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Abstract. As critical applications grow in size and complexity, high level 
languages, rather than better-trusted assembly languages, will be used in their 
development. This adds potential for extra errors to creep in, especially in the 
now necessary compiler. To avoid these new errors, it is necessary to have a 
formal specification of the high level language, and a formal development of its 
compiler. We outline what we believe is a practical route for achieving a 
demonstrably correct compiler, and describe a prototype compiler we have 
built by this route for a small, but non-trivial, language. 

1. Introduction 

It has been argued that the only "safe" way to write critical applications is by 
using assembly language, because this is the only way to be sure about what 
will happen during program execution. Languages further removed from the 
hardware cannot be trusted for two reasons: 

�9 It is impossible to know what the language means; to know how it translates 
to the "real" machine. 

�9 Even given some idea of the meaning of the high level constructs, it is 
impossible to know that the compiler correctly implements this meaning. 

There is a grain of truth in this argument, but as the applications grow larger 
and more complex, using assembly language becomes infeasible; high level 
languages, with all their software engineering advantages, will become 
essential. How can these conflicting requirements be reconciled? As a first step 
along the way, (at least) the following need to be satisfied: 
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�9 It must be possible to deduce the logical behaviour of a particular program 
independent of its execution on a particular target. 

�9 The high level language must have a formally defined semantics. Otherwise it 
is impossible to deduce even what should be the effect of executing a 
particular program. 

�9 The formal semantics must be established and made available for peer 
review and criticism. 

�9 The compiler must be correct, hence it must be derived directly from the 
formal semantics. 

�9 The compiler for a critical language must be seen to be correct. Hence it 
must be written legibly, and must be easily related to the formal semantics. 

�9 The code produced by the compiler must be clear, and easily related to the 
source code. This gives the required visibility to the compilation process for 
a critical language. 

The last two points are important for critical applications, in order to conform 
with the much more stringent validation requirements these have. 

In addition to the above requirements, the equally thorny problems of 
showing that the application is correct, and of showing that the hardware 
correctly implements the meaning of the machine language, must be ad- 
dressed. These are beyond the scope of this paper. 

In this paper, we will describe how a compiler can be constructed from the 
formal definition of a language. This compiler has the property of being correct 
by construction, and hence demonstrably correct. We will do this by defining a 
semantics for a small (but by no means trivial) high level language, (which for 
the purposes of this paper we will call Tosca - "not a Toy language, for Safety 
Critical Applications"), then constructing a compiler from them. Note that we 
are not proposing a new language, but are rather demonstrating how the 
formal semantics of a given language can be used in trusted compiler 
development. 

Earlier work on compiler correctness includes [McP66, MiW72, Mor73, 
Coh79, Po181]. Work on generating a compiler automatically from a denota- 
tional semantics definition of the language includes [Mos75, Pau81, Pau82, 
Wan84, Lee89] and more recent work on semantics-directed compiler gener- 
ation includes [HoJ90]. 

2. Semantics 

In order to write a correct compiler, it is necessary to have a formally defined 
semantics of the language. There are several ways of defining the semantics of 
programming languages, each appropriate for different purposes: 

An axiomatic semantics defines a language by providing axioms and rules of 
inference for reasoning about programs, for example: 

skip; (stmt) = (strut) = (stmt); skip (1) 

It is appropriate for showing that two programs have the same meaning 
(useful, for example, when doing program transformations for the purpose of 
optimisations), but is rather too abstract for defining a compiler. 
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An operational semantics defines a language in terms of the operation of a 
(possibly abstract) machine running programs, and so is mostly concerned with 
implementations. It is too concrete for a machine-independent definition of a 
language (although such a definition will become necessary for the back-end 
compiler development, see later). 
A denotational semantics defines a language by assigning a mathematical 
value - "meaning" - to each language construct, hence allowing the calculation 
of abstract machine-independent meanings of programs [Sto77]. It is at the 
right level of abstraction for building a compiler. 

2.1. Denotational Semantics 

We will use denotational semantics to specify our example language, Tosca. Its 
modelling of abstract meanings of programs, independent of any machine 
implementation, satisfies the requirement that a Tosca program must have the 
same logical behaviour no matter which hardware is used to run it. For a good 
introduction to denotational semantics, see, for example [A1186] or [Gor79]. 

2.2. Non-Standard Semantics 

Using denotational semantics has another important advantage. Certain 
"non-standard" interpretations of the semantics can be made, which allow 
various analyses of a program to be carried out. The best known of these is the 
use of static semantics for type checking. Various other semantic analyses can 
similarly be carried out [COC77], of which many traditional analyses (for 
example, [BeC85, Bra84]) are a subset. Such analyses can be added as a 
further component of the compiler, all within the same consistent denotational 
semantics paradigm. 

2.3. Size of Task 

A denotational semantics of Modula-2, written in VDM (or more accurately, 
written in the functional subset of Meta-IV, essentially a programming 
language), is about 200 pages long [Andnd]. Modula-2 had to be specified 
retrospectively. A new language purpose-designed for critical applications 
(designed either from scratch, or by carefully subsetting an existing language) 
would probably be of a similar size to Modula-2 in terms of syntax, but could 
be much simpler semantically: since it would be designed using denotational 
semantics, features which are difficult or "messy" to specify could be left out. 
Indeed, it can be argued that if a language feature is difficult to specify cleanly, 
it is difficult to understand, and hence should not be included in a language to 
be used for critical applications [Car89]. Note that the converse does not 
apply: that a particular feature is easy to specify is not sufficient reason for 
including it in the language. 
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3. From Semantics to a Compiler 

The denotational semantics provides the formal specification of the source 
language. For the development of a compiler for a particular target machine, 
the semantics of the target machine language is also required. The compiler's 
job is to translate each high level construct, such as 

if (test_expr) then (then_cmd) else (else_cmd) (2) 

into a corresponding target language template, such as 

(test code, labell) 
(then code) 
JUMP label2 

labell : 
(else code) 

label2 : 

The program fragments in angle brackets may be similarly translated, 
recursively. The above template defines the operational semantics of the 
if_then_else statement in the target language. 

An obvious question arises: how can one have any confidence that this is the 
correct target language template? In order to answer this question, and hence 
to write a correct compiler for a particular target, it is necessary also to have a 
formal semantics of the target machine language. There is little point in being 
rigorous about what a high level language program means if one cannot be 
similarly rigorous about what the ostensibly equivalent target language 
program means! Given such a semantics, it is possible to calculate the meaning 
of the template in the target language. This can be compared with the meaning 
of the corresponding high level fragment, and shown to be the same (see 
Appendix A for an example calculation). 

The formalism provides a structuring mechanism for the proof process. 
Arguments are advanced on a node by node basis, using structural induction. 
Each node has an operational semantics in the form of a target language 
template. Using the denotational semantics of the target language, the 
meaning of the template can be calculated, and shown to be the same as the 
meaning given by the denotational semantics for that node. The complete 
proof is constructed by working through the tree of the language, until all 
nodes have a suitable argument supporting them; this then completes the 
argument in support of the compiler as a whole. Hence the complete proof is 
composed, using a divide-and-conquer strategy, from a number of smaller, 
independent subproofs. This structure makes the total proof much more 
tractable, and more understandable, than would a single monolithic approach. 

4. Executable Specification Language 

There are various notations available for writing denotational semantics, 
including the conventional mathematical notation. In particular, an executable 
specification language can be used. This has the advantage that executing the 
denotational semantics of a language immediately provides an interpreter for 
that language [A1186]. This interpreter can, if desired, be used as a validation 
tool for checking that the formal specification of the language satisfies any 
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informal requirements there may be (see [StL87] for an example of executing a 
specification in order to validate it). 

It is possible, given a denotational semantics in some abstract notation, to 
translate it into an imperative language, such as Pascal [A1186], in order to 
produce an interpreter. However, such a process is in itself potentially 
error-prone, does not necessarily produce a transparently correct interpreter, 
and the correspondence between it and the operational semantics needed for 
the associated compiler are not obvious. 

Another approach is to write the denotational semantics directly in an 
executable specification language, obviating the need for a translation step. In 
order to provide a transparently correct interpreter, the chosen specification 
language would need to be of sufficiently high level, enabling the semantics to 
be written clearly and abstractly, unlike the case if written directly in, say, 
Pascal. The specification language itself would also need to have a formal 
semantics, so that the correspondence between the denotational and opera- 
tional semantics required to produce a compiler could be reasoned about. 

Alternatively, if the abstract notation form is translated into a high-enough 
level language, the interpreter may be transparently correct. 

In either case, the requirement is that the executable specification language 
is very high level-  much higher than a conventional imperative language. A 
functional language or logic language seems a natural choice. Although there 
are no obvious technical advantages of logic languages over functional 
languages from the point of view of implementing the compiler, the picture 
changes when the development environment is considered. 

We have chosen to use Poplog Prolog as the executable specification 
language for the Tosca compiler. Prolog is a mature language that is well 
supported and has a large user community. Provided that some of its trickier 
features are handled in a disciplined manner (for example, using only "green" 
cuts and no "red" cuts [STS86]), Prolog programs can be written in the clear 
manner required for the Tosca compiler. 

5. Prolog Example 

5 . 1 .  D e n o t a t i o n a l  S e m a n t i c s  

Before launching into a definition of the semantics of Tosca, let us look at how 
to write denotational semantics in Prolog. The following language is trivial 
enough that a simple State [A1186, chapter 5] is sufficient, rather than needing 
to separate the Environment and Store. In this language the semantics of the 
if_then_else and  while_do commands, in conventional notation, look 
something like: 

State: Identifier--> Int (3) 
C: Cmd--> State--> State (4) 
E: Expr--> State--> Int (5) 

C~if e then YI else ~'2~o = ( i f  E ~ e ~ a  = 1 

then C{[yI]] else C[[y2~)o (6) 
Cl[while e do y]]o = (if  E ~ e ~  = 1 

then C ~ w h i l e  e do )']] o C[[y]] else Identity)or (7) 
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(Inthisexample,  thereareonlyin tegers ,  so ~ u e i s r e p r e s e n t e d b y t h e i n t e g e r  
1 ) .Thesecou ldbe  writ teninsteadin Prologassomethinglike: 

command(if(Test, Then, Else), 
PreState,PostState):- 

expr(Test,PreState,Value), 
( Value=bTRUE, 

command(Then, PreState,PostState) 

Value=bFALSE, 
command(Else,PreState,PostState) 

). 
command(while(Test,Body),PreState,PostState):- 
expr(Test,PreState,Value), 
( Value=bTRUE, 

command(Body, PreState,~idState), 
command(while(Test,Body),MidState,PostState) 

. 

Value=bFALSE, 
PostState=PreState 

In the usual Prolog schizophrenic manner, this can be read either declaratively, 
giving the semantics, or operationally, giving the interpreter. 

5.2. Code Templates 

Consider the process of translating a statement such as if (test) then (then) 
else (else) into a hypothetical machine code such as 

(test code, labell) 
(then code> 
JUMP label2 

labell : 
(else code) 

label2 : 

[War80] shows one direct translation into Prolog, which gives explicit 
templates for each language construct: 

encodestatement (if(Test, Then, Else), Dictionary, 
(Testcode; 
Thencode ; 
instr(jump, L2); 

label (LI) ; 
Elsecode ; 

label(L2) ) 
):- 
encodetest (Test, Dictionary, LI, Testcode), 
encodestatement ( Then, Dictionary, Thencode ), 
enoodestatement (Else, Dictionary, Elsecode ). 
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Although this sort of Prolog is quite clear for such a small example, it soon 
becomes unwieldy, and a more powerful structuring mechanism is needed for a 
full language with multiple semantics. 

6. Definite Clause Translation Grammars 

Standard Prologs have a grammer mechanism called Definite Clause Gram- 
mars (DCGs) built into them, to allow shorthand expressions such as 

sent ence-, noun_phrase, verb_phrase. 
noun_phrase-, determiner, noun. 

to be manipulated (see, for example [CIM87, chapter 9]). These are 
automatically converted into their standard Prolog equivalents 

sentence(SO, S) :- noun_phrase(SO, S1), 
verb_phrase ( S1, S ). 

noun_phrase ( SO, S ) : - 
determiner(SO, Sl), noun(Sl, S). 

by the Prolog system itself. This approach is suitable for defining syntax. For 
defining semantics as well, there is a more powerful approach, called Definite 
Clause Translation Grammars (DCTGs) [AbD89, chapter 9]. These provide a 
general mechanism for grammar computations; a parse tree is formed as the 
result of a successful derivation, and semantics rules can be attached to 
non-terminal nodes in the parse tree. These rules give the semantic properties 
of a node in terms of the semantic properties of its subtrees, and is the logic 
formalism equivalent of Attribute Grammars [Knu68]. The DCTG formalism 
does not distinguish between inherited and synthesized attributes, however, 
since Prolog's unification mechanism makes this largely unnecessary. Although 
not directly supported by the Prolog system in the same way as DCGs, Prolog 
operators and clauses can be defined to support the DCTG approach. 

As a simple example, consider a possible DCTG definition for adding two 
expressions to produce an expression: 

expr : := expr^^Treel, tPLUS, expr^^Tree2 
(:) 
value(V) ::- 

Treel^^value (V1), Tree2^^value (V2), V is Vl+V2. 

The first part of the term (before the (: )) defines the syntax. In this example it 
says that an expression can be an expression followed by a token followed by 
another expression. The subexpressions are labelled with their derivation 
trees. The second part of the term defines the semantics of the composite 
expression in terms of its subexpressions. Here it says the value of the 
composite expression is the arithmetic sum of the values of the two 
subexpressions. 

At first sight, this technique may look more complicated than using 
straightforward Prolog. It does, however, have the advantage of cleanly 
separating the syntax and semantics. Another important advantage of this 
approach is that a DCTG can be used to support multiple sets of different 
semantics attached to each node. So the if_then_else example could be 
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written using the DCTG formalism, and including both the code template and 
the denotational semantics, as: 

command : : = 
tlF, test^^B, 
tTHEN, command^^C1, 
tELSE, command^^C2 

(code(Dictionary, [TestCode, ThenCode, jump(L2), 
label(Ll), ElseCode, label(L2)] ) 

B^^code(Dictionary, LI, Testcode), 
Cl^^code (Dictionary, Thencode ), 
C2^^code (Dictionary, Elsecode ) 

), 
(meaning(PreState, PostState) : :- 
B^^meaning(PreState, Value ), 
( Value =bTRUE, 

Cl^^meaning (PreState, PostState ) 

Value = bFALSE, 
C2^^meaning (PreState, PostState ) 

) 
). 

Non-standard semantics can be attached to the DCTG nodes in the same 
manner; each node would also hold at least the static semantics used for type 
checking. If required, other non-standard semantics for various other types of 
analyses can be incrementally added to each node in a similar, consistent 
manner. 

Notice how, with the DCTG approach, the denotational semantics and the 
operational semantics (code templates) are in similar forms, and occur 
textually close together in the specification. This is of great advantage in the 
process of demonstrating the correctness of the compiler. 

7. Tosca 

Tosca is large enough to be non-trivial, but small enough to fit the confines of 
this paper and (hopefully) to be understable without too much effort on the 
part of the reader. It is block structured, allowing local declarations. It has 
two types, integer and boolean, but only integers can be declared; booleans 
are restricted to controlling loops and choices. It has a whi le_do loop and 
an if_then_else choice. There is a simple procedure declaration, but it 
has no parameters. Other loops (for example, repeat_unt i l  or for loops) and 
choices (for example, case) would merely add bulk, not new insight, to the 
discussion. 

The following sections define Tosca's syntax, and three semantics: the 
dynamic (execution) semantics and two static semantics, type checking and use 
checking. 

A program must be syntactically correct before any of the semantics are 
defined. If a program does not type check-  if TC~] t ]~ in i t  = TypeWrong- then 
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the use checking semantics and dynamic semantics are undefined. Similarly, if 
the program does not use check, then the dynamic semantics is undefined. This 
means that there is no need to check, for example, that expressions are of the 
right type, or that variables have been initialised before they are used, in the 
dynamic semantics. For the purposes of exposition, these static semantics 
are described after the dynamic semantics in this paper, although the 
corresponding checks would have to be applied earlier to a program being 
compiled. This ability to separate concerns simplifies each of the individual 
semantics, since "error cases" do not have to be considered each time. 

The DCTG form of the following definitions is given in Appendix B. 

8. Tosca's Syntax 

Tosca's syntax is defined below using a BNF-like notation. Language keywords 
are shown using a sans-serif font (like this) ,  and general program constructs 
are given using the following Greek characters: 

Binary operator f2 
Command y 
Command list F 
Constant Z 
Declaration 6 
Expression e 
Identifier 
Unary operator W 

Literal constants and identifiers are not further defined here. 

8.1. Declarations 

A declaration is either a variable (an integer) or a procedure. The syntax for 
declarations is: 

Decl : 6 :: = var ~ (8) 

I proc ~= y (9) 
I ~ ;6 (10) 

8.2. Operators 

8.2.1. Binary Operators 

Expressions can be combined by binary arithmetic operators ( + , - ,  etc.), by 
binary comparison operators (<,  = , e t c . )  and by binary logical operators 
(or, and): 

BinArithOp:f2~ : := + [ - 1 .  �9 �9 

BinCompOp : ~x :: = < [ >  [ = [ " " " 
BinLogicOp : g2z ::= or [ and 
BinOp = BinArithOp + BinCompOp + BinLogicOp 

(11) 

(12) 
(13) 

(14) 
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The disjoint union operator (+)  used above to define BinOp, and elsewhere, 
tags its elements in some way, to distinguish which set they originally came 
from. This has the consequence that if x E X, then x r X + Y. A mapping 
function is needed to extract the original elements from the disjoint union. 
However, we shall freely abuse the notation and write x ~ X + Y, since it does 
not lead to confusion in this application. 

8. 2. 2. Unary Operators 

Expressions can be built from the unary arithmetic operator ( - )  and the 
unary boolean operator (not).  

UnyArithOp : W~ :: = - (15) 

UnyLogOp :Wz :: = not (16) 

UnyOp = UnyArithOp + UnyLogOp (17) 

8.3. Expressions 

The simplest expressions are boolean and integer constants ( t rue,  fa lse  and 
numbers), and identifiers. Expressions can be combined by binary and unary 
operators. Rather than introduce precedence, binary expressions are paren- 
thesised. The syntax for expressions is: 

Expr : c :: = X (18) 

[ ~ (19) 

[ (ef~e) (20) 

I WE (21) 

8.4. Commands 

The commands in Tosca are: forming a beg in_end  block for local declarations 
and/or  multiple commands, skip, assignment, if_then_else, while_do, 
procedure call, input, output and sequential combination. The syntax for 
commands is: 

Cmd: ~ ::= begin 6 ;;F end (22) 
begin F end (23) 
skip (24) 

E (25) 

while c do y (26) 
if c then T else y (27) 

(28) 

input ~ (29) 
output c (30) 
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The syntax for multiple commands is: 

C m d L i s t : F  ::= 7 (31) 

I (32) 

9. Tosca's Dynamic Semantics 

The dynamic semantics describes the meaning of executing a program. 
Remember that this semantics is defined only if the program type checks and 
use checks (defined later). 

9.1. A Note on Notation 

Defining the denotational semantics of the language consists of defining 
various valuation (meaning) functions. Each function maps a syntactic program 
construct onto a well-defined mathematical object, that construct's denotation. 
Conventionally, double square denotation brackets, ~ ], are used to enclose 
these syntactic program structures. 

Confusion can occasionally arise because of the notation used. For 
example, if a minus sign appears inside the double square brackets, it is merely 
syntax; it is the job of the semantic equations to define what it means. On the 
other hand, if it appears outside the brackets, it is the well-known mathemati- 
cal operator, with its well-known meaning(s). Similarly, a digit sequence 
appearing inside the double square brackets is merely syntax (for example, the 
numeral consisting of the character "4" followed by the character "2") 
whereas one outside is the corresponding mathematical number  (forty-two). 

This potential for confusion occurs for any of the operators defined below 
that "look the same" inside and outside the brackets; it should be borne in 
mind that they are different things. In order to minimise confusion, a sans-serif 
font (like this) is used for Tosca syntax, a serif font (like this) for mathematics 
and explanatory text, and a typewriter font (1 i k e  t h i  s) for target language 
syntax (see later). In principle, it would be possible to use distinct symbols all 
the time, as is done for and and ^ ,  for example, but this would just cause 
different confusion, not less. 

9.2. The Domains 

In Tosca, expressible values are either integers or booleans. So Value is 
defined to be the disjoint union of Int  and Bool: 

Int  = the domain of integers (33) 

Bool  = the domain of booleans - True, False : Boo l  (34) 

Value = Int  + Boo l  (35) 

The Store is the mapping from store locations to the value stored there (a store 
location could be represented by integers- memory addresses- for example, 
but this will not be discussed further here). Only integers are storable values: 

a: Store = Locn  --~ Int  (36) 
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Input and output are lists of integers: 

: Inpu t  = nil  + In t  • I n p u t  

o : Ou tpu t  = nil + In t  • Ou tpu t  

69 

(37) 

(38) 

The state of a computation is given by the store, the input and the output: 

Z : State = Store • I n p u t  • Ou tpu t  (39) 

The environment describes the mapping from identifiers to what they denote. 
For a variable, it is the relevant store location, which will map to a value that 
can change as the computation progresses. For a procedure declaration, it is 
the computation denoted by the procedure body, which does not change. 

p : E n v  = Identi f ier ~ L o c n  + Proc  (40) 

A Proc  is a mapping from one state to another that results from executing the 
procedure body: 

Proc = State ~ State (41) 

Of use later is the identity function, Identi ty ,  which leaves the state unchanged: 

Identi ty  : State--~ State (42) 

Identi ty  Z = Y (43) 

9.3. Types of the Meaning Functions 

Binary operator B: BinOp- -*  Value • Value--~ Value 

Command C: Cmd--~  E n v  --~ State --~ State 

Command list CL: CmdLis t - -~  Env- -~  State ~ State 

Declaration D: Decl--~ E n v  --~ E n v  

Expression E: Expr--~  E n v  --~ State -~  Value 

Unary operator O: U n y O p  --~ Value--~ Value 

(44) 

(45) 

(46) 

(47) 

(48) 

(49) 

9.4. Declarations 

The meaning function for declarations, D, takes a declaration and environ- 
ment, and gives a new environment containing the declaration. 

9. 4.1. Variable Declarat ion 

The declared variable is added 
previously unallocated location: 

Ol[var ~ p  = p ~) { ~ ~--~ loc } 

where 

loc : L o c n  ~ ran p 

to the environment by mapping it to a 

(50) 
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Note that this declaration does not change the store, hence loc is not in the 
domain of the store, and so o ( p ~ ] )  = •  

9.4.2. Procedure Declaration 

The declared procedure is added to the environment by mapping its name to 
the computation denoted by its body, which computation is performed in the 
declaration's environment: 

D~proc ~ = y]p = p �9 {~ ~ CI[yllp} (51) 

Hence Tosca's procedures are not recursive. Such requirements are often laid 
on safety-critical languages, in order to prevent programs overflowing the 
available memory during execution. 

9. 4. 3. Multiple Declarations 

Sequential combination of declarations means apply the second declaration to 
the result of applying the first declaration. 

D~Ol ; di2] -- DU~]~ O ~ l ]  (52) 

9.5. Operators 

The meaning functions B and O take binary and unary operators and map 
them to the corresponding mathematical operators (which can be written in 
their conventional infix form): 

B[[+]](x, y) = x + y (53) 

B[<]l(x, y) = x  < y  (54) 

B[[and]](x, y) = x ^ y (55) 

etc. 

= - x  ( 5 6 )  

O[[not~x = ~x (57) 

9.6. Expressions 

The meaning function E takes an expression, environment and state, and gives 
the relevant value. Since there is no change to the state, this means that Tosca 
is a language with no side effects. 

9. 6.1. Constants 

The meaning of a constant is just the constant's actual value. 

E IlpY = x (58) 
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(Note that the X inside the brackets represents the syntactic literal constant, 
and the one outside the brackets represents its mathematical value.) 

9. 6. 2. Identifiers 

The meaning of an expression consisting of an identifier is the identifier's 
value, found by first using the environment function to get the store location, 
then the store function to get the corresponding value. 

(59) 

9. 6. 3. Binary Operators 

The value of the expression consisting of a binary operator applied to two 
subexpressions is the corresponding mathematical operator applied to the 
values of the subexpressions (remember there are no side effects, so evaluating 
the first subexpression changes neither the environment nor the store): 

E~(el~~e2)]p~-], = B~-~(E~E1]p~~, E~E2]p~~) (60) 

For particular operators, this can be written in infix form: 

E[~(E1 + e2)]pZ = E[[el~pZ + E~ez~pZ (61) 

E~(E1 < ez)]pZ = E~EI~pZ < E~E2]pZ (62) 

E~(el and e2)]pZ = E~el]pZ ^ E~e2]pZ (63) 

etc. (64) 

9. 6. 4. Unary Operators 

The meaning of a unary operator applied to an expression is the corresponding 
mathematical operator applied to the meaning of that expression: 

E~tlJE]pZ = o~qJ~(E~e]pZ) (65) 

9.7. Commands 

The meaning function C (CL) takes a command (list of commands), 
environment and state, and gives the new state that results from executing the 
command (list of commands). Two meaning functions are defined, in order to 
facilitate the subsequent Prolog translation. 

