body, but the loop itself, which has
the same `size'. However, using the loop counter, the Step decreases on each
execution of the loop, hence the overall measure also decreases.

4.6 Remaining Assumptions

There are several axioms in our specication, detailing things that cannot be
directly derived from the functional description of the languages and compiler.
Three of these relate to the partial nature of the Z specication:

1. Any two Tosca states that are NOT Okay? are equivalent.

2. Any two Aida states that are Halted? are equivalent.

3. Any Tosca state that is NOT Okay? is equivalent to any Aida state that is
Halted?.

The other remaining assumptions concern the environment EnvI which maps
from labels in an Aida program to the continuations which they represent. It is
not possible to `build' this environment as the compiler progresses through the
source text, as many label references in goto and jump instructions are forward
references. Also, to build the continuations to which they would refer would
require knowledge of the entire target program text, which is not available until
after compilation.

Hence, we have generated two axioms (for loop and choice instructions)
which give a representation of how this environment maps into the nal program
text: This axiomatisation is sucient for our purposes, but not ideal | it is far
too easy to introduce inconsistencies into the specication with the use of axioms.

rho_i_loop : LEMMA

FORALL (gamma : (loop?), rho_i : Env_I, phi : Label, n : nat,

sigma_i : fs : State_I | NOT Halted?(s)g, sigma : State) :

(FORALL (vartheta : Cont) :

rho_i(1 + PROJ_1(OC(c(gamma : (loop?)))(Env(StoreOf_I(sigma_i)))

(SP(StoreOf_I(sigma_i)))(phi))) = vartheta

AND rho_i(PROJ_1(OC(c(gamma : (loop?)))(Env(StoreOf_I(sigma_i)))

(SP(StoreOf_I(sigma_i)))(phi))) =

MI_Star(PROJ_2(OC(gamma)(Env(StoreOf_I(sigma_i)))

(SP(StoreOf_I(sigma_i)))(phi)))

(rho_i)(vartheta))

12

5 Correctness Theorems

The main branches of the correctness theorems follow the hand development
quite closely. The exceptions are where our augmentations of the specication
come into play, and where the hand proof makes light of some tricky details.
The best examples of this are in the proof of the translation of block commands
and entire programs, where Stepney assumes that these will follow directly (and
simply) from earlier lemmas, which is not entirely true.

The eort required to perform the proof with PVS has been large (a person
year, with the usual interruptions | considerably more that that to perform
the proof by hand). It has been noted by the authors of PVS that this is one
of the largest and more complex theorems passed through their system, and
the theorems we are required to discharge here are of a very dierent nature
from the theorems that have been specied in PVS previously. We have thus
been stretching the limits of the type system, for example in the use of doubly-
dependent types and abstract datatypes with subtypes.

We have succeeded in implementing strategies for discharging several of the
correctness theorems in a near automatic manner. The next stage of this research
is to see how robust these strategies are to changes in the specication, as a result
of adding more high-level language statements.

6 Related Work

One of the earlier works in the area of compiler verication is that by Polak [18],
who performed a partial correctness proof of a non-optimising compiler for a
substantial subset of Pascal, using the Stanford Pascal Verier [9]. However, it is
reported by Young [25] that there are a large collection of unproven assumptions
within his formal theory, and several inconsistencies in the axioms.

Computational Logic Inc. have performed verication of a compiler [14] for
a simple language Micro-Gypsy using the Boyer-Moore (NQTHM) system [3] as
part of their work on a trusted stack of system components [25]. The European
ProCoS (Provably Correct Systems) project [2] also attempted use of NQTHM
for their work on an Occam compiler, but with little success [24]. Recent work
at Kiel [4] and Ulm [7] is using the PVS system with much greater success. A
formalisation of denotational semantics is now available within the PVS frame-
work [17].

Several works have been based on the HOL system [8] | verication of an
assembler (Curzon) [6] and compilers for a small real-time language (Hale) [11]
and a simple imperative language (Joyce) [12]. A notable rigorous by-hand work
is that performed at Mitre and North Eastern University [10] for a compiler for
Scheme.

13

7 Conclusions

We have seen how it is possible, with some work, to use PVS to prove a theorem
cast in Z. This exercise highlighted some problems with the original proof, and
also some problems with using a proof tool in a somewhat `unnatural' manner.

Often, the process of performing a proof is more instructive than getting the
yes/no answer out at the end. With a hand proof, that process can deepen the
understanding of the original specication structure. It is important that this
source of insight not be lost when using a tool. In this case other insights came
from using PVS: the way of using it to explore the static semantics, for example.

PVS gives us greater condence in the result of the compiler via several
routes. With its expressive type system, and the requirement to discharge type
correctness conditions, we have a method for noting incompleteness and weak-
ness in the specication at a very early stage (which is therefore cheap to rectify).
Discharging putative theorems about the specication gives us more condence,
noting hidden assumptions and blatant incorrectness in the specication, but we
have noted this to be a very expensive activity, and will require more work on
automation before this is a viable industrial proposition for proofs of compiler
correctness.

We noted that the standard heuristics and built-in proof strategies of PVS
were not well suited to this problem domain, largely due to the very specic
ordering in which re-write rules must be red. We are in the process of devel-
oping strategies which automate re-writing in this domain by specic ordering
of applications, and controlled eagerness. Also, SRI are implementing more sen-
sible methods for instantiation of universal strength quantiers, possibly using
unication or tableaux procedures, which should succeed in our proofs where
the current heuristics fail.

However, it should be remembered that there is more to a specication than
just its proof opportunity: the other purposes of the specication must not be
compromised in the pursuit of ease-of-proof, lest assurance be lost in other areas
such as clarity, or translation to executable form.

7.1 Future Work

The work detailed here is ongoing, both at York and Logica. Since the original
small language was specied in [23], further development of this approach has
continued at Logica, on a compiler for AWE's high assurance ASP processor.
The method has been used on a high level language that extends Tosca by
adding more data types (bytes, unsigneds, arrays), functions and procedures,
and separate compilation of modules, with a high-integrity linker [15].

At York, we are intending to extend the PVS treatment of the compiler,
by augmenting the source language (and possibly target language) with new
features including local scope, procedures and functions, an array datatype and
separate compilation. Our plan is to manufacture proof strategies such that the
augmentation of the source language requires as little manual intervention to
re-run the correctness proofs as is possible.

14

8 Acknowledgments

Our thanks to John Rushby, Jeremy Jacob and the anonymous referees for their
useful comments on drafts of this paper. For help with PVS, our thanks to
Natarajan Shankar and Sam Owre of SRI International.

References

1. Rosalind Barden, Susan Stepney, and David Cooper. Z in Practice. BCS Practi-
tioners Series. Prentice Hall International, 1994.

2. Jonathan Bowen, C.A.R. Hoare, Michael R. Hansen, Anders R. Ravn, Hans Rischel,
Ernst-R�udiger Olderog, Michael Schenke, Martin Fr�anzle, Markus M�uller-Olm,
Jifeng He, and Zheng Jianping. Provably correct systems - FTRTFT'94 tutorial.
In Proceedings of FTRTFT'94, number 863 in Lecture Notes in Computer Science.
Springer-Verlag, September 1994.

3. Robert S. Boyer and J. Strother Moore. A Computational Logic Handbook. Aca-
demic Press, 1988.

4. Karl-Heinz Buth. Automated code generator verication based on algebraic laws.
ProCoS Project Document Kiel KHB 5/1, September 1995.

5. W.J. Cullyer. Implementing safety critical systems: The VIPER microprocessor.
In G. Birtwistle and P.A. Subrahmanyam, editors, VLSI Specication, Verication

and Synthesis, pages 1{25. Kluwer Academic Publishers, 1988.
6. Paul Curzon. A veried vista implementation nal report. Technical Report 311,

University of Cambridge Computer Laboratory, September 1993.
7. Axel Dold, F.W. von Henke, H. Pfeifer, and H. Rue. Formal verication of trans-

formations for peephole optimizations. 1997. These proceedings.
8. Mike Gordon. A proof generating system for higher-order logic. Technical Report

103, University of Cambridge Computer Laboratory, January 1987.
9. Stanford Verication Group. Stanford Pascal verier user manual. Technical Re-

port 11, Stanford Verication Group, 1979.
10. Joshua D. Guttman, John D. Ramsdell, and Vipin Swarup. The VLISP veried

scheme system. LISP and Symbolic Computation, 8:33{110, 1995.
11. R.W.S. Hale. Program compilation. In Jonathan Bowen, editor, Towards Veried

Systems, chapter 6. Elsevier Science Publishers Series on Real-Time Safety Critical
Systems, Amsterdam, 1993.

12. Jerey J. Joyce. A veried compiler for a veried microprocessor. Technical Report
167, University of Cambridge Computer Laboratory, March 1989.

13. A.C. Leisenring. Mathematical Logic and Hilbert's -symbol. Gordon and Breach
Science Publishers, New York, 1969.

14. J. Strother Moore. A mechanically veried language implementation. Technical
Report 30, Computational Logic Inc., September 1988.

15. I. T. Nabney and S. Stepney. High integrity separate compilation. In preparation.
16. Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke. Formal

verication for fault-tolerant architectures: Prolegomena to the design of PVS.
IEEE Transactions on Software Engineering, 21(2):107{125, February 1995.

17. H. Pfeifer, A. Dold, F. W. v. Henke, and H. Rue. Mechanized Semantics of
Simple Imperative Programming Constructs. Ulmer Informatik-Berichte 96-11,
Universit�at Ulm, Fakult�at f�ur Informatik, 1996.

15

18. Wolfgang Polak. Compiler Specication and Verication. Number 124 in Lecture
Notes in Computer Science. Springer-Verlag, 1981.

19. J.M. Rushby and D.W.J. Stringer-Calvert. A less elementary tutorial for the PVS
specication and verication system. Technical Report CSL-95-10, Computer Sci-
ence Laboratory, SRI International, August 1996.

20. Mark Saaltink. The Z/EVES system. In ZUM '97: The Z Formal Specication

Notation; 10th International Conference of Z Users, number 1212 in Lecture Notes
in Computer Science, pages 72{85, Reading, UK, April 1997. Springer-Verlag.

21. J. M. Spivey. The f uzz manual. Computing Science Consultancy, 2 Willow Close,
Oxford, UK, 1988.

22. J.M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International,
1989.

23. Susan Stepney. High Integrity Compilation: A Case Study. Prentice Hall Interna-
tional, 1993.

24. Deborah Weber-Wul. Proven correct scanning. Procos internal report, August
1992.

25. William D. Young. A veried code generator for a subset of Gypsy. Technical
Report 33, Computational Logic Inc., October 1988.

16

