
Formal Proof from UML Models

Nuno Amálio, Susan Stepney, and Fiona Polack

Department of Computer Science, University of York, York, YO10 5DD, UK
{namalio,susan,fiona}@cs.york.ac.uk

Abstract. We present a practical approach to a formal analysis of UML-
based models. This is achieved by an underlying formal representation in
Z, which allows us to pose and discharge conjectures to analyse models.
We show how our approach allows us to consistency-check UML models,
and model analysis by simply drawing snapshot diagrams.
Keywords: UML, Z, model analysis, formal proof, consistency checking.

1 Introduction

This paper describes a practical approach to the formal analysis of models of
sequential systems. Our models are UML-based, yet they are amenable to formal
analysis. This is achieved by an underlying formal representation in Z, which al-
lows us to pose and discharge conjectures to analyse models. This formal analysis
is supported by the Z/Eves theorem prover [1].

UML is the defacto standard modelling notation among software engineers.
One feature of UML often forgotten (or perhaps unknown in some circles) is that
the language has a multi-interpretation nature; the semantics of the language’s
constructs vary with the application domain. When using UML, modellers ought
to make explicit the interpretation being followed, but this is seldom done.

Moreover, UML has many limitations that preclude rigorous (or sound) de-
velopment. UML models are imprecise and cannot be formally analysed in the
UML context. This brings the following consequences: (a) UML models result in
ambiguous descriptions of software systems; (b) UML models cannot be checked
for consistency, which means that one may produce unsatisfiable models for
which no implementation may possibly exist; and (c) there are no means for
checking whether certain desired system properties hold in a UML model.

Formal specification languages (FSLs), on the other hand, allow sound devel-
opment. They yield precise descriptions of software systems that are amenable
to formal analysis. However, these languages require substantial expertise from
developers, and they are criticised for being unpractical, as substantial effort is
involved in formally model and analyse systems.

In our modelling approach we aim at addressing these issues. We want (a)
to deal with the multi-interpretation nature of UML, (b) to introduce sound-
ness into UML-based development, and (c) to make sound development more
approachable to developers and substantial more practical for use in wide engi-
neering domains.



To address these issues we propose modelling frameworks. Modelling frame-
works are environments for building and analysing models that are tailored to
problem domains. Each modelling framework comprises a set of UML notations,
a semantics for those notations and an analysis approach for models built using
the framework. The semantics of the UML notations is expressed by using a
FSL; the analysis approach is based on the analysis means of the FSL being
used. The components that make-up the framework (definitions and FSL) are
appropriate to the problem domain being targeted by the framework.

We use templates to define modelling frameworks. Templates are used to
describe meta-level properties, such as, the formal representation (or seman-
tics) of UML modelling elements (e.g. class), and proof-obligations (or meta-
conjectures). Our templates are parametric descriptions of phrases in a FSL
(here Z), describing the essential structure of a phrase. A template instantiation
involves providing names for the template’s parameters; when properly instan-
tiated a template yields a FSL phrase.

By using the templates of a framework, we can generate conjectures to for-
mally analyse a UML-based model. Some of these conjectures are simply true by

construction because our meta-level representations based on templates allows
us to do meta-proofs of properties (i.e., the property is proved at the meta-level),
which, once proved, are true for many instantiations of a particular form. Other
conjectures can be automatically generated just by drawing diagrams; this allows
formal model analysis by simply drawing simple and intuitive diagrams.

The following terminology is used to refer to the results of proving conjec-
tures:

– true by construction — it is guaranteed to be true, so there is no need to do
a proof, essentially, a meta-proof has been done;

– trivially true – Z/Eves can do it automatically;
– and provable – can be proved but Z/Eves needs some help: we are working

on patterns/tactics for this class, to make them trivial.

Here we present and illustrate the use of a modelling framework for sequen-
tial systems based on UML and Z. The illustration is a simplified library system,
comprising a library catalogue, copies of catalogued books for borrowing, track-
ing and renewal of loaned copies, and recalling of books. Section 2 presents the
framework. Sections 3 to 6 construct and analyse the model of the library system.