9. 7.1. Local Block 

Forming a local block with local declarations means executing the commands 
in the environment modified by the declaration: 

El[begin 6 ; ;  F end~p = CLUFII(DI[6IIp) (66) 
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Forming a local block with no local declarations means executing the 
commands in the original environment: 

Cl[begin F end~ = CLUB (67) 

The meaning of a list of commands is that of the tail of the list applied to the 
result of the first command in the list. A list consisting of a single command has 
the same meaning as that command: 

CL~7 ;r] lp  = ( C L F I ] p )  o (ClI71tp) (68) 

CLII7] = C[[y]l (69) 

Notice that the environment for the rest of the list is the same as for the first 
command. A command cannot leave the environment changed (as can be seen 
from the type of C); although it can locally create a new environment via a 
begin_end block, it reverts to the old environment when it has completed. 

9. 7. 2. Skip Statement 

The skip statement does nothing; it leaves the state unchanged: 

Cl[skip]p = Identity (70) 

9.7.3. Assignment 

Assignment updates the store by mapping the identifier's store location to the 
value of the expression: 

C[[~ := e~pZ = ( a ~) {p~]l ~ El[e]]py`}, t, o) (71) 

where 

y. = (o, ~, o) 

9. Z 4. Loop 

The meaning of a wh i l e_do  command is to use the value of the expression to 
choose between applying the subcommand and then the whole command 
again, and doing nothing. 

C~while e do 7]PY` = (if E[e~py` = True 

then C[[while e do 7]P o C[~7]]p 

else Identity)Y, (72) 

9.7.5. Choice 

The meaning of an i f_ then_else  command is to use the value of the 
expression to choose between selecting the first or second subcommand. 

Cl[if e then 71 else )'2]PY` = (if E~e~py` = True 

then Cl[711] else C[172]l)py` (73) 
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9. 7. 6. Procedure Call 

The meaning of a procedure call is the computation that forms the body of the 
procedure. Note that the computation takes place in the environment of the 
declaration, and the state of the call. 

CI[~]]pY = pl[~]lY. (74) 

Since p ~ ]  = CUy]Pdea, where 7 is the body of the procedure declaration and 
Pd~d the declaration environment, the procedure call's meaning can also be 
written as 

(75) 

9. 7. 7. Input and Output 

Input removes an integer from the input list, and assigns it to the variable: 

C~input ~]p(a, t, o ) =  (a ~ pU~]~->head t, tail t, o) (76) 

Output appends the value of the expression to the output list: 

Uoutput e]pZ = (a, t, append(o, E~e]OZ)) (77) 

where 

y. = (a,  ~, o )  

10. Tosca's Static Type Checking Semantics 

The form of this definition closely mirrors the form for the dynamic semantics 
above. 

The static type checking can be used to check the well-typedness of a 
program. Only if the whole program is well-typed is the dynamic semantics 
defined. This explains why there is no need to check, for example, in the 
dynamic definition of the procedure call that the identifier denotes a procedure 
and not an integer - if the program is well-typed, it does. 

10.1. The Domains 

For this non-standard interpretation, the state describes the mapping from 
identifiers to their types. There is no need for the equivalent of environment 
and store - the type is constant throughout the scope of the declaration. 

Type = {Int, Bool, Proc, Wrong} (78) 

: TState = Identifier---> Type (79) 
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10.2. Types of the Meaning Functions 

Binary operator TB: BinOp---~ Type • Type--> Type (80) 

Command TC: Cmd---~ TState ~ ( TypeOk, TypeWrong } (81) 

Command list TCL: CmdList---~ TState---~ { TypeOk, TypeWrong} (82) 

Declaration TD: Decl ~ TState ~ TState (83) 

Expression TE: Expr---~ TState ~ Type (84) 

Unary operator TO: UnyOp ~ Type--> Type (85) 

10.3. Declarations 

The meaning function TD takes a declaration and type state, and gives a new 
type state, with the declaration added. 

A declared variable is added to the type state with type Int: 

TOllvar ~]]z = 7:~3 {~ ~ Int} (86) 

A declared procedure is added to the type state with type Proc provided that 
its body is well-typed: 

TDl[proe ~ = y]]~ = if TCl[y]]z" = TypeOk 

then ~ ~) { ~ e r o c }  

else r ~ {~ ~ Wrong} (87) 

Sequential combination of declarations means apply the second declaration to 
the result of applying the first declaration. 

TD~61 ;62]] = TDI[62]] ~ TD~&~]] (88) 

10.4. Operators 

The meaning functions TB and TO take binary and unary operators and map 
them to functions between types. Arithmetic operators expect Ints and return 
Ints, comparison operators expect Ints and return Bools, and logical operators 
expect Bools and return Bools: 

TB~f2o~] ] ( t l ,  t2) = if ( t  I = Int ^ t 2 = Int) then Int else Wrong (89) 

TB~f2x]](tl, t2) = if (tl = Int ^ t2 = Int) then Bool else Wrong (90) 

TB~Q~]](tl, ta) = if (ta = Bool ^ t2 = Bool) then Bool else Wrong (91) 

TO~W~]]t = if t = Int then Int else Wrong (92) 

TO~Wx]]t = if t = Bool then Bool else Wrong (93) 

10.5. Expressions 

The meaning function TE takes an expression and type state, and gives the 
type. 
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10.5.1. Constants 

The type of an expression consisting of a constant is Bool for true and false, 
and Int for a number: 

TE~] t  = if (X = true v X = false) then Bool else Int (94) 

(Note that the % on the left of the equation represents the syntactic literal 
constant, and the one on the right represents its mathematical value.) 

10.5.2. Identifiers 

The type of an expression consisting of an identifier is given by the type state 
function: 

TE~]]t = if 7:[~]] = Int then Int else Wrong (95) 

10.5.3. Binary Operators 

The type of a binary operator applied to two subexpressions is determined by 
the types of the subexpressions, and the definition of TB given above: 

TE[[(Ez~E2)]]~ = TB[[~]](TE[[el]]~', TE[[e2]]v) (96) 

10.5.4. Unary Operators 

The type of a unary operator applied to an expression is determined by the 
types of the expression, and the definition of TO given above: 

TE[q/e]]r = TO[W](TE[E]~) (97) 

10.6. Commands 

The meaning function TC takes a command and type state, and gives TypeOk 
or TypeWrong, depending on whether the command is well-typed or not. 
Similarly for lists of commands. 

10. 6.1. Local Block 

'Type checking a local block with local declarations means checking the 
commands in the environment modified by the declaration: 

TC~begin 6 ; ;F end~T = TCL~F](TD~6]~) (98) 

'Type checking a local block with no local declarations means checking the 
commands in the original environment: 

TC[[begin F end]] = TCL~F]] (99) 
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If any one command in a list of commands is TypeWrong, then the whole list is 
TypeWrong. A list consisting of a single command has the same meaning as 
that command: 

TCL[[7 ;F]]v = if TC~y]Ir = TypeOk (100) 

then TCL~F]r else TypeWrong 

TCLI[y]] = TCH7]] (101) 

10. 6.2. Skip Statement 

The skip statement always type checks TypeOk: 

TCl[skip]v = TypeOk (102) 

10. 6. 3. Assignment 

Assignment type checks TypeOk if the identifier is an Int (not a Proc) and the 
expression has type Int (identifiers can only be integers, not booleans or 
anything else): 

T C ~  := ellv = if ( v [ ~  = TypeOk ^ TE~�9 = Int) 
then TypeOk else TypeWrong (103) 

10. 6. 4. Loop 

The command type checks TypeOk only if the expression has type Bool and 
the subcommand type checks TypeOk. 

TC~while �9 do  y]lv = if (TEll�9 = Bool ^ TC[[y~T = TypeOk) 
then TypeOk else TypeWrong (104) 

10. 6. 5. Choice 

The command type checks TypeOk only if the expression has type Bool and 
both subcommands type check TypeOk. 

TC~if �9 then  71 e l se  Y2~ = if ( T E ~ e ~  = Bool 
^ TC[[y1]lr = TypeOk 
^ TC[[yz~v = TypeOk) 

then TypeOk else TypeWrong (105) 

10. 6. 6. Procedure Call 

A procedure call type checks TypeOk only if the type of the identifier is Proc: 

T C ~ ] v  = if v ~  = Proc then TypeOk else TypeWrong (106) 
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10. 6. 7. Input and Output 

Input type checks TypeOk  if the identifier is an Int (identifiers can only be 
integers, not booleans or anything else): 

TC~input ~]~ = if T~]  = Int then TypeOk  else TypeWrong (107) 

Output type checks TypeOk  if the expression has type Int: 

TCl[output e]]~ = if TE~e]~ = Int  then TypeOk  else TypeWrong (108) 

11. Tosca's Static Usage Semantics 

This non-standard interpretation of the semantics describes a way to check that 
variables are not used before they are initialised. 

This semantics is only defined if the program is well-typed. This simplifies 
various definitions, for example, if an identifier is used in an expression, it can 
be assumed that it is both declared and an integer (not a procedure).  

11.1. The Domains 

The UStore is the mapping from usage store locations to the current use state 
of that variable: 

: UStore = ULocn ---> Use (109) 

A use value is either Use_bad (for a variable that is used before being 
initialised, or an expression that uses a Use_bad variable in a subexpression) 
or Use_ok (for a variable that has been initialised to something, possibly bad, 
before being used, or an expression that uses only ok  variables in its 
subexpressions). 

Use = (Use_bad, Use_ok}  (110) 

The function worseof  takes two use values and returns the worse one: 

worseof : Use x Use--> Use (111) 

worseof(u,  v) = if u = Use_bad v v = Use_bad 

then Use_bad else Use_ok (112) 

The usage environment describes the mapping from identifiers to what they 
denote. For a variable, it is the relevant store location, which will map to a 
value that can change as the computation progresses. For a procedure 
declaration, it is the computation denoted by the procedure body, which does 
not change. 

v : UEnv = Identifier--* ULocn + UProc (113) 

A UProc is a mapping from one usage store to another that results from 
checking the procedure body: 

UProc = UStore--~ UStore (114) 
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11.2. Types of the Meaning Functions 

Binary operator UB: BinOp--~ Use x Use--+ Use 

Command UC: C m d - +  UEnv--~ UStore--~ UStore 

Command list UCL: CmdList---~ UEnv -+  UStore---~ UStore 

Declaration UD: Decl--* UEnv  ~ UEnv 

Expression UE: Expr--* UEnv  ~ UStore---~ Use • UStore 

Unary operator UO: UnyOp-+  Use--+ Use 

S. Stepney et ~. 

(115) 

(116) 

(117) 

(118) 
(119) 

(120) 

11.3. Declarations 

The meaning function UD takes a declaration and a usage environment, and 
gives a new usage environment with the declaration added. 

The declared variable is added to the environment by mapping it to a 
previously unaUocated location. 

UO~vat ~]]v = v (9 { ~ ~ uloc } (I21) 

where 

uloc : ULocn ~ ran v 

The declared procedure is added to the usage environment by mapping it to 
the computation denoted by the body of the declaration, in the declaration's 
usage environment. 

UD[[proc ~ = y]v = v (9 {~ ~ UC~y]lv} (122) 

Sequential combination of declarations means apply the second declaration 
to the result of applying the first declaration. 

UD~6~; 6d = UD[[6211 o UD[~6~] (123) 

11.4. Operators 

The meaning functions UB and UO take binary and unary operators and map 
them to functions between Uses. The binary operator returns the worse use, 
the unary operator returns the identity function on Use: 

UB~Q](ul, U2)= worseof(ul ,  u2) (124) 

UOl[tlJ]lu = u (125) 

11.5. Expressions 

UE takes an expression, a usage environment and store, and gives a use value 
and a possibly modified store (which occurs if an uninitialised variable is used 
in the expression). 
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11.5.1. Constants 

An expression consisting of 
unchanged. 

UEL~llv~" = (Use_ok, r 

a constant is Use_ok, and leaves 
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the store 

(126) 

11.5.2. Identifiers 

If the identifier is uninitialised, it will not be in the domain of the store. The 
new store will be modified to set the identifier to Use_bad, and the use value 
of the expression will be Use_bad. 

If the identifier is in the domain of the store, the store will not be changed, 
and the expression's use value will be set to that of the identifier. 

This is the only kind of expression that directly changes the store (the 
assignment command can also change the store). 

U E ~ ] v ~  = if ~ ( v ~ )  = 3_ 

then (Use_bad, ~ G {v[~]~--> Use_bad}) 
else (~(v[~], r (127) 

11.5.3. Binary Operators 

The use of a binary operator applied to two expressions is Use_ok only if both 
expressions are Use_ok. Notice that the store can be changed by either or both 
subexpressions, if they use an uninitialised variable. 

UEII(Elf~E2)llv~ = (UBII~(ul, u2), r (128) 

where 

(U2, r = UEI[E2]Ur 

(ul, ~1) = UEII<~vr 

Notice that this particular definition implies a particular order of evaluation. 
Alternative definitions could be proposed, using a function like worseof (see 
later). 

11.5.4. Unary Operators 

The use of a unary operator applied to an expression is only ok if the 
expression is ok: 

UE~We]vr = (uo~qJ~u, r (129) 

where 

(u, r = U E ~ 4 v r  

Since UO gives the identity on Use, this can be simplified to: 

U E W e ]  = UE~r (130) 
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11.6. Commands 

The meaning function UC takes a command, use environment and store, and 
gives the new store that results from checking the command. Similarly for lists 
of commands. 

11.6.1. Local Block 

Use checking a local block with local declarations means checking the 
commands in the environment modified by the declaration: 

UC[begin d~ ; ;F end]Iv = UCL[F](UD[di]v) (131) 

Use checking a local block with no local declarations means checking the 
commands in the original environment: 

UC[begin F end] = UCL[FB (132) 

Use checking a list of commands means checking the tail of the list applied 
to checking the first command in the list. A list consisting of a single command 
has the same meaning as that command: 

UCLI7 ;Fly = (UCL~F]v) o ( U C M v )  (133) 

UCL~y~ = U C ~ ]  (134) 

11.6.2. Skip Statement 

The skip statement does nothing; it leaves the store unchanged: 

UCl[skip]]vr = r (135) 

11.6.3. Assignment 

The new use store of input depends on the use state of the identifier, after 
evaluating the expression (to catch usage like x :=  (x + 1), where x has not 
previously been initialised). Provided the identifier has not yet been used 
(either properly or improperly, possibly in the expression), its use becomes 
Use_ok, otherwise its use is left unchanged. Notice this is the case whether the 
expression is Use_ok or Use_bad - this semantics does not worry if a variable 
has been set to a Use_bad expression, it just notes which variables are used 
before they are set to anything at all. 

U C ~  := e~vr = if r = _L 

then r ~9 {v[x] ~-> Use_ok}else r (136) 
where 

(u, ~1) = UE[[E]v~ 
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11.6.4. Loop 

The new use store is determined by the body of the command, evaluated in the 
possibly changed store of the expression: 

UC~while e do y]v~ = U C ~ y ] u ~ I  (137) 

where 

(u, = U E M v r  

11.6.5. Choice 

The new use store is determined by the worse of the two subcommands, 
evaluated in the possibly changed store of the expression: 

UCI[iI e then Yl else y2~v~ = UC[[~/l~U~l ~) UCi[y2]lV~l (138) 

where 

The function | is defined to take two use stores and return a use store which 
combines the worst properties of each (notice that the same environment is 
used in both branches of the choice). For  example, if neither 7 nor z have been 
previously initialised, then after: 

if expr then 
begin 

y : - -  ( y +  l ) ;  z :=  1 
end 

else 
begin 

y : =  1; z : =  ( z+  1) 
end 

we would want both y and z to be set to Use_bad. So ~1 @ ~2 is defined by the 
worseof function where the domains of ~1 and ~2 coincide: 

| : UStore x UStore--* UStore (139) 

~1 @ ~2 = {I e dom ~1 - dom ~2 �9 l ~-~ ~1 l} I..J 

{l ~ dom ~2 - dom ~1 �9 l ~ ~2/} U 
{l e dom ~1 fq dom ~2 �9 l~--~ worseof(~ll, ~fl)} (140) 

Note that this provides a rather strict definition of potentially unused variables, 
which will eliminate programs that might otherwise be thought to be "correct" .  
It is probably appropriate to have such a strict definition for a safety-critical 
language. More to the point, however,  it does provide an unambiguous 
definition that can be reasoned about,  and which provides a basis for criticism 
if necessary. 

11.6.6. Procedure Call 

The use value of a procedure 
procedure. 

= 

call is the use that forms the body of the 

(141) 
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Since v ~ ]  = UC~]t]Udecl , where ~ is the body of the procedure declaration and 
Vaed the declaration environment, the procedure call's meaning can also be 
written as 

U C ~ ] / ) ~  = UC~]/]iYdecl ~ (142 )  

11.6. 7. Input and Output 

The new use store of input depends on the use state of the identifier. Provided 
the identifier has not yet been used (either properly or improperly), its use 
becomes Use_ok, otherwise its use is left unchanged: 

UC~input ~ v ~  = if ~ ( v ~ ) =  • 
then ~ ~ { v ~  ~ Use_ok}else ~ (143) 

The new use store produced by output depends on that of the expression: 
UC~output e~v~ = ~1 (144) 

where 

(u, ~1) = uE~c~v~ 

12. Technology Demonstration 
In support of the foregoing arguments, in order to demonstrate feasibility, we 
have prototyped a Tosca compiler as a Prolog DCTG, We have used an 
enhanced variant of the method in [AbD89, appendix 11.3.2] for translating the 
DCTG into its Prolog equivalent. 

Four semantics (type checking, use checking, dynamic and operational) of 
this language have been specified formally. All but the operational semantics 
are reproduced in Appendix B. The clarity of such specifications for language 
systems is immediately apparent. 

This specification was then translated into Prolog [AbD89]. This generated 
a type checker (from the type checking semantics), a use checker (from the use 
checking semantics), an interpreter (from the dynamic semantics) and a 
compiler (from the operational semantics) for Tosca. 

There is a formally specified microprocessor, Viper [Coh87, Kem88a, 
Kem88b, Kernd]. Such a processor has a better chance than most of executing 
its assembly language correctly (as defined by that language's semantics). For 
this reason, we have chosen Viper as our target machine. The appropriate 
target language for our purposes is a low level assembly language called Vital, 
and so our demonstration compiler translates Tosca into Vital. 

As an example, consider a simple Tosca program to compute the numeric 
square of selected inputs: 

begin 
var  l i m i t ; v a r  n ; v a r  sq ; ;  
i npu t  limit; 
n : = l ; s q : = l ;  
o u t p u t  sq ; 
while (n < limit) do 
begin 

sq :=  ((sq + 1 ) + (n + n)) ; 
n : = ( n + l ) ;  
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output  sq 
end 

end 

The interpreter output (where the 4 in italics is input by the user) looks like: 

<<<input ''limit'' ((< 4. 
>>>output>>>1 
>>>output>>>4 
}>>output>>>9 
}>>output>>}16 

The corresponding Vital code generated by the compiler is: 

- - input 
A:=INPUT (0) 
(limit) :=A 
- - assignment 

A:=I 
(n) := 1 
- - assignment 

A:=I 
(sq) :=A 
- - output 

A := (sq) 
OUTPUT A, (i) 

- - while 
labell : 
A:=(n) 
A :=A- (limit) 
TEST A >= 0 
IF B GOTO label2 

- - d o  

- - assignment 
A := (sq) 
A :=A+(n) 
A :=A+ (n) 
A :=A+I 
(sq) :=A 

- - assignment 
A:=(n) 
A :=A+I 
(n) :=A 
- - output 
A := (sq) 
OUTPUT A, (i) 
GOTO labell 

label2 : 
- - endwhile 

STOP 
limit : 0 
n:O 
sq:O 
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We can run each Vital program produced by our compiler by assembling it, 
and then executing it on a fast Viper simulator we have constructed at Logica 
(since this simulator successfully executes RSRE's VipTest, it is a valid 
simulation). Each program has executed correctly, generating the same 
outputs as the interpreter. 

13. Summary and Conclusions 

In summary, our approach to building a demonstrably correct compiler has the 
following steps: 

1. Specify a denotational semantics for the source language. Many problems 
and ambiguities arising in the language definition can be resolved at this 
stage. 

2. Write this semantics as a Prolog DCTG. This provides an interpreter, 
which can be used to provide further validation for the proposed 
semantics. 

3. Specify a denotational semantics for the target language. 
4. Specify an operational semantics of the source language as code templates 

in the target language. Calculate the meaning of these templates, using the 
target language semantics, to prove that they have the same meaning as 
the corresponding source language constructs. This proves that the 
proposed compiler performs a correct translation. 

5. Write the operational semantics as a DCTG. This provides a compiler. 

Further non-standard semantics can be specified as required, for example, to 
provide a type-checker and use-checker component to the compiler. Notice 
that each one, when written as a DCTG, immediately provides the relevant 
checker- no further translation step is necessary. 

Given that we were using a well understood and formal approach (which 
has had considerable thought expended upon it in the past) and existing 
supporting tools technology, developing this prototype produced some inter- 
esting findings: 

�9 It took three days to specify a dynamic semantics for Tosca and build the 
interpreter. 

�9 It took another day to specify and build the compiler for the selected target 
language, Vital. 

�9 Each non-standard semantics- type checking and use checking- took a 
further one-half day to specify and add to the prototype. This included 
correcting a small error in the formal specification of the use semantics. 

�9 Once the usual typographical errors were removed, the prototype system ran 
correctly. It has never produced incorrect output. (Even the typos did not 
result in incorrect output, rather Prolog's no  output). 

In contrast, the smaller Viper simulator took five days to build using a 
more traditional approach - design and code using C. Despite being developed 
using "best practice", it has exhibited a number of minor errors. 

The language and compiler described here were developed as a prototype 
demonstration, not as a commercial product. The timescale for this work was 
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measured in days; a properly rigorous development of a compiler for a full 
language would take longer! Since none of the usual commercial quality 
procedures or rigorous testing were followed, we would not be surprised if 
mistakes are found in either the semantics or the compiler. Indeed, since one 
of our aims is to produce a specification and implementation of sufficient 
clarity to facilitate the discovery of such errors, we are almost hoping they will! 
Notwithstanding this caveat, we believe that if such a development as outlined 
above is carried out under the usual quality control and review procedures, a 
correct, and demonstrably correct, compiler can be produced successfully, and 
with quantifiable benefits. 
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Appendix A. Calculation of the Meaning of a Template 

As a concrete example of the calculation of the meaning of a code template ,  
described in Section 3, consider Tosca 's  i L t h e n _ e l s e  s ta tement  (Section 
9.7.5). It  has denotation (meaning): 

C[[if e t h e n  71 else l '2] lpZ = ( i f  E ~ e ] p Z  = True 

then C[[7111 else CI[72]])OY~ (145) 

For the purposes of exposition, the target language chosen is a subset of  the 
small language with g o t o s  given in [A1186, chapter  7], which has the same 
semantics as the subset of Vital used in the demonstrator ,  but a rather  more 
convenient concrete syntax. For reasons of space, the semantics of this 
language cannot be repeated here. What  is of most  interest, however,  is the 
form, and length, of the argument  below. The code template  in this target  
language is: 

r then goto Cz else skip 

71 
goto r (146) 

r : 72  

r : skip 

To prove this is the correct template ,  we need to show that is has the same 
meaning, within the continuation semantics of the language with g o t o s ,  as the 
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if statement does within the Tosca semantics. Using the semantics given in 
[A1186], the meaning of this template can be directly calculated: 

PI9o: i f  ~e  t h e n  g o t o  91 e l s e  s k i p ; y l ; g o t o  92 

91:72 

92: skip~p0o = 000 

where 

Oo=P1if ~E then goto 91 else skip ;71;goto 92~pI01 (148) 

01 ~" P17dp102 (149) 

02 = P1sk ip ]p l0  (150) 

Ol = P[00/90 ,  01/(I)1, 02/(/)21 (151) 

So the meaning of the template is 000. Expanding out the first sequential 
combination gives: 

000 = PIif ~e then goto 91 else skip~pl 

{PI71 ; go t o 92]P101 } 0 (152) 

And expanding out the other sequential combination gives: 

000 = P1if ~e then goto 91 else skip~pl 

{PIy11]pl{P[got 0 92~p101}} o (153) 

Substituting for the g o t o  gives: 

000= P1if ~e then goto 91 else skip1]pl (154) 

{P~r11]P1{P1192]} } o (155) 

And substituting for the meaning of the label 92 gives: 

000 = P1if ~e then goto 91 else skip~pl 

{PIY,1]P102} o (156) 

Expanding out the i f _ t h e n _ e l s e  gives 

000 = (if E[-n40 then P1goto 91] 

else P[skip])pl{P1yl1]O102} o (157) 

Pulling the continuation and state inside the brackets gives 

000 = if E~-n40 then P1go to  911]pl{PI[yll]P102}o 

else P Iskip1]p1{P[y11]P102} O (158) 

Then substituting for the g o t o  in one branch and the s k i p  in the other 
gives: 

000 = if El-hEllo then 011911]0 else PI71]p102o (159) 
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And substituting for the meaning of the label (])1 gives: 

00o = if E~-ne]cr then 01o else P~y1]p102 O (160) 

Then substituting back the meaning of the continuation gives: 

00o = if E[[-ne]]6 then P~],'2]/9102 O" else P~?l]pl020 (161) 

71 and It 2 do not mention labels q~0, tPl, q~2, because Tosca does not allow 
jumps out of a block (there are no g o t o s  in Tosca), and the compiler chooses 
new names for the labels. This result implies that P~]q]plO 2 = P[[71]]PO, etc., 
and hence 

00o = (if E~-n 4 then P~yz~else P~yl])pOo (162) 

Then expanding the -7 operator, and rearranging, gives 

0oCt = (if E~e~tr then P~y1~else P~y2~)pOcr (163) 

as required. 

Appendix B. Tosca's DCTG 

The following shows a summary of Tosca's DCTG, as used in the technology 
demonstration. It has three semantics attached to each node: the two 
non-standard semantics, typecheck and usecheck, and the dynamic semantics, 
meaning, that gives the abstract meaning of the node. These provide a type 
checker, a use checker and an interpreter, respectively. 

demo(Source) "- 
lexemes(Tokens, _, Source, 

!, 
program(Tree, Tokens, []), 
!, 
Tree^^typeeheck(Type), 

[ ] ) ,  

( 

), 
!, 
Tree^'usecheck(UStore), 

writel([nl, 'use checking done', nl]), 
lookup(UStore, X, use_bad), 

( X = nonebad 

; fatalerror(['use error(s)']) 
), 
Tree'^meaning. 

writel([nl, 'type checking done', nl]), 
Type = type_wrong, fatalerror(['type error(s)']) 
Type = type~k 
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THE MAIN PROGRAM 
================,/ 

/* 

start with an empty environment and store 

<program> ::= <cmd> 
,/ 

program ::= 

cmd^^C 
<:> 

(typecheck(Type) ::- C~^typecheck([], Type)), 

(usecheck(UStore) ::- C^^usecheck([], [], UStore)), 

(meaning ::- C^^meaning([], [], ~). 

* COMMAND LIST 
*/ 

/* 

<cmdList> ::= <cmd> <cmdCont> 
,/ 

cmdList ::= 
cmd^^C, cmdCont^^CL 

<:> 

(typecheck(State, Type) ::- 

C^'typecheck(State, Type1), 
( Type1 = type_ok, 

CL'^typecheck(State, Type) 

Typel = type_wrong, Type = type_wrong 
) 

), 
(usecheck(UEnv, PreUStore, PostUStore) ::- 

C'^usecheck(UEnv, PreUStore, MidUStore), 

CL''usecheck(UEnv, MidUStore, PostUStore) 
), 
(meaning(Env, PreStore, PostStore) ::- 

C^^meaning(Env, PreStore, MidStore), 

CL^'meaning(Env, MidStore, PostStore) 
). 
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* 

<cmdCont> ::= ; <cmdList> 
./ 

cmdCont ::= 

tSEMICOLON, !, 
cmdList^-CL 

<:> 

(typecheck(State, Type) ::- 

CL'~typecheck(State, Type) 
), 
(usecheck(UEnv, PreUStore, PostUStore) ::- 

CL''usecheck(UEnv, PreUStore, PostUStore) 
), 
(meaning(Env, PreStore, PostStore) ::- 

CL''meaning(Env, PreStore, PostStore) 
). 

/* 

<cmdCont> ::= [] 
,/ 

cmdCont ::= 
[] 

<:> 

( typecheck(_ ,  t y p e ~ k ) ) ,  
(usecheck(_ ,  UStore ,  U S t o r e ) ) ,  
(meaning(_,  S t o r e ,  S t o r e ) ) .  

/* 

* COMMANDS 

/ *  * 

* local block (i) : 
, ,/ 

cmd ::= 
tBEGIN, 

declList'^DL, tENDDECL, cmdList''CL, 

tEND 
<:> 

(typecheck(State, Type) ::- 
DL-^typecheck(State, PostState), 
CL''typecheck(PostState, Type) 
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, 

(usecheck(UEnv, PreUStore, PostUStore) ::- 

DL^^usecheck(UEnv, PostUEnv), 

CL^'usecheck(PostUEnv, PreUStore, PostUStore) 
), 
(meaning(Env, PreStore, PostStore) ::- 

DL''meaning(Env, PostEnv), 

CL^Ameaning(PostEnv, PreStore, PostStore) 
). 

/* 

local block (2) : 
,/ 

cmd ::= 

tBEGIN, 

cmdList''CL, 

tEND 
<:> 

(typecheck(State, Type) : : -  
CL' ' typecheck(State,  Type) 

) ,  
(usecheck(UEnv, PreUStore, PostUStore) : : -  

CL'-usecheck(UEnv, PreUStore, PostUStore) 
) ,  
(meaning(Env, PreStore, PostStore) : : -  

CL^'meaning(Env, PreStore, PostStore) 
).  

/* 

<cmd> ::= skip 
,/ 

cmd ::= 

tSKIP 
<:> 

(typecheck(_, type~k) ) ,  
(usecheck(_, UStore, UStore)), 
(meaning(_, Store, Store)) .  

/* 

<cmd> ::= <id> := <expr> 
* , ]  
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cmd ::= 

tIDENT'^I, tASSIGN, expr''E 
<:> 

(typecheck(State, Type) ::- 
I^^meaning(Id), 
E'^typecheck(State, TypeE), 
lookup(State, Id, TypeI), 
( TypeI = int, TypeE = int, Type = type~k 
; Type = type_wrong 
) 

), 

(usecheck(UEnv, PreUStore, PostUStore) ::- 
I^'meaning(Id), 
E^^usecheck(UEnv, PreUStore, MidUStore, ~, 
lookup(UEnv, Id, ULocn), 
lookup(MidUStore, ULocn, Use), 
( Use = bottom, 

update(MidUStore, PostUStore, ULocn, use_ok) 

PostUStore = MidUStore 
) 

), 

(meaning(Env, PreStore, PostStore) ::- 
I'^meaning(Id), 
E^^meaning(Env, PreStore, Val), 
lookup(Env, Id, Locn), 
update(PreStore, PostStore, Locn, Val) 

. 

/* 

cmd ::= while <expr> do <cmd> 
,/ 

cmd ::= 
tWHILE, expr''E, 
tDO, cmd'-C 

<:> 

(typecheck(State, Type) ::- 
E^-typecheck(State, TypeE), 
C^^typecheck(State, TypeC), 
( TypeE = bool, TypeC = type_ok, Type = type_ok 
; Type = type_wrong 
) 
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J 

(usecheck(UEnv, PreUStore, PostUStore) ::- 

E''usecheck(UEnv, PreUStore, MidUStore, 3, 
C''usecheck(UEnv, MidUStore, PostUStore) 

), 

(meaning(Env, PreStore, PostStore) ::- 
while(Env, PreStore, PostStore, E, C) 

). 

while(Env, PreStore, PostStore, E, C) "- 
copy_term(E, El), 

E'^meaning(Env, PreStore, Val), 
( Val = bTRUE .... ', nl]), 

copy~erm(C, CI), 

C''meaning(Env, PreStore, MidStore), 
while(Env, MidStore, PostStore, El, C1) 

. 

Val = bFALSE, 
PostStore = PreStore 

/* 

cmd ::= if <expr> then <cmd> else <cmd> 
-,/ 

cmd ::= 
tIF, expr^^E, 
tTHEN, cmd^^Cl, 
tELSE, cmd^^C2 

<:> 

(typecheck(State, Type) ::- 
E^^typecheck(State, TypeE), 
Cl^^typecheck(State, TypeC1), 
C2"^typecheck(State, TypeC2), 
( TypeE = bool, TypeC1 = type_ok, 

TypeC2 = type~k, Type = type_ok 

Type = type_wrong 
) 

, 
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(usecheck(UEnv, PreUStore. PostUStore) ::- 
E^'usecheck(UEnv, PreUStore, MidUStore, 3, 
Cl^^usecheck(UEnv, MidUStore, UStorel), 
C2^^usecheck(UEnv, MidUStore, UStore2), 
worseof(UStorel, UStore2, PostUStore) 

), 

(meaning(Env, PreStore, PostStore) ::- 
E^^meaning(Env, PreStore, Val), 
( Val = bTKUE, 

Cl^^meaning(Env, PreStore, PostStore) 

Val = bFALSE, 
C2^'meaning(Env, PreStore, PostStore) 

. 

worseof(Storel, Store2, StoreJoint) "- 

/* 

* procedure call 
* cmd ::= <id> 

,/ 

cmd ::= 
tIDENT^^I 

<:> 

(typecheck(State, Type) ::- 
I^Ameaning(Id), 
lookup(State, Id, TypeI), 
( TypeI = proc, Type = typemk 
; Type = type_wrong 
) 

), 
(usecheck(UEnv, PreUStore, PostUStore) ::- 

I'^meaning(Id), 
lookup(UEnv, Id, [UC,DeclUEnv] ), 
UC^-usecheck(DeclUEnv, PreUStore, PostUStore) 

), 
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(meaning(Env, PreStore, PostStore) ::- 
I^^meaning(Id), 
lookup(Env, Id, [Cmd,DeclEnv] ), 
copy~erm(Cmd, C), 

C''meaning(DeclEnv, PreStore, PostStore) 
. 

I* 
cmd ::= input <id> 

,/ 

cmd ::= 
tINPUT, tIDENT^^I 

<:> 

(typecheck(State, Type) ::- 
IA'meaning(Id), 
lookup(State, Id, TypeI), 
( TypeI = int, Type = type_ok 
; Type = type_wrong 
) 

), 
(usecheck(UEnv, PreUStore, PostUStore) ::- 

I^'meaning(Id), 
lookup(UEnv, Id, ULocn), 
lookup(PreUStore, ULocn, Use), 
( Use = bottom, 

update(PreUStore, PostUStore, ULocn, use_ok) 

PostUStore = PreUStore 
) 

, 

(meaning(Env, PreStore, PostStore) ::- 
l^^meaning(Id), 
writel(['<<< input: ', Id, ' <<< : 
read(Value), 
lookup(Env, Id, Locn), 

. 

']), 

update(PreStore, PostStore, Locn, Value) 
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/* 

* cmd ::= output <expr> 
, ,/ 

cmd ::= 

tOUTPUT, expr^^E 
<:> 

(typecheck(State, Type) ::- 

E'^typecheck(State, TypeE), 

( TypeE = int, Type = type_ok 

; Type = type_wrong 
) 

), 
(usecheck(UEnv, PreUStore, PostUStore) ::- 

E~'usecheck(UEnv, PreUStore, PostUStore, 
), 
(meaning(Env, PreStore, PostStore) ::- 

E~'meaning(Env, PreStore, Value), 

PostStore = PreStore, 

writel(['>>> output >>> : ', Value, nl]) 
). 

/* 

DECLARATION LIST 

/* 

<declList> ::= <decl> <declCont> 
,/ 

declList ::= 
decl^^D, declCont-ADL 

<:> 

(Zypecheck(PreState, PostState) ::- 

D^'typecheck(PreState, MidState), 
DL^'typecheck(MidState, PostState) 

), 
(usecheck(PreUEnv, PostUEnv) ::- 

D^'usecheck(PreUEnv, MidUEnv), 

DL^^usecheck(MidUEnv, PostUEnv) 
), 
(meaning(PreEnv, PostEnv) ::- 

D^^meaning(PreEnv, MidEnv), 
DL^^meaning(MidEnv, PostEnv) 

). 
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/* 
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<declCont> ::= ; <declList> 
,/ 

declCont ::= 

tSEMICOLON, ' �9 p 

declList^'DL 
<:> 

(typecheck(PreState, PostState) ::- 

DL--typecheck(PreState, PostState)), 

(usecheck(PreUEnv, PostUEnv) ::- 

DL^'usecheck(PreUEnv, PostUEnv)), 
(meaning(PreEnv, PostEnv) ::- 

DL''meaning(PreEnv, PostEnv)). 

/* 

<declCont> ::= [] 
,/ 

declCont : := 
[] 

<:> 

(typecheck (State, State)), 

(usecheck(UEnv, UEnv)), 

(meaning(Env, Env)). 

* DECLARATIONS 
*/ 

/* 

<decl> ::= var <id> 
,/ 

decl ::= 
tVAR, tIDENT''I 

<:> 

(typecheck(PreState, PostState) ::- 

I^^meaning(Id), 
update(PreState, PostState, Id, int) 

), 
(usecheck(PreUEnv, PostUEnv) ::- 

I'^meaning(Id), 

gensym(uloc, ULocn), 
update(PreUEnv, PostUEnv, Id, ULocn) 
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, 

(meaning(PreEnv, PostEnv) ::- 
I'Ameaning(Id), 
gensym(loc, Locn), 
update(PreEnv, PostEnv, Id, Locn) 

). 

/* 

<decl> ::= proc <id> = <cmd> 
,/ 

decl ::= 
tPROC, t!DENT^^I, tlS, cmd^^C 

<:> 

(typecheck(PreState, PostState) ::- 
l^^meaning(Id), 
C^^typecheck(PreState, Type), 
( Type = type_ok, 

update(PreState, PostState, Id, proc) 

Type = type_wrong, 
update(PreState, PostState, Id, wrong) 

) 
), 
(usecheck(PreUEnv, PostUEnv) ::- 

I'^meaning(Id), 
update(PreUEnv, PostUEnv, Id, [C,PreUEnv]) 

), 
(meaning(PreEnv, PostEnv) ::- 

I^'meaning(Id), 
update(PreEnv, PostEnv, Id, [C,PreEnv]) 

). 

* EXPRESSIONS 

==============,/ 
/* 

<expr> ::= <const> 
,/ 

expr ::= tCONST'~X 
<:> 
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(typecheck(_, Type) ::- 

X'^meaning(Value), 

( (Value = bTKUE ; Value = bFALSE), Type = bool 

; Type = int 
) 

), 
(usecheck( ...... use_ok) 
), 
(meaning(_, _, Value) ::- 

X''meaning(Value) 
). 

/* 

* <expr> ::= <id> 
,/ 

expr ::= tIDENT''I 
<:> 

(typecheck(State, Type) ::- 

I'^meaning(Id), 
lookup(State, Id, TypeId), 

( TypeId = int, Type = int 

; Type = wrong 
) 

), 
(usecheck(UEnv, PreUStore, PostUStore, Use) ::- 

I^^meaning(Id), 

lookup(UEnv, Id, ULocn), 

lookup(PreUStore, ULocn, Usel), 

( Usel = bottom, Use = bad, 

update(PreUStore, PostUStore, ULocn, bad), 

Use = Usel, 

PostUStore = PostUStore 
) 

), 
(meaning(Env, Store, Value) ::- 

I''meaning(Id), 

lookup(Env, Id, Locn), 

lookup(Store, Locn, Value) 
). 
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<expr> ::= <unyop> <expr> 
,/ 

expr ::= ZUNYOP^'O, expr^^E 
<:> 

(typecheck(State, Type) ::- 

E^^typecheck(State, TypeE), 

O-^meaning(Op), 

( Op = sub, TypeE = int, Type = int 

; Op = tNOT, TypeE = bool, Type = bool 

; Type = wrong 
) 

), 
(usecheck(UEnv, PreUStore, PostUStore, Use) ::- 

E^^usecheck(UEnv, PreUStore, PostUStore, Use) 
), 
(meaning(Env, Store, Value) ::- 

E'^meaning(Env, Store, Valuel), 

O-^meaning(Op), 

eval(Op, Valuel, Value) 
). 

/* 

<expr> ::= ( <expr> <binop> <expr> ) 
,/ 

expr ::= tLPAREN, expr-^El, tBINOP-^O, expr^'E2, tRPAREN 
<:> 

(typecheck(State, Type) ::- 

El^^typecheck(State, Typel), 

E2^^typecheck(State, Type2), 

O-^meaning(Op), 

( (Op = add ; Op = sub), 

Typel = int, Type2 = int, Type = int 

(Op = '>' ; Op = '<' ; Op = '=' ; Op = '>=' ; 

Op = '<=' ; Op = ' ='), 
Typel = int, Type2 = int, 

Type = bool 

(Op = and ; Op = or), 

Typel = bool, Type2 = bool, Type = bool 



A Demonstrably Correct Compiler 101 

Type = wrong 
) 

), 
(usecheck(UEnv, PreUStore, PostUStore, Use) ::- 

El^'usecheck(UEnv, PreUStore, UStorel, Usel), 
E2^'usecheck(UEnv, UStorel, PostUStore, Use2), 
( U s e l  = u s e _ o k ,  U s e 2  = u s e _ o k ,  Use  = u s e _ o k  

; Use  = u s e ~ a d  
) 

) ,  
( m e a n i n g ( E n v ,  S t o r e ,  V a l u e )  : : -  

El'^meaning(Env, Store, Valuel), 
E2^^meaning(Env, Store, Value2), 
O^'meaning(Op), 
eval(Op, Valuel, Value2, Value) 

. 
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