
Formal Aspects of Computing (1991) 3:58-101
�9 1991 BCS Formal Aspects

of Computing

A Demonstrably Correct Compiler
Susan Stepney, Dave Whitley, David Cooper and Colin Grant
Logica Cambridge Ltd, B~tjeman House, 104 Hills Road, Cambridge, CB2 1LQ, UK

Keywords: Correct compiler; Formal specification; Denotational semantics;
Prolog; DCTG

Abstract. As critical applications grow in size and complexity, high level
languages, rather than better-trusted assembly languages, will be used in their
development. This adds potential for extra errors to creep in, especially in the
now necessary compiler. To avoid these new errors, it is necessary to have a
formal specification of the high level language, and a formal development of its
compiler. We outline what we believe is a practical route for achieving a
demonstrably correct compiler, and describe a prototype compiler we have
built by this route for a small, but non-trivial, language.

1. Introduction

It has been argued that the only "safe" way to write critical applications is by
using assembly language, because this is the only way to be sure about what
will happen during program execution. Languages further removed from the
hardware cannot be trusted for two reasons:

�9 It is impossible to know what the language means; to know how it translates
to the "real" machine.

�9 Even given some idea of the meaning of the high level constructs, it is
impossible to know that the compiler correctly implements this meaning.

There is a grain of truth in this argument, but as the applications grow larger
and more complex, using assembly language becomes infeasible; high level
languages, with all their software engineering advantages, will become
essential. How can these conflicting requirements be reconciled? As a first step
along the way, (at least) the following need to be satisfied:

Correspondence and offprint requests to: Susan Stepney, Logica Cambridge Ltd, Betjeman House,
104 Hills Road, Cambridge CB2 1LQ, UK.

A Demonstrably Correct Compiler 59

�9 It must be possible to deduce the logical behaviour of a particular program
independent of its execution on a particular target.

�9 The high level language must have a formally defined semantics. Otherwise it
is impossible to deduce even what should be the effect of executing a
particular program.

�9 The formal semantics must be established and made available for peer
review and criticism.

�9 The compiler must be correct, hence it must be derived directly from the
formal semantics.

�9 The compiler for a critical language must be seen to be correct. Hence it
must be written legibly, and must be easily related to the formal semantics.

�9 The code produced by the compiler must be clear, and easily related to the
source code. This gives the required visibility to the compilation process for
a critical language.

The last two points are important for critical applications, in order to conform
with the much more stringent validation requirements these have.

In addition to the above requirements, the equally thorny problems of
showing that the application is correct, and of showing that the hardware
correctly implements the meaning of the machine language, must be ad-
dressed. These are beyond the scope of this paper.

In this paper, we will describe how a compiler can be constructed from the
formal definition of a language. This compiler has the property of being correct
by construction, and hence demonstrably correct. We will do this by defining a
semantics for a small (but by no means trivial) high level language, (which for
the purposes of this paper we will call Tosca - "not a Toy language, for Safety
Critical Applications"), then constructing a compiler from them. Note that we
are not proposing a new language, but are rather demonstrating how the
formal semantics of a given language can be used in trusted compiler
development.

Earlier work on compiler correctness includes [McP66, MiW72, Mor73,
Coh79, Po181]. Work on generating a compiler automatically from a denota-
tional semantics definition of the language includes [Mos75, Pau81, Pau82,
Wan84, Lee89] and more recent work on semantics-directed compiler gener-
ation includes [HoJ90].

2. Semantics

In order to write a correct compiler, it is necessary to have a formally defined
semantics of the language. There are several ways of defining the semantics of
programming languages, each appropriate for different purposes:

An axiomatic semantics defines a language by providing axioms and rules of
inference for reasoning about programs, for example:

skip; (stmt) = (strut) = (stmt); skip (1)

It is appropriate for showing that two programs have the same meaning
(useful, for example, when doing program transformations for the purpose of
optimisations), but is rather too abstract for defining a compiler.

60 s. Stepney et al.

An operational semantics defines a language in terms of the operation of a
(possibly abstract) machine running programs, and so is mostly concerned with
implementations. It is too concrete for a machine-independent definition of a
language (although such a definition will become necessary for the back-end
compiler development, see later).
A denotational semantics defines a language by assigning a mathematical
value - "meaning" - to each language construct, hence allowing the calculation
of abstract machine-independent meanings of programs [Sto77]. It is at the
right level of abstraction for building a compiler.

2.1. Denotational Semantics

We will use denotational semantics to specify our example language, Tosca. Its
modelling of abstract meanings of programs, independent of any machine
implementation, satisfies the requirement that a Tosca program must have the
same logical behaviour no matter which hardware is used to run it. For a good
introduction to denotational semantics, see, for example [A1186] or [Gor79].

2.2. Non-Standard Semantics

Using denotational semantics has another important advantage. Certain
"non-standard" interpretations of the semantics can be made, which allow
various analyses of a program to be carried out. The best known of these is the
use of static semantics for type checking. Various other semantic analyses can
similarly be carried out [COC77], of which many traditional analyses (for
example, [BeC85, Bra84]) are a subset. Such analyses can be added as a
further component of the compiler, all within the same consistent denotational
semantics paradigm.

2.3. Size of Task

A denotational semantics of Modula-2, written in VDM (or more accurately,
written in the functional subset of Meta-IV, essentially a programming
language), is about 200 pages long [Andnd]. Modula-2 had to be specified
retrospectively. A new language purpose-designed for critical applications
(designed either from scratch, or by carefully subsetting an existing language)
would probably be of a similar size to Modula-2 in terms of syntax, but could
be much simpler semantically: since it would be designed using denotational
semantics, features which are difficult or "messy" to specify could be left out.
Indeed, it can be argued that if a language feature is difficult to specify cleanly,
it is difficult to understand, and hence should not be included in a language to
be used for critical applications [Car89]. Note that the converse does not
apply: that a particular feature is easy to specify is not sufficient reason for
including it in the language.

A Demonstrably Correct Compiler 61

3. From Semantics to a Compiler

The denotational semantics provides the formal specification of the source
language. For the development of a compiler for a particular target machine,
the semantics of the target machine language is also required. The compiler's
job is to translate each high level construct, such as

if (test_expr) then (then_cmd) else (else_cmd) (2)

into a corresponding target language template, such as

(test code, labell)
(then code)
JUMP label2

labell :
(else code)

label2 :

The program fragments in angle brackets may be similarly translated,
recursively. The above template defines the operational semantics of the
if_then_else statement in the target language.

An obvious question arises: how can one have any confidence that this is the
correct target language template? In order to answer this question, and hence
to write a correct compiler for a particular target, it is necessary also to have a
formal semantics of the target machine language. There is little point in being
rigorous about what a high level language program means if one cannot be
similarly rigorous about what the ostensibly equivalent target language
program means! Given such a semantics, it is possible to calculate the meaning
of the template in the target language. This can be compared with the meaning
of the corresponding high level fragment, and shown to be the same (see
Appendix A for an example calculation).

The formalism provides a structuring mechanism for the proof process.
Arguments are advanced on a node by node basis, using structural induction.
Each node has an operational semantics in the form of a target language
template. Using the denotational semantics of the target language, the
meaning of the template can be calculated, and shown to be the same as the
meaning given by the denotational semantics for that node. The complete
proof is constructed by working through the tree of the language, until all
nodes have a suitable argument supporting them; this then completes the
argument in support of the compiler as a whole. Hence the complete proof is
composed, using a divide-and-conquer strategy, from a number of smaller,
independent subproofs. This structure makes the total proof much more
tractable, and more understandable, than would a single monolithic approach.

4. Executable Specification Language

There are various notations available for writing denotational semantics,
including the conventional mathematical notation. In particular, an executable
specification language can be used. This has the advantage that executing the
denotational semantics of a language immediately provides an interpreter for
that language [A1186]. This interpreter can, if desired, be used as a validation
tool for checking that the formal specification of the language satisfies any

62 S. Stepney et al.

informal requirements there may be (see [StL87] for an example of executing a
specification in order to validate it).

It is possible, given a denotational semantics in some abstract notation, to
translate it into an imperative language, such as Pascal [A1186], in order to
produce an interpreter. However, such a process is in itself potentially
error-prone, does not necessarily produce a transparently correct interpreter,
and the correspondence between it and the operational semantics needed for
the associated compiler are not obvious.

Another approach is to write the denotational semantics directly in an
executable specification language, obviating the need for a translation step. In
order to provide a transparently correct interpreter, the chosen specification
language would need to be of sufficiently high level, enabling the semantics to
be written clearly and abstractly, unlike the case if written directly in, say,
Pascal. The specification language itself would also need to have a formal
semantics, so that the correspondence between the denotational and opera-
tional semantics required to produce a compiler could be reasoned about.

Alternatively, if the abstract notation form is translated into a high-enough
level language, the interpreter may be transparently correct.

In either case, the requirement is that the executable specification language
is very high level- much higher than a conventional imperative language. A
functional language or logic language seems a natural choice. Although there
are no obvious technical advantages of logic languages over functional
languages from the point of view of implementing the compiler, the picture
changes when the development environment is considered.

We have chosen to use Poplog Prolog as the executable specification
language for the Tosca compiler. Prolog is a mature language that is well
supported and has a large user community. Provided that some of its trickier
features are handled in a disciplined manner (for example, using only "green"
cuts and no "red" cuts [STS86]), Prolog programs can be written in the clear
manner required for the Tosca compiler.

5. Prolog Example

5 . 1 . D e n o t a t i o n a l S e m a n t i c s

Before launching into a definition of the semantics of Tosca, let us look at how
to write denotational semantics in Prolog. The following language is trivial
enough that a simple State [A1186, chapter 5] is sufficient, rather than needing
to separate the Environment and Store. In this language the semantics of the
if_then_else and while_do commands, in conventional notation, look
something like:

State: Identifier--> Int (3)
C: Cmd--> State--> State (4)
E: Expr--> State--> Int (5)

C~if e then YI else ~'2~o = (i f E ~ e ~ a = 1

then C{[yI]] else C[[y2~)o (6)
Cl[while e do y]]o = (if E ~ e ~ = 1

then C ~ w h i l e e do)']] o C[[y]] else Identity)or (7)

A Demonstrably Correct Compiler 63

(Inthisexample, thereareonlyin tegers , so ~ u e i s r e p r e s e n t e d b y t h e i n t e g e r
1) .Thesecou ldbe writ teninsteadin Prologassomethinglike:

command(if(Test, Then, Else),
PreState,PostState):-

expr(Test,PreState,Value),
(Value=bTRUE,

command(Then, PreState,PostState)

Value=bFALSE,
command(Else,PreState,PostState)

).
command(while(Test,Body),PreState,PostState):-
expr(Test,PreState,Value),
(Value=bTRUE,

command(Body, PreState,~idState),
command(while(Test,Body),MidState,PostState)

.

Value=bFALSE,
PostState=PreState

In the usual Prolog schizophrenic manner, this can be read either declaratively,
giving the semantics, or operationally, giving the interpreter.

5.2. Code Templates

Consider the process of translating a statement such as if (test) then (then)
else (else) into a hypothetical machine code such as

(test code, labell)
(then code>
JUMP label2

labell :
(else code)

label2 :

[War80] shows one direct translation into Prolog, which gives explicit
templates for each language construct:

encodestatement (if(Test, Then, Else), Dictionary,
(Testcode;
Thencode ;
instr(jump, L2);

label (LI) ;
Elsecode ;

label(L2))
):-
encodetest (Test, Dictionary, LI, Testcode),
encodestatement (Then, Dictionary, Thencode),
enoodestatement (Else, Dictionary, Elsecode).

64 s. Stepney et al.

Although this sort of Prolog is quite clear for such a small example, it soon
becomes unwieldy, and a more powerful structuring mechanism is needed for a
full language with multiple semantics.

6. Definite Clause Translation Grammars

Standard Prologs have a grammer mechanism called Definite Clause Gram-
mars (DCGs) built into them, to allow shorthand expressions such as

sent ence-, noun_phrase, verb_phrase.
noun_phrase-, determiner, noun.

to be manipulated (see, for example [CIM87, chapter 9]). These are
automatically converted into their standard Prolog equivalents

sentence(SO, S) :- noun_phrase(SO, S1),
verb_phrase (S1, S).

noun_phrase (SO, S) : -
determiner(SO, Sl), noun(Sl, S).

by the Prolog system itself. This approach is suitable for defining syntax. For
defining semantics as well, there is a more powerful approach, called Definite
Clause Translation Grammars (DCTGs) [AbD89, chapter 9]. These provide a
general mechanism for grammar computations; a parse tree is formed as the
result of a successful derivation, and semantics rules can be attached to
non-terminal nodes in the parse tree. These rules give the semantic properties
of a node in terms of the semantic properties of its subtrees, and is the logic
formalism equivalent of Attribute Grammars [Knu68]. The DCTG formalism
does not distinguish between inherited and synthesized attributes, however,
since Prolog's unification mechanism makes this largely unnecessary. Although
not directly supported by the Prolog system in the same way as DCGs, Prolog
operators and clauses can be defined to support the DCTG approach.

As a simple example, consider a possible DCTG definition for adding two
expressions to produce an expression:

expr : := expr^^Treel, tPLUS, expr^^Tree2
(:)
value(V) ::-

Treel^^value (V1), Tree2^^value (V2), V is Vl+V2.

The first part of the term (before the (:)) defines the syntax. In this example it
says that an expression can be an expression followed by a token followed by
another expression. The subexpressions are labelled with their derivation
trees. The second part of the term defines the semantics of the composite
expression in terms of its subexpressions. Here it says the value of the
composite expression is the arithmetic sum of the values of the two
subexpressions.

At first sight, this technique may look more complicated than using
straightforward Prolog. It does, however, have the advantage of cleanly
separating the syntax and semantics. Another important advantage of this
approach is that a DCTG can be used to support multiple sets of different
semantics attached to each node. So the if_then_else example could be

A Demonstrably Correct Compiler 65

written using the DCTG formalism, and including both the code template and
the denotational semantics, as:

command : : =
tlF, test^^B,
tTHEN, command^^C1,
tELSE, command^^C2

(code(Dictionary, [TestCode, ThenCode, jump(L2),
label(Ll), ElseCode, label(L2)])

B^^code(Dictionary, LI, Testcode),
Cl^^code (Dictionary, Thencode),
C2^^code (Dictionary, Elsecode)

),
(meaning(PreState, PostState) : :-
B^^meaning(PreState, Value),
(Value =bTRUE,

Cl^^meaning (PreState, PostState)

Value = bFALSE,
C2^^meaning (PreState, PostState)

)
).

Non-standard semantics can be attached to the DCTG nodes in the same
manner; each node would also hold at least the static semantics used for type
checking. If required, other non-standard semantics for various other types of
analyses can be incrementally added to each node in a similar, consistent
manner.

Notice how, with the DCTG approach, the denotational semantics and the
operational semantics (code templates) are in similar forms, and occur
textually close together in the specification. This is of great advantage in the
process of demonstrating the correctness of the compiler.

7. Tosca

Tosca is large enough to be non-trivial, but small enough to fit the confines of
this paper and (hopefully) to be understable without too much effort on the
part of the reader. It is block structured, allowing local declarations. It has
two types, integer and boolean, but only integers can be declared; booleans
are restricted to controlling loops and choices. It has a whi le_do loop and
an if_then_else choice. There is a simple procedure declaration, but it
has no parameters. Other loops (for example, repeat_unt i l or for loops) and
choices (for example, case) would merely add bulk, not new insight, to the
discussion.

The following sections define Tosca's syntax, and three semantics: the
dynamic (execution) semantics and two static semantics, type checking and use
checking.

A program must be syntactically correct before any of the semantics are
defined. If a program does not type check- if TC~] t]~ in i t = TypeWrong- then

66 s. Stepney et al.

the use checking semantics and dynamic semantics are undefined. Similarly, if
the program does not use check, then the dynamic semantics is undefined. This
means that there is no need to check, for example, that expressions are of the
right type, or that variables have been initialised before they are used, in the
dynamic semantics. For the purposes of exposition, these static semantics
are described after the dynamic semantics in this paper, although the
corresponding checks would have to be applied earlier to a program being
compiled. This ability to separate concerns simplifies each of the individual
semantics, since "error cases" do not have to be considered each time.

The DCTG form of the following definitions is given in Appendix B.

8. Tosca's Syntax

Tosca's syntax is defined below using a BNF-like notation. Language keywords
are shown using a sans-serif font (like this) , and general program constructs
are given using the following Greek characters:

Binary operator f2
Command y
Command list F
Constant Z
Declaration 6
Expression e
Identifier
Unary operator W

Literal constants and identifiers are not further defined here.

8.1. Declarations

A declaration is either a variable (an integer) or a procedure. The syntax for
declarations is:

Decl : 6 :: = var ~ (8)

I proc ~= y (9)
I ~ ;6 (10)

8.2. Operators

8.2.1. Binary Operators

Expressions can be combined by binary arithmetic operators (+ , - , etc.), by
binary comparison operators (<, = , e t c .) and by binary logical operators
(or, and):

BinArithOp:f2~ : := + [- 1 . �9 �9

BinCompOp : ~x :: = < [> [= [" " "
BinLogicOp : g2z ::= or [and
BinOp = BinArithOp + BinCompOp + BinLogicOp

(11)

(12)
(13)

(14)

A Demonstrably Correct Compiler 67

The disjoint union operator (+) used above to define BinOp, and elsewhere,
tags its elements in some way, to distinguish which set they originally came
from. This has the consequence that if x E X, then x r X + Y. A mapping
function is needed to extract the original elements from the disjoint union.
However, we shall freely abuse the notation and write x ~ X + Y, since it does
not lead to confusion in this application.

8. 2. 2. Unary Operators

Expressions can be built from the unary arithmetic operator (-) and the
unary boolean operator (not).

UnyArithOp : W~ :: = - (15)

UnyLogOp :Wz :: = not (16)

UnyOp = UnyArithOp + UnyLogOp (17)

8.3. Expressions

The simplest expressions are boolean and integer constants (t rue, fa lse and
numbers), and identifiers. Expressions can be combined by binary and unary
operators. Rather than introduce precedence, binary expressions are paren-
thesised. The syntax for expressions is:

Expr : c :: = X (18)

[~ (19)

[(ef~e) (20)

I WE (21)

8.4. Commands

The commands in Tosca are: forming a beg in_end block for local declarations
and/or multiple commands, skip, assignment, if_then_else, while_do,
procedure call, input, output and sequential combination. The syntax for
commands is:

Cmd: ~ ::= begin 6 ;;F end (22)
begin F end (23)
skip (24)

E (25)

while c do y (26)
if c then T else y (27)

(28)

input ~ (29)
output c (30)

68 S. Stepney et al.

The syntax for multiple commands is:

C m d L i s t : F ::= 7 (31)

I (32)

9. Tosca's Dynamic Semantics

The dynamic semantics describes the meaning of executing a program.
Remember that this semantics is defined only if the program type checks and
use checks (defined later).

9.1. A Note on Notation

Defining the denotational semantics of the language consists of defining
various valuation (meaning) functions. Each function maps a syntactic program
construct onto a well-defined mathematical object, that construct's denotation.
Conventionally, double square denotation brackets, ~], are used to enclose
these syntactic program structures.

Confusion can occasionally arise because of the notation used. For
example, if a minus sign appears inside the double square brackets, it is merely
syntax; it is the job of the semantic equations to define what it means. On the
other hand, if it appears outside the brackets, it is the well-known mathemati-
cal operator, with its well-known meaning(s). Similarly, a digit sequence
appearing inside the double square brackets is merely syntax (for example, the
numeral consisting of the character "4" followed by the character "2")
whereas one outside is the corresponding mathematical number (forty-two).

This potential for confusion occurs for any of the operators defined below
that "look the same" inside and outside the brackets; it should be borne in
mind that they are different things. In order to minimise confusion, a sans-serif
font (like this) is used for Tosca syntax, a serif font (like this) for mathematics
and explanatory text, and a typewriter font (1 i k e t h i s) for target language
syntax (see later). In principle, it would be possible to use distinct symbols all
the time, as is done for and and ^ , for example, but this would just cause
different confusion, not less.

9.2. The Domains

In Tosca, expressible values are either integers or booleans. So Value is
defined to be the disjoint union of Int and Bool:

Int = the domain of integers (33)

Bool = the domain of booleans - True, False : Boo l (34)

Value = Int + Boo l (35)

The Store is the mapping from store locations to the value stored there (a store
location could be represented by integers- memory addresses- for example,
but this will not be discussed further here). Only integers are storable values:

a: Store = Locn --~ Int (36)

A Demonstrably Correct Compiler

Input and output are lists of integers:

: Inpu t = nil + In t • I n p u t

o : Ou tpu t = nil + In t • Ou tpu t

69

(37)

(38)

The state of a computation is given by the store, the input and the output:

Z : State = Store • I n p u t • Ou tpu t (39)

The environment describes the mapping from identifiers to what they denote.
For a variable, it is the relevant store location, which will map to a value that
can change as the computation progresses. For a procedure declaration, it is
the computation denoted by the procedure body, which does not change.

p : E n v = Identi f ier ~ L o c n + Proc (40)

A Proc is a mapping from one state to another that results from executing the
procedure body:

Proc = State ~ State (41)

Of use later is the identity function, Identi ty , which leaves the state unchanged:

Identi ty : State--~ State (42)

Identi ty Z = Y (43)

9.3. Types of the Meaning Functions

Binary operator B: BinOp- -* Value • Value--~ Value

Command C: Cmd--~ E n v --~ State --~ State

Command list CL: CmdLis t - -~ Env- -~ State ~ State

Declaration D: Decl--~ E n v --~ E n v

Expression E: Expr--~ E n v --~ State -~ Value

Unary operator O: U n y O p --~ Value--~ Value

(44)

(45)

(46)

(47)

(48)

(49)

9.4. Declarations

The meaning function for declarations, D, takes a declaration and environ-
ment, and gives a new environment containing the declaration.

9. 4.1. Variable Declarat ion

The declared variable is added
previously unallocated location:

Ol[var ~ p = p ~) { ~ ~--~ loc }

where

loc : L o c n ~ ran p

to the environment by mapping it to a

(50)

70 S. Stepney et ai.

Note that this declaration does not change the store, hence loc is not in the
domain of the store, and so o (p ~]) = •

9.4.2. Procedure Declaration

The declared procedure is added to the environment by mapping its name to
the computation denoted by its body, which computation is performed in the
declaration's environment:

D~proc ~ = y]p = p �9 {~ ~ CI[yllp} (51)

Hence Tosca's procedures are not recursive. Such requirements are often laid
on safety-critical languages, in order to prevent programs overflowing the
available memory during execution.

9. 4. 3. Multiple Declarations

Sequential combination of declarations means apply the second declaration to
the result of applying the first declaration.

D~Ol ; di2] -- DU~]~ O ~ l] (52)

9.5. Operators

The meaning functions B and O take binary and unary operators and map
them to the corresponding mathematical operators (which can be written in
their conventional infix form):

B[[+]](x, y) = x + y (53)

B[<]l(x, y) = x < y (54)

B[[and]](x, y) = x ^ y (55)

etc.

= - x (5 6)

O[[not~x = ~x (57)

9.6. Expressions

The meaning function E takes an expression, environment and state, and gives
the relevant value. Since there is no change to the state, this means that Tosca
is a language with no side effects.

9. 6.1. Constants

The meaning of a constant is just the constant's actual value.

E IlpY = x (58)

A Demonstrably Correct Compiler 71

(Note that the X inside the brackets represents the syntactic literal constant,
and the one outside the brackets represents its mathematical value.)

9. 6. 2. Identifiers

The meaning of an expression consisting of an identifier is the identifier's
value, found by first using the environment function to get the store location,
then the store function to get the corresponding value.

(59)

9. 6. 3. Binary Operators

The value of the expression consisting of a binary operator applied to two
subexpressions is the corresponding mathematical operator applied to the
values of the subexpressions (remember there are no side effects, so evaluating
the first subexpression changes neither the environment nor the store):

E~(el~~e2)]p~-], = B~-~(E~E1]p~~, E~E2]p~~) (60)

For particular operators, this can be written in infix form:

E[~(E1 + e2)]pZ = E[[el~pZ + E~ez~pZ (61)

E~(E1 < ez)]pZ = E~EI~pZ < E~E2]pZ (62)

E~(el and e2)]pZ = E~el]pZ ^ E~e2]pZ (63)

etc. (64)

9. 6. 4. Unary Operators

The meaning of a unary operator applied to an expression is the corresponding
mathematical operator applied to the meaning of that expression:

E~tlJE]pZ = o~qJ~(E~e]pZ) (65)

9.7. Commands

The meaning function C (CL) takes a command (list of commands),
environment and state, and gives the new state that results from executing the
command (list of commands). Two meaning functions are defined, in order to
facilitate the subsequent Prolog translation.

9. 7.1. Local Block

Forming a local block with local declarations means executing the commands
in the environment modified by the declaration:

El[begin 6 ; ; F end~p = CLUFII(DI[6IIp) (66)

72 s. Stepney et al.

Forming a local block with no local declarations means executing the
commands in the original environment:

Cl[begin F end~ = CLUB (67)

The meaning of a list of commands is that of the tail of the list applied to the
result of the first command in the list. A list consisting of a single command has
the same meaning as that command:

CL~7 ;r] lp = (C L F I] p) o (ClI71tp) (68)

CLII7] = C[[y]l (69)

Notice that the environment for the rest of the list is the same as for the first
command. A command cannot leave the environment changed (as can be seen
from the type of C); although it can locally create a new environment via a
begin_end block, it reverts to the old environment when it has completed.

9. 7. 2. Skip Statement

The skip statement does nothing; it leaves the state unchanged:

Cl[skip]p = Identity (70)

9.7.3. Assignment

Assignment updates the store by mapping the identifier's store location to the
value of the expression:

C[[~ := e~pZ = (a ~) {p~]l ~ El[e]]py`}, t, o) (71)

where

y. = (o, ~, o)

9. Z 4. Loop

The meaning of a wh i l e_do command is to use the value of the expression to
choose between applying the subcommand and then the whole command
again, and doing nothing.

C~while e do 7]PY` = (if E[e~py` = True

then C[[while e do 7]P o C[~7]]p

else Identity)Y, (72)

9.7.5. Choice

The meaning of an i f_ then_else command is to use the value of the
expression to choose between selecting the first or second subcommand.

Cl[if e then 71 else)'2]PY` = (if E~e~py` = True

then Cl[711] else C[172]l)py` (73)

A Demonstrably Correct Compiler 73

9. 7. 6. Procedure Call

The meaning of a procedure call is the computation that forms the body of the
procedure. Note that the computation takes place in the environment of the
declaration, and the state of the call.

CI[~]]pY = pl[~]lY. (74)

Since p ~] = CUy]Pdea, where 7 is the body of the procedure declaration and
Pd~d the declaration environment, the procedure call's meaning can also be
written as

(75)

9. 7. 7. Input and Output

Input removes an integer from the input list, and assigns it to the variable:

C~input ~]p(a, t, o) = (a ~ pU~]~->head t, tail t, o) (76)

Output appends the value of the expression to the output list:

Uoutput e]pZ = (a, t, append(o, E~e]OZ)) (77)

where

y. = (a, ~, o)

10. Tosca's Static Type Checking Semantics

The form of this definition closely mirrors the form for the dynamic semantics
above.

The static type checking can be used to check the well-typedness of a
program. Only if the whole program is well-typed is the dynamic semantics
defined. This explains why there is no need to check, for example, in the
dynamic definition of the procedure call that the identifier denotes a procedure
and not an integer - if the program is well-typed, it does.

10.1. The Domains

For this non-standard interpretation, the state describes the mapping from
identifiers to their types. There is no need for the equivalent of environment
and store - the type is constant throughout the scope of the declaration.

Type = {Int, Bool, Proc, Wrong} (78)

: TState = Identifier---> Type (79)

74 s. Stepney et al.

10.2. Types of the Meaning Functions

Binary operator TB: BinOp---~ Type • Type--> Type (80)

Command TC: Cmd---~ TState ~ (TypeOk, TypeWrong } (81)

Command list TCL: CmdList---~ TState---~ { TypeOk, TypeWrong} (82)

Declaration TD: Decl ~ TState ~ TState (83)

Expression TE: Expr---~ TState ~ Type (84)

Unary operator TO: UnyOp ~ Type--> Type (85)

10.3. Declarations

The meaning function TD takes a declaration and type state, and gives a new
type state, with the declaration added.

A declared variable is added to the type state with type Int:

TOllvar ~]]z = 7:~3 {~ ~ Int} (86)

A declared procedure is added to the type state with type Proc provided that
its body is well-typed:

TDl[proe ~ = y]]~ = if TCl[y]]z" = TypeOk

then ~ ~) { ~ e r o c }

else r ~ {~ ~ Wrong} (87)

Sequential combination of declarations means apply the second declaration to
the result of applying the first declaration.

TD~61 ;62]] = TDI[62]] ~ TD~&~]] (88)

10.4. Operators

The meaning functions TB and TO take binary and unary operators and map
them to functions between types. Arithmetic operators expect Ints and return
Ints, comparison operators expect Ints and return Bools, and logical operators
expect Bools and return Bools:

TB~f2o~]] (t l , t2) = if (t I = Int ^ t 2 = Int) then Int else Wrong (89)

TB~f2x]](tl, t2) = if (tl = Int ^ t2 = Int) then Bool else Wrong (90)

TB~Q~]](tl, ta) = if (ta = Bool ^ t2 = Bool) then Bool else Wrong (91)

TO~W~]]t = if t = Int then Int else Wrong (92)

TO~Wx]]t = if t = Bool then Bool else Wrong (93)

10.5. Expressions

The meaning function TE takes an expression and type state, and gives the
type.

A Demonstrably Correct Compiler 75

10.5.1. Constants

The type of an expression consisting of a constant is Bool for true and false,
and Int for a number:

TE~] t = if (X = true v X = false) then Bool else Int (94)

(Note that the % on the left of the equation represents the syntactic literal
constant, and the one on the right represents its mathematical value.)

10.5.2. Identifiers

The type of an expression consisting of an identifier is given by the type state
function:

TE~]]t = if 7:[~]] = Int then Int else Wrong (95)

10.5.3. Binary Operators

The type of a binary operator applied to two subexpressions is determined by
the types of the subexpressions, and the definition of TB given above:

TE[[(Ez~E2)]]~ = TB[[~]](TE[[el]]~', TE[[e2]]v) (96)

10.5.4. Unary Operators

The type of a unary operator applied to an expression is determined by the
types of the expression, and the definition of TO given above:

TE[q/e]]r = TO[W](TE[E]~) (97)

10.6. Commands

The meaning function TC takes a command and type state, and gives TypeOk
or TypeWrong, depending on whether the command is well-typed or not.
Similarly for lists of commands.

10. 6.1. Local Block

'Type checking a local block with local declarations means checking the
commands in the environment modified by the declaration:

TC~begin 6 ; ;F end~T = TCL~F](TD~6]~) (98)

'Type checking a local block with no local declarations means checking the
commands in the original environment:

TC[[begin F end]] = TCL~F]] (99)

76 S. Stepney et al.

If any one command in a list of commands is TypeWrong, then the whole list is
TypeWrong. A list consisting of a single command has the same meaning as
that command:

TCL[[7 ;F]]v = if TC~y]Ir = TypeOk (100)

then TCL~F]r else TypeWrong

TCLI[y]] = TCH7]] (101)

10. 6.2. Skip Statement

The skip statement always type checks TypeOk:

TCl[skip]v = TypeOk (102)

10. 6. 3. Assignment

Assignment type checks TypeOk if the identifier is an Int (not a Proc) and the
expression has type Int (identifiers can only be integers, not booleans or
anything else):

T C ~ := ellv = if (v [~ = TypeOk ^ TE~�9 = Int)
then TypeOk else TypeWrong (103)

10. 6. 4. Loop

The command type checks TypeOk only if the expression has type Bool and
the subcommand type checks TypeOk.

TC~while �9 do y]lv = if (TEll�9 = Bool ^ TC[[y~T = TypeOk)
then TypeOk else TypeWrong (104)

10. 6. 5. Choice

The command type checks TypeOk only if the expression has type Bool and
both subcommands type check TypeOk.

TC~if �9 then 71 e l se Y2~ = if (T E ~ e ~ = Bool
^ TC[[y1]lr = TypeOk
^ TC[[yz~v = TypeOk)

then TypeOk else TypeWrong (105)

10. 6. 6. Procedure Call

A procedure call type checks TypeOk only if the type of the identifier is Proc:

T C ~] v = if v ~ = Proc then TypeOk else TypeWrong (106)

A Demonstrably Correct Compiler 77

10. 6. 7. Input and Output

Input type checks TypeOk if the identifier is an Int (identifiers can only be
integers, not booleans or anything else):

TC~input ~]~ = if T~] = Int then TypeOk else TypeWrong (107)

Output type checks TypeOk if the expression has type Int:

TCl[output e]]~ = if TE~e]~ = Int then TypeOk else TypeWrong (108)

11. Tosca's Static Usage Semantics

This non-standard interpretation of the semantics describes a way to check that
variables are not used before they are initialised.

This semantics is only defined if the program is well-typed. This simplifies
various definitions, for example, if an identifier is used in an expression, it can
be assumed that it is both declared and an integer (not a procedure).

11.1. The Domains

The UStore is the mapping from usage store locations to the current use state
of that variable:

: UStore = ULocn ---> Use (109)

A use value is either Use_bad (for a variable that is used before being
initialised, or an expression that uses a Use_bad variable in a subexpression)
or Use_ok (for a variable that has been initialised to something, possibly bad,
before being used, or an expression that uses only ok variables in its
subexpressions).

Use = (Use_bad, Use_ok} (110)

The function worseof takes two use values and returns the worse one:

worseof : Use x Use--> Use (111)

worseof(u, v) = if u = Use_bad v v = Use_bad

then Use_bad else Use_ok (112)

The usage environment describes the mapping from identifiers to what they
denote. For a variable, it is the relevant store location, which will map to a
value that can change as the computation progresses. For a procedure
declaration, it is the computation denoted by the procedure body, which does
not change.

v : UEnv = Identifier--* ULocn + UProc (113)

A UProc is a mapping from one usage store to another that results from
checking the procedure body:

UProc = UStore--~ UStore (114)

78

11.2. Types of the Meaning Functions

Binary operator UB: BinOp--~ Use x Use--+ Use

Command UC: C m d - + UEnv--~ UStore--~ UStore

Command list UCL: CmdList---~ UEnv -+ UStore---~ UStore

Declaration UD: Decl--* UEnv ~ UEnv

Expression UE: Expr--* UEnv ~ UStore---~ Use • UStore

Unary operator UO: UnyOp-+ Use--+ Use

S. Stepney et ~.

(115)

(116)

(117)

(118)
(119)

(120)

11.3. Declarations

The meaning function UD takes a declaration and a usage environment, and
gives a new usage environment with the declaration added.

The declared variable is added to the environment by mapping it to a
previously unaUocated location.

UO~vat ~]]v = v (9 { ~ ~ uloc } (I21)

where

uloc : ULocn ~ ran v

The declared procedure is added to the usage environment by mapping it to
the computation denoted by the body of the declaration, in the declaration's
usage environment.

UD[[proc ~ = y]v = v (9 {~ ~ UC~y]lv} (122)

Sequential combination of declarations means apply the second declaration
to the result of applying the first declaration.

UD~6~; 6d = UD[[6211 o UD[~6~] (123)

11.4. Operators

The meaning functions UB and UO take binary and unary operators and map
them to functions between Uses. The binary operator returns the worse use,
the unary operator returns the identity function on Use:

UB~Q](ul, U2)= worseof(ul , u2) (124)

UOl[tlJ]lu = u (125)

11.5. Expressions

UE takes an expression, a usage environment and store, and gives a use value
and a possibly modified store (which occurs if an uninitialised variable is used
in the expression).

A Demonstrably Correct Compiler

11.5.1. Constants

An expression consisting of
unchanged.

UEL~llv~" = (Use_ok, r

a constant is Use_ok, and leaves

79

the store

(126)

11.5.2. Identifiers

If the identifier is uninitialised, it will not be in the domain of the store. The
new store will be modified to set the identifier to Use_bad, and the use value
of the expression will be Use_bad.

If the identifier is in the domain of the store, the store will not be changed,
and the expression's use value will be set to that of the identifier.

This is the only kind of expression that directly changes the store (the
assignment command can also change the store).

U E ~] v ~ = if ~ (v ~) = 3_

then (Use_bad, ~ G {v[~]~--> Use_bad})
else (~(v[~], r (127)

11.5.3. Binary Operators

The use of a binary operator applied to two expressions is Use_ok only if both
expressions are Use_ok. Notice that the store can be changed by either or both
subexpressions, if they use an uninitialised variable.

UEII(Elf~E2)llv~ = (UBII~(ul, u2), r (128)

where

(U2, r = UEI[E2]Ur

(ul, ~1) = UEII<~vr

Notice that this particular definition implies a particular order of evaluation.
Alternative definitions could be proposed, using a function like worseof (see
later).

11.5.4. Unary Operators

The use of a unary operator applied to an expression is only ok if the
expression is ok:

UE~We]vr = (uo~qJ~u, r (129)

where

(u, r = U E ~ 4 v r

Since UO gives the identity on Use, this can be simplified to:

U E W e] = UE~r (130)

80 S. Stepney et al.

11.6. Commands

The meaning function UC takes a command, use environment and store, and
gives the new store that results from checking the command. Similarly for lists
of commands.

11.6.1. Local Block

Use checking a local block with local declarations means checking the
commands in the environment modified by the declaration:

UC[begin d~ ; ;F end]Iv = UCL[F](UD[di]v) (131)

Use checking a local block with no local declarations means checking the
commands in the original environment:

UC[begin F end] = UCL[FB (132)

Use checking a list of commands means checking the tail of the list applied
to checking the first command in the list. A list consisting of a single command
has the same meaning as that command:

UCLI7 ;Fly = (UCL~F]v) o (U C M v) (133)

UCL~y~ = U C ~] (134)

11.6.2. Skip Statement

The skip statement does nothing; it leaves the store unchanged:

UCl[skip]]vr = r (135)

11.6.3. Assignment

The new use store of input depends on the use state of the identifier, after
evaluating the expression (to catch usage like x := (x + 1), where x has not
previously been initialised). Provided the identifier has not yet been used
(either properly or improperly, possibly in the expression), its use becomes
Use_ok, otherwise its use is left unchanged. Notice this is the case whether the
expression is Use_ok or Use_bad - this semantics does not worry if a variable
has been set to a Use_bad expression, it just notes which variables are used
before they are set to anything at all.

U C ~ := e~vr = if r = _L

then r ~9 {v[x] ~-> Use_ok}else r (136)
where

(u, ~1) = UE[[E]v~

A Demonstrably Correct Compiler 81

11.6.4. Loop

The new use store is determined by the body of the command, evaluated in the
possibly changed store of the expression:

UC~while e do y]v~ = U C ~ y] u ~ I (137)

where

(u, = U E M v r

11.6.5. Choice

The new use store is determined by the worse of the two subcommands,
evaluated in the possibly changed store of the expression:

UCI[iI e then Yl else y2~v~ = UC[[~/l~U~l ~) UCi[y2]lV~l (138)

where

The function | is defined to take two use stores and return a use store which
combines the worst properties of each (notice that the same environment is
used in both branches of the choice). For example, if neither 7 nor z have been
previously initialised, then after:

if expr then
begin

y : - - (y + l) ; z := 1
end

else
begin

y : = 1; z : = (z+ 1)
end

we would want both y and z to be set to Use_bad. So ~1 @ ~2 is defined by the
worseof function where the domains of ~1 and ~2 coincide:

| : UStore x UStore--* UStore (139)

~1 @ ~2 = {I e dom ~1 - dom ~2 �9 l ~-~ ~1 l} I..J

{l ~ dom ~2 - dom ~1 �9 l ~ ~2/} U
{l e dom ~1 fq dom ~2 �9 l~--~ worseof(~ll, ~fl)} (140)

Note that this provides a rather strict definition of potentially unused variables,
which will eliminate programs that might otherwise be thought to be "correct" .
It is probably appropriate to have such a strict definition for a safety-critical
language. More to the point, however, it does provide an unambiguous
definition that can be reasoned about, and which provides a basis for criticism
if necessary.

11.6.6. Procedure Call

The use value of a procedure
procedure.

=

call is the use that forms the body of the

(141)

82 S. Stepney et al.

Since v ~] = UC~]t]Udecl , where ~ is the body of the procedure declaration and
Vaed the declaration environment, the procedure call's meaning can also be
written as

U C ~] /) ~ = UC~]/]iYdecl ~ (142)

11.6. 7. Input and Output

The new use store of input depends on the use state of the identifier. Provided
the identifier has not yet been used (either properly or improperly), its use
becomes Use_ok, otherwise its use is left unchanged:

UC~input ~ v ~ = if ~ (v ~) = •
then ~ ~ { v ~ ~ Use_ok}else ~ (143)

The new use store produced by output depends on that of the expression:
UC~output e~v~ = ~1 (144)

where

(u, ~1) = uE~c~v~

12. Technology Demonstration
In support of the foregoing arguments, in order to demonstrate feasibility, we
have prototyped a Tosca compiler as a Prolog DCTG, We have used an
enhanced variant of the method in [AbD89, appendix 11.3.2] for translating the
DCTG into its Prolog equivalent.

Four semantics (type checking, use checking, dynamic and operational) of
this language have been specified formally. All but the operational semantics
are reproduced in Appendix B. The clarity of such specifications for language
systems is immediately apparent.

This specification was then translated into Prolog [AbD89]. This generated
a type checker (from the type checking semantics), a use checker (from the use
checking semantics), an interpreter (from the dynamic semantics) and a
compiler (from the operational semantics) for Tosca.

There is a formally specified microprocessor, Viper [Coh87, Kem88a,
Kem88b, Kernd]. Such a processor has a better chance than most of executing
its assembly language correctly (as defined by that language's semantics). For
this reason, we have chosen Viper as our target machine. The appropriate
target language for our purposes is a low level assembly language called Vital,
and so our demonstration compiler translates Tosca into Vital.

As an example, consider a simple Tosca program to compute the numeric
square of selected inputs:

begin
var l i m i t ; v a r n ; v a r sq ; ;
i npu t limit;
n : = l ; s q : = l ;
o u t p u t sq ;
while (n < limit) do
begin

sq := ((sq + 1) + (n + n)) ;
n : = (n + l) ;

A Demonstrably Correct Compiler 83

output sq
end

end

The interpreter output (where the 4 in italics is input by the user) looks like:

<<<input ''limit'' ((< 4.
>>>output>>>1
>>>output>>>4
}>>output>>>9
}>>output>>}16

The corresponding Vital code generated by the compiler is:

- - input
A:=INPUT (0)
(limit) :=A
- - assignment

A:=I
(n) := 1
- - assignment

A:=I
(sq) :=A
- - output

A := (sq)
OUTPUT A, (i)

- - while
labell :
A:=(n)
A :=A- (limit)
TEST A >= 0
IF B GOTO label2

- - d o

- - assignment
A := (sq)
A :=A+(n)
A :=A+ (n)
A :=A+I
(sq) :=A

- - assignment
A:=(n)
A :=A+I
(n) :=A
- - output
A := (sq)
OUTPUT A, (i)
GOTO labell

label2 :
- - endwhile

STOP
limit : 0
n:O
sq:O

84 s. Stepney et al.

We can run each Vital program produced by our compiler by assembling it,
and then executing it on a fast Viper simulator we have constructed at Logica
(since this simulator successfully executes RSRE's VipTest, it is a valid
simulation). Each program has executed correctly, generating the same
outputs as the interpreter.

13. Summary and Conclusions

In summary, our approach to building a demonstrably correct compiler has the
following steps:

1. Specify a denotational semantics for the source language. Many problems
and ambiguities arising in the language definition can be resolved at this
stage.

2. Write this semantics as a Prolog DCTG. This provides an interpreter,
which can be used to provide further validation for the proposed
semantics.

3. Specify a denotational semantics for the target language.
4. Specify an operational semantics of the source language as code templates

in the target language. Calculate the meaning of these templates, using the
target language semantics, to prove that they have the same meaning as
the corresponding source language constructs. This proves that the
proposed compiler performs a correct translation.

5. Write the operational semantics as a DCTG. This provides a compiler.

Further non-standard semantics can be specified as required, for example, to
provide a type-checker and use-checker component to the compiler. Notice
that each one, when written as a DCTG, immediately provides the relevant
checker- no further translation step is necessary.

Given that we were using a well understood and formal approach (which
has had considerable thought expended upon it in the past) and existing
supporting tools technology, developing this prototype produced some inter-
esting findings:

�9 It took three days to specify a dynamic semantics for Tosca and build the
interpreter.

�9 It took another day to specify and build the compiler for the selected target
language, Vital.

�9 Each non-standard semantics- type checking and use checking- took a
further one-half day to specify and add to the prototype. This included
correcting a small error in the formal specification of the use semantics.

�9 Once the usual typographical errors were removed, the prototype system ran
correctly. It has never produced incorrect output. (Even the typos did not
result in incorrect output, rather Prolog's no output).

In contrast, the smaller Viper simulator took five days to build using a
more traditional approach - design and code using C. Despite being developed
using "best practice", it has exhibited a number of minor errors.

The language and compiler described here were developed as a prototype
demonstration, not as a commercial product. The timescale for this work was

A Demonstrably Correct Compiler 85

measured in days; a properly rigorous development of a compiler for a full
language would take longer! Since none of the usual commercial quality
procedures or rigorous testing were followed, we would not be surprised if
mistakes are found in either the semantics or the compiler. Indeed, since one
of our aims is to produce a specification and implementation of sufficient
clarity to facilitate the discovery of such errors, we are almost hoping they will!
Notwithstanding this caveat, we believe that if such a development as outlined
above is carried out under the usual quality control and review procedures, a
correct, and demonstrably correct, compiler can be produced successfully, and
with quantifiable benefits.

Acknowledgements
This work was carried out by Logica as part of a study of implementation
techniques for a trustworthy compiler for Viper, commissioned by RSRE, and
we would like to thank the staff of RSRE for their input. In particular, detailed
technical assistance was provided by John Kershaw, Clive Pygott and Ian
Currie, and technical background was provided by Nick Peeling and Roger
Smith.

We would also like to thank David Brazier, Tim Hoverd, Mike Flynn and
Jon Brumfitt of Logica for helpful discussions.

References
[AbD89]

[AU86]

[Andnd]
[BC85]

[Bra84]
[Car89]

[COC771

[C1M87]

[Coh79]

[Coh87]

[Gor79]

[HoJ90l

[Kem88a]

[Kem88b]

[Kernd]

Abramson, H. and Dahl, V.: Logic Grammars. Symbolic Computation Series,
Springer, 1989.
Allison, L.: A Practical Introduction to Denotational Semantics. Cambridge Univers-
ity Press, 1986.
Andrews, D.: A Formal Definition of Modula-2.
Bergeretti, J. F. and Carrr, B.: Information Flow and Data Flow Analysis of While
Programs. ACM Transactions on Programming Languages and Systems, 7, 37-61
(1985).
Bramson, B. D.: Malvern's Program Analysers. RSRE Research Review, 1984.
Carr6, B.: Reliable Programming in Standard Languages. In High Integrity Software,
C. Sennett (ed), Pitman, 1989.
Cousot, P. and Cousot, R.: Abstract Interpretation: a Unified Lattice Model for
Static Analysis of Programs by Constuction or Approximation of Fixed Points. In
Proc. Fourth Annual ACM Symposium on the Principles of Programming
Languages, 1977.
Clocksin, W. F. and Mellish, C. S.: Programming in Prolog. 3rd edition, Springer,
1987.
Cohn, A.: Machine Assisted Proofs of Recursion Implementation. PhD thesis,
University of Edinburgh, 1979.
Cohn, A.: A Proof of Correctness of the Viper Microprocessor: The First Level.
Technical Report 104, University of Cambridge, 1987.
Gordon, M. J. C.: The Denotational Description of Programming Languages- An
Introduction. Springer, 1979.
Hoare, C. A. R, and He, Jifeng: Refinement Algebra Proves Compiling Specifica-
tion correct. In Third BCS-FACS Refinement Workshop, C. C. Morgan and J. C. P.
Woodcock (eds), Workshops in Computing, Springer, 1990.
Kemp, D. H.: Specification of Viperl in Z. RSRE Memorandum 4195, Royal
Signals and Radar Establishment, 1988.
Kemp, D. H. Specification of Viper2 in Z. RSRE Memorandum 4217, Royal Signals
and Radar Establishment, October 1988.
Kershaw, J.: The Viper Microprocessor. RSRE Memorandum 87014, Royal Signals
and Radar Establishment.

86

[Knu68]

[Lee89]

[Mor73]

[Mos75]

[McP66]

[MiW72]

[Pau81]

[Pau82]

[Po1811

[StL87]

[StS861

[Sto77]

[Wan84]

[War80]

S. Stepney et al.

Knuth, D. E.: Semantics of Context-Free Languages. Mathematical Systems Theory,
2(2), 127-145 (1968). Correction, 5(1), 95-96 (1971).
Lee, P.: Realistic Compiler Generation. Foundations of Computing series, MIT
Press, 1989.
Morris, F. L.: Advice on Structuring Compilers and Proving Them Correct. Proc.
First Annual ACM Symposium on Principles of Programming Languages, 144-152,
1973.
Mosses, P. D.: Mathematical Semantics and Compiler Generation. PhD thesis,
University of Oxford, 1975.
McCarthy, J. and Painter, J.: Correctness of a Compiler for Arithmetic Expressions.
Technical Report AIM-40, Stanford University, 1966.
Milner, R. and Weyhrauch, R.: Proving Compiler Correctness in a Mechanized
Logic. Machine Intelligence, 7 (1972).
Paulson, L.: A Compiler Generator for Semantic Grammars. Ph.D. thesis, Stanford
University, 1981.
Paulson, L.: A Semantics-Directed Compiler Generator. Proc. Ninth Annual ACM
Symposium on Principles of Programming Languages, pp. 224-239, 1982.
Polak, W.: Compiler Specification and Verification. Volume 124 of Lecture Notes in
Computer Science, Springer, 1981.
Stepney, S. and Lord, S. P.: Formal Specification of an Access Control System.
Software - Practice and Experience, 17(9), 575-593 (1987).
Sterling, L. and Shapiro, E.: The Art of Prolog: Advanced Programming Tech-
niques. MIT Press, 1986.
Stoy, J. E.: Denotational Semantics and the Scott-Strachey Approach to Program-
ming Language Theory. MIT Press, 1977.
Wand, M.: A Semantic Prototyping System. Proc. SIGPLAN 84 Symposium on
Compiler Construction. ACM SIGPLAN Notices, 19(6), 213-221 (1984).
Warren, D. H.: Logic Programming and Compiler Writing. Software - Practice and
Experience, 10, 97-125 (1980).

Appendix A. Calculation of the Meaning of a Template

As a concrete example of the calculation of the meaning of a code template ,
described in Section 3, consider Tosca 's i L t h e n _ e l s e s ta tement (Section
9.7.5). It has denotation (meaning):

C[[if e t h e n 71 else l '2] lpZ = (i f E ~ e] p Z = True

then C[[7111 else CI[72]])OY~ (145)

For the purposes of exposition, the target language chosen is a subset of the
small language with g o t o s given in [A1186, chapter 7], which has the same
semantics as the subset of Vital used in the demonstrator , but a rather more
convenient concrete syntax. For reasons of space, the semantics of this
language cannot be repeated here. What is of most interest, however, is the
form, and length, of the argument below. The code template in this target
language is:

r then goto Cz else skip

71
goto r (146)

r : 72

r : skip

To prove this is the correct template , we need to show that is has the same
meaning, within the continuation semantics of the language with g o t o s , as the

A Demonstrably Correct Compiler 87

if statement does within the Tosca semantics. Using the semantics given in
[A1186], the meaning of this template can be directly calculated:

PI9o: i f ~e t h e n g o t o 91 e l s e s k i p ; y l ; g o t o 92

91:72

92: skip~p0o = 000

where

Oo=P1if ~E then goto 91 else skip ;71;goto 92~pI01 (148)

01 ~" P17dp102 (149)

02 = P1sk ip]p l0 (150)

Ol = P[00/90 , 01/(I)1, 02/(/)21 (151)

So the meaning of the template is 000. Expanding out the first sequential
combination gives:

000 = PIif ~e then goto 91 else skip~pl

{PI71 ; go t o 92]P101 } 0 (152)

And expanding out the other sequential combination gives:

000 = P1if ~e then goto 91 else skip~pl

{PIy11]pl{P[got 0 92~p101}} o (153)

Substituting for the g o t o gives:

000= P1if ~e then goto 91 else skip1]pl (154)

{P~r11]P1{P1192]} } o (155)

And substituting for the meaning of the label 92 gives:

000 = P1if ~e then goto 91 else skip~pl

{PIY,1]P102} o (156)

Expanding out the i f _ t h e n _ e l s e gives

000 = (if E[-n40 then P1goto 91]

else P[skip])pl{P1yl1]O102} o (157)

Pulling the continuation and state inside the brackets gives

000 = if E~-n40 then P1go to 911]pl{PI[yll]P102}o

else P Iskip1]p1{P[y11]P102} O (158)

Then substituting for the g o t o in one branch and the s k i p in the other
gives:

000 = if El-hEllo then 011911]0 else PI71]p102o (159)

88 S. Stepney et al.

And substituting for the meaning of the label (])1 gives:

00o = if E~-ne]cr then 01o else P~y1]p102 O (160)

Then substituting back the meaning of the continuation gives:

00o = if E[[-ne]]6 then P~],'2]/9102 O" else P~?l]pl020 (161)

71 and It 2 do not mention labels q~0, tPl, q~2, because Tosca does not allow
jumps out of a block (there are no g o t o s in Tosca), and the compiler chooses
new names for the labels. This result implies that P~]q]plO 2 = P[[71]]PO, etc.,
and hence

00o = (if E~-n 4 then P~yz~else P~yl])pOo (162)

Then expanding the -7 operator, and rearranging, gives

0oCt = (if E~e~tr then P~y1~else P~y2~)pOcr (163)

as required.

Appendix B. Tosca's DCTG

The following shows a summary of Tosca's DCTG, as used in the technology
demonstration. It has three semantics attached to each node: the two
non-standard semantics, typecheck and usecheck, and the dynamic semantics,
meaning, that gives the abstract meaning of the node. These provide a type
checker, a use checker and an interpreter, respectively.

demo(Source) "-
lexemes(Tokens, _, Source,

!,
program(Tree, Tokens, []),
!,
Tree^^typeeheck(Type),

[]) ,

(

),
!,
Tree^'usecheck(UStore),

writel([nl, 'use checking done', nl]),
lookup(UStore, X, use_bad),

(X = nonebad

; fatalerror(['use error(s)'])
),
Tree'^meaning.

writel([nl, 'type checking done', nl]),
Type = type_wrong, fatalerror(['type error(s)'])
Type = type~k

A Demonstrably Correct Compiler 89

THE MAIN PROGRAM
================,/

/*

start with an empty environment and store

<program> ::= <cmd>
,/

program ::=

cmd^^C
<:>

(typecheck(Type) ::- C~^typecheck([], Type)),

(usecheck(UStore) ::- C^^usecheck([], [], UStore)),

(meaning ::- C^^meaning([], [], ~).

* COMMAND LIST
*/

/*

<cmdList> ::= <cmd> <cmdCont>
,/

cmdList ::=
cmd^^C, cmdCont^^CL

<:>

(typecheck(State, Type) ::-

C^'typecheck(State, Type1),
(Type1 = type_ok,

CL'^typecheck(State, Type)

Typel = type_wrong, Type = type_wrong
)

),
(usecheck(UEnv, PreUStore, PostUStore) ::-

C'^usecheck(UEnv, PreUStore, MidUStore),

CL''usecheck(UEnv, MidUStore, PostUStore)
),
(meaning(Env, PreStore, PostStore) ::-

C^^meaning(Env, PreStore, MidStore),

CL^'meaning(Env, MidStore, PostStore)
).

9O

/*

S. Stepney et al.

*

<cmdCont> ::= ; <cmdList>
./

cmdCont ::=

tSEMICOLON, !,
cmdList^-CL

<:>

(typecheck(State, Type) ::-

CL'~typecheck(State, Type)
),
(usecheck(UEnv, PreUStore, PostUStore) ::-

CL''usecheck(UEnv, PreUStore, PostUStore)
),
(meaning(Env, PreStore, PostStore) ::-

CL''meaning(Env, PreStore, PostStore)
).

/*

<cmdCont> ::= []
,/

cmdCont ::=
[]

<:>

(typecheck(_ , t y p e ~ k)) ,
(usecheck(_ , UStore , U S t o r e)) ,
(meaning(_, S t o r e , S t o r e)) .

/*

* COMMANDS

/ * *

* local block (i) :
, ,/

cmd ::=
tBEGIN,

declList'^DL, tENDDECL, cmdList''CL,

tEND
<:>

(typecheck(State, Type) ::-
DL-^typecheck(State, PostState),
CL''typecheck(PostState, Type)

A Demonstrably Correct Compiler 91

,

(usecheck(UEnv, PreUStore, PostUStore) ::-

DL^^usecheck(UEnv, PostUEnv),

CL^'usecheck(PostUEnv, PreUStore, PostUStore)
),
(meaning(Env, PreStore, PostStore) ::-

DL''meaning(Env, PostEnv),

CL^Ameaning(PostEnv, PreStore, PostStore)
).

/*

local block (2) :
,/

cmd ::=

tBEGIN,

cmdList''CL,

tEND
<:>

(typecheck(State, Type) : : -
CL' ' typecheck(State, Type)

) ,
(usecheck(UEnv, PreUStore, PostUStore) : : -

CL'-usecheck(UEnv, PreUStore, PostUStore)
) ,
(meaning(Env, PreStore, PostStore) : : -

CL^'meaning(Env, PreStore, PostStore)
).

/*

<cmd> ::= skip
,/

cmd ::=

tSKIP
<:>

(typecheck(_, type~k)) ,
(usecheck(_, UStore, UStore)),
(meaning(_, Store, Store)) .

/*

<cmd> ::= <id> := <expr>
* ,]

92 S. Stepney et al.

cmd ::=

tIDENT'^I, tASSIGN, expr''E
<:>

(typecheck(State, Type) ::-
I^^meaning(Id),
E'^typecheck(State, TypeE),
lookup(State, Id, TypeI),
(TypeI = int, TypeE = int, Type = type~k
; Type = type_wrong
)

),

(usecheck(UEnv, PreUStore, PostUStore) ::-
I^'meaning(Id),
E^^usecheck(UEnv, PreUStore, MidUStore, ~,
lookup(UEnv, Id, ULocn),
lookup(MidUStore, ULocn, Use),
(Use = bottom,

update(MidUStore, PostUStore, ULocn, use_ok)

PostUStore = MidUStore
)

),

(meaning(Env, PreStore, PostStore) ::-
I'^meaning(Id),
E^^meaning(Env, PreStore, Val),
lookup(Env, Id, Locn),
update(PreStore, PostStore, Locn, Val)

.

/*

cmd ::= while <expr> do <cmd>
,/

cmd ::=
tWHILE, expr''E,
tDO, cmd'-C

<:>

(typecheck(State, Type) ::-
E^-typecheck(State, TypeE),
C^^typecheck(State, TypeC),
(TypeE = bool, TypeC = type_ok, Type = type_ok
; Type = type_wrong
)

A Demonstrably Correct Compiler 93

J

(usecheck(UEnv, PreUStore, PostUStore) ::-

E''usecheck(UEnv, PreUStore, MidUStore, 3,
C''usecheck(UEnv, MidUStore, PostUStore)

),

(meaning(Env, PreStore, PostStore) ::-
while(Env, PreStore, PostStore, E, C)

).

while(Env, PreStore, PostStore, E, C) "-
copy_term(E, El),

E'^meaning(Env, PreStore, Val),
(Val = bTRUE ', nl]),

copy~erm(C, CI),

C''meaning(Env, PreStore, MidStore),
while(Env, MidStore, PostStore, El, C1)

.

Val = bFALSE,
PostStore = PreStore

/*

cmd ::= if <expr> then <cmd> else <cmd>
-,/

cmd ::=
tIF, expr^^E,
tTHEN, cmd^^Cl,
tELSE, cmd^^C2

<:>

(typecheck(State, Type) ::-
E^^typecheck(State, TypeE),
Cl^^typecheck(State, TypeC1),
C2"^typecheck(State, TypeC2),
(TypeE = bool, TypeC1 = type_ok,

TypeC2 = type~k, Type = type_ok

Type = type_wrong
)

,

94 S. Stepney et al.

(usecheck(UEnv, PreUStore. PostUStore) ::-
E^'usecheck(UEnv, PreUStore, MidUStore, 3,
Cl^^usecheck(UEnv, MidUStore, UStorel),
C2^^usecheck(UEnv, MidUStore, UStore2),
worseof(UStorel, UStore2, PostUStore)

),

(meaning(Env, PreStore, PostStore) ::-
E^^meaning(Env, PreStore, Val),
(Val = bTKUE,

Cl^^meaning(Env, PreStore, PostStore)

Val = bFALSE,
C2^'meaning(Env, PreStore, PostStore)

.

worseof(Storel, Store2, StoreJoint) "-

/*

* procedure call
* cmd ::= <id>

,/

cmd ::=
tIDENT^^I

<:>

(typecheck(State, Type) ::-
I^Ameaning(Id),
lookup(State, Id, TypeI),
(TypeI = proc, Type = typemk
; Type = type_wrong
)

),
(usecheck(UEnv, PreUStore, PostUStore) ::-

I'^meaning(Id),
lookup(UEnv, Id, [UC,DeclUEnv]),
UC^-usecheck(DeclUEnv, PreUStore, PostUStore)

),

A Demonstrably Correct Compiler 95

(meaning(Env, PreStore, PostStore) ::-
I^^meaning(Id),
lookup(Env, Id, [Cmd,DeclEnv]),
copy~erm(Cmd, C),

C''meaning(DeclEnv, PreStore, PostStore)
.

I*
cmd ::= input <id>

,/

cmd ::=
tINPUT, tIDENT^^I

<:>

(typecheck(State, Type) ::-
IA'meaning(Id),
lookup(State, Id, TypeI),
(TypeI = int, Type = type_ok
; Type = type_wrong
)

),
(usecheck(UEnv, PreUStore, PostUStore) ::-

I^'meaning(Id),
lookup(UEnv, Id, ULocn),
lookup(PreUStore, ULocn, Use),
(Use = bottom,

update(PreUStore, PostUStore, ULocn, use_ok)

PostUStore = PreUStore
)

,

(meaning(Env, PreStore, PostStore) ::-
l^^meaning(Id),
writel(['<<< input: ', Id, ' <<< :
read(Value),
lookup(Env, Id, Locn),

.

']),

update(PreStore, PostStore, Locn, Value)

96 S. Stepney et al.

/*

* cmd ::= output <expr>
, ,/

cmd ::=

tOUTPUT, expr^^E
<:>

(typecheck(State, Type) ::-

E'^typecheck(State, TypeE),

(TypeE = int, Type = type_ok

; Type = type_wrong
)

),
(usecheck(UEnv, PreUStore, PostUStore) ::-

E~'usecheck(UEnv, PreUStore, PostUStore,
),
(meaning(Env, PreStore, PostStore) ::-

E~'meaning(Env, PreStore, Value),

PostStore = PreStore,

writel(['>>> output >>> : ', Value, nl])
).

/*

DECLARATION LIST

/*

<declList> ::= <decl> <declCont>
,/

declList ::=
decl^^D, declCont-ADL

<:>

(Zypecheck(PreState, PostState) ::-

D^'typecheck(PreState, MidState),
DL^'typecheck(MidState, PostState)

),
(usecheck(PreUEnv, PostUEnv) ::-

D^'usecheck(PreUEnv, MidUEnv),

DL^^usecheck(MidUEnv, PostUEnv)
),
(meaning(PreEnv, PostEnv) ::-

D^^meaning(PreEnv, MidEnv),
DL^^meaning(MidEnv, PostEnv)

).

A Demonstrably Correct Compiler

/*

97

<declCont> ::= ; <declList>
,/

declCont ::=

tSEMICOLON, ' �9 p

declList^'DL
<:>

(typecheck(PreState, PostState) ::-

DL--typecheck(PreState, PostState)),

(usecheck(PreUEnv, PostUEnv) ::-

DL^'usecheck(PreUEnv, PostUEnv)),
(meaning(PreEnv, PostEnv) ::-

DL''meaning(PreEnv, PostEnv)).

/*

<declCont> ::= []
,/

declCont : :=
[]

<:>

(typecheck (State, State)),

(usecheck(UEnv, UEnv)),

(meaning(Env, Env)).

* DECLARATIONS
*/

/*

<decl> ::= var <id>
,/

decl ::=
tVAR, tIDENT''I

<:>

(typecheck(PreState, PostState) ::-

I^^meaning(Id),
update(PreState, PostState, Id, int)

),
(usecheck(PreUEnv, PostUEnv) ::-

I'^meaning(Id),

gensym(uloc, ULocn),
update(PreUEnv, PostUEnv, Id, ULocn)

98 S. Stepney et al.

,

(meaning(PreEnv, PostEnv) ::-
I'Ameaning(Id),
gensym(loc, Locn),
update(PreEnv, PostEnv, Id, Locn)

).

/*

<decl> ::= proc <id> = <cmd>
,/

decl ::=
tPROC, t!DENT^^I, tlS, cmd^^C

<:>

(typecheck(PreState, PostState) ::-
l^^meaning(Id),
C^^typecheck(PreState, Type),
(Type = type_ok,

update(PreState, PostState, Id, proc)

Type = type_wrong,
update(PreState, PostState, Id, wrong)

)
),
(usecheck(PreUEnv, PostUEnv) ::-

I'^meaning(Id),
update(PreUEnv, PostUEnv, Id, [C,PreUEnv])

),
(meaning(PreEnv, PostEnv) ::-

I^'meaning(Id),
update(PreEnv, PostEnv, Id, [C,PreEnv])

).

* EXPRESSIONS

==============,/
/*

<expr> ::= <const>
,/

expr ::= tCONST'~X
<:>

A Demonstrably Correct Compiler 99

(typecheck(_, Type) ::-

X'^meaning(Value),

((Value = bTKUE ; Value = bFALSE), Type = bool

; Type = int
)

),
(usecheck(...... use_ok)
),
(meaning(_, _, Value) ::-

X''meaning(Value)
).

/*

* <expr> ::= <id>
,/

expr ::= tIDENT''I
<:>

(typecheck(State, Type) ::-

I'^meaning(Id),
lookup(State, Id, TypeId),

(TypeId = int, Type = int

; Type = wrong
)

),
(usecheck(UEnv, PreUStore, PostUStore, Use) ::-

I^^meaning(Id),

lookup(UEnv, Id, ULocn),

lookup(PreUStore, ULocn, Usel),

(Usel = bottom, Use = bad,

update(PreUStore, PostUStore, ULocn, bad),

Use = Usel,

PostUStore = PostUStore
)

),
(meaning(Env, Store, Value) ::-

I''meaning(Id),

lookup(Env, Id, Locn),

lookup(Store, Locn, Value)
).

100

/*

S. Stepney et al.

<expr> ::= <unyop> <expr>
,/

expr ::= ZUNYOP^'O, expr^^E
<:>

(typecheck(State, Type) ::-

E^^typecheck(State, TypeE),

O-^meaning(Op),

(Op = sub, TypeE = int, Type = int

; Op = tNOT, TypeE = bool, Type = bool

; Type = wrong
)

),
(usecheck(UEnv, PreUStore, PostUStore, Use) ::-

E^^usecheck(UEnv, PreUStore, PostUStore, Use)
),
(meaning(Env, Store, Value) ::-

E'^meaning(Env, Store, Valuel),

O-^meaning(Op),

eval(Op, Valuel, Value)
).

/*

<expr> ::= (<expr> <binop> <expr>)
,/

expr ::= tLPAREN, expr-^El, tBINOP-^O, expr^'E2, tRPAREN
<:>

(typecheck(State, Type) ::-

El^^typecheck(State, Typel),

E2^^typecheck(State, Type2),

O-^meaning(Op),

((Op = add ; Op = sub),

Typel = int, Type2 = int, Type = int

(Op = '>' ; Op = '<' ; Op = '=' ; Op = '>=' ;

Op = '<=' ; Op = ' ='),
Typel = int, Type2 = int,

Type = bool

(Op = and ; Op = or),

Typel = bool, Type2 = bool, Type = bool

A Demonstrably Correct Compiler 101

Type = wrong
)

),
(usecheck(UEnv, PreUStore, PostUStore, Use) ::-

El^'usecheck(UEnv, PreUStore, UStorel, Usel),
E2^'usecheck(UEnv, UStorel, PostUStore, Use2),
(U s e l = u s e _ o k , U s e 2 = u s e _ o k , Use = u s e _ o k

; Use = u s e ~ a d
)

) ,
(m e a n i n g (E n v , S t o r e , V a l u e) : : -

El'^meaning(Env, Store, Valuel),
E2^^meaning(Env, Store, Value2),
O^'meaning(Op),
eval(Op, Valuel, Value2, Value)

.

Received June 1990
Accepted in a revised form in September 1990 by D. Simpson