2 A Modelling Framework for Sequential Systems

We have developed a modelling framework to construct and analyse models of
sequential systems by using Z as the FSL [2]. Models and associated analysis
conjectures are built by instantiating templates of the framework [3].

The models of our framework comprise UML class, state and snapshot di-
agrams with an underlying Z representation. Snapshot diagrams are a feature
of Catalysis [4]; they are essentially object diagrams, illustrating either one sys-
tem state or one system state transition. In the framework, most properties are



expressed diagrammatically, but the modeller needs to resort to Z to express:
invariants (or model constraints), and operation specifications. These properties
would be expressed in OCL in a UML-only development.

Z has proved to be an appropriate language to represent abstract UML mod-
els. Z has semantics that is mathematical rather than computational. This makes
the language flexible, powerful and extensible, and allows structuring based on
different computational models. We have developed a model for Z based on the
OO paradigm to represent abstract UML models. This results in well-structured
and natural Z specifications. Another Z feature that is important in our ap-
proach is Z conjunction, which allows us to assemble the local pieces of state
and behaviour into global ones. This gives us modular and conceptually clear Z.

In the following subsections, we discuss the semantic model used to represent
UML diagrams, and the analysis strategy of the framework.

2.1 The semantic model

A semantic model is required to formally represent UML models. This is defined
by using our OO Z structuring [2], which can be used to represent UML-based
models and to construct Z specifications in a OO style.

Our OO structuring extends those reviewed in [5]. One of the novel features
of our structuring is that it is views based, following a views structuring approach
for Z [6]. The need for a views structuring approach came from the observation
that not all properties of class models would fit elegantly into a single view.

In our structuring, a class has a dual meaning. Class intension defines the
properties shared by the objects of that class (e.g, Member of figure 1 has prop-
erties name, address , and category). Class extension defines the class in terms
of currently existing objects (e.g., Member is {oRalph, oJohn, oAlan}).

The main modelling entities are represented in Z in a state and operations
style. Each class intension, class extension, association, subsystem and ultimately
the whole system is represented as a Z abstract data type (ADT), consisting of
a state description, an initialisation, and operations upon the state.

2.2 Analysis Strategy

The models of our framework are analysed through proof in Z. Our OO struc-
turing based on ADTs across views, makes the task of demonstrating the con-
sistency of our modelling entities easier, we just have to follow Z’s consistency
checking approach (proving initialisation theorems and calculating preconditions
of operations). We also generate conjectures from diagrams, either to check the
consistency of a diagram or to validate the system model. It is important to em-
phasise our approach to model validation, which is based on drawing snapshot
diagrams; once we have these diagrams we can then generate conjectures, by
instantiating templates, which are either trivially true or provable.



3 Modelling State

Modelling of state involves: building class models, describing the main entities of
the system and the relationships between them; formally representing the class
model and adding the model’s static constraints (or invariants); and drawing
snapshots of system state to validate the overall model of state.

3.1 UML Class Model

Fig. 1. Class diagram of library system.

Figure 1 is the abstract UML class
model of the library system. Book rep-
resents the entries in the library cata-
logue, comprising an isbn, the title and
author of the book. Copy represents
the actual instances of book; the at-
tributes record the dueDate of a loaned
copy, the number of renewals that have
been made, where each renewal would
set a later due date, and the loanType.
Member represents the library mem-
bers that are entitled to borrow and
recall copies of books; the attributes
record the name of a member, the
address and the member category .

Structurally, CopyOf associates
each Copy object with one Book ob-
ject; there may be many copies of each
book. A Member object Borrows zero,

one or many copies; at any time each Copy object may or may not be borrowed.
Members may issue a Recall against a catalogued Book object for which no
copy is available; a Book object may have many unserved recalls at a time. The
Recall association is subject to an ordering constraint, because, when a copy of
a book for which there is a recall is returned to the library, the copy is offered
to the member who made the earliest unmet recall. There is inevitably a period
of time between the copy of the recalled book becoming available and the re-
calling member collecting the copy; ToCollect expresses the association between
the recalling member and the copy whilst the book is awaiting collection.

3.2 Formal Representation of UML Class Model and Constraints

Here we show how the class diagram is formally represented by instantiating
templates. We also show how we can add model constraints that do not have
a diagrammatic representation. In representing the different modelling elements
we follow systematic naming conventions; extensional definitions are preceeded
by S, and association-related ones by A.



The formal representation is illustrated for each view of our structuring,
namely, structural, intensional, extensional, relational and global. In the struc-
tural view we represent objects. In the intensional and extensional views we
represent the intensional and extensional meaning of classes, respectively. In the
relational view we represent associations. The global view groups classes and
associations into subsystems and ultimately the system.

Structural View. Objects are represented as atoms. We consider that there is a
given set of all objects (OBJECT ), of which objects are members. Each class
has an object set, which is a subset of the set of all objects (CopyOs is the object
set of Copy).

[OBJECT ] CopyOs :
�

OBJECT

Intensional View. Here we represent state intensions and their initialisations. A
state intension comprises class attributes and a class invariant. An initialisation
makes an assignment of values to class attributes. The declaration part of Copy

(below) is generated by template instantiation from the class and state models;
the user provides the predicate part of the schema (intension invariant). CopyInit

(below) is generated by template instantiation from the state model (indicates
the initial value of state, see Fig. 4) and initial values provided by the user.

Copy

dueDate : DATE

loanType : LoanType

renewals : �
state : CopyState

renewals ≤ renewalLimit

CopyInit

Copy ′

loanType? : LoanType

dueDate ′ = nullDate

renewals ′ = 0

loanType ′ = loanType?

state ′ = shelved

Extensional View. Class state extension defines the set of all existing class ob-
jects (a subset of the class’ object set), and a mapping between object atoms and
their state intensions. We represent state extension as a Z generic (SClass be-
low), actual state extensions are instantiations of this generic. The SCopy state
extension (below) and its initialisation are generated from the class model by
instantiating their corresponding templates1; if there were extension invariants
they would have to be provided by the user.

SClass [OSET ,OSTATE ]
objs :

�
OSET

objSt : OSET 7→ OSTATE

dom objSt = objs

SCopy == SClass[CopyOs ,Copy ][copys/objs , copySt/objSt ]

1 The renaming in the definition of SCopy is done to avoid name clashing.



Relational View. An association denotes a set of tuple pairs, where each tuple de-
scribes the pair of objects being linked. Association state defines a mathematical
relation between the object sets of the classes being associated (e.g. association
Borrows is defined as borrows : MemberOs ↔ CopyOs). Association static rep-
resentations (state and initialisation) in Z are mostly generated from the class
diagram information by instantiating proper templates; again only association
invariants, if they exist, need to be added by the user. We have templates to
handle special kinds of associations, such as those with the ordered constraint.

Global View. Subsystem state groups classes and association of the subsystem,
includes consistency constraints between classes and associations, and system
constraints that cross modelling elements. The system state of the library prob-
lem is given below, with its three classes and four associations. In the predicate,
each name refers to another Z schema – Consistency predicates refer to con-
sistency constraints on associations, and Constraint predicates to system-wide
constraints. The initialisation of system state (SysInit below) consists of initial-
ising each system component (class or association); this is defined by conjoining
the initialisations of class extensions and associations. Both state and initialisa-
tion schemas are generated from templates, where most information comes from
the class model; the user adds the Constraint schemas.

System

SMember ; SCopy ; SBook ; ABorrows ; AToCollect ; ACopyOf ; ARecall

ConsistencyABorrows ∧ ConsistencyAToCollect

ConsistencyACopyOf ∧ ConsistencyARecall

ConstraintNoCommonCopiesBorrowsToCollect

ConstraintBorrowingLimit

SysInit == System ′ ∧ SMemberInit ∧ SCopyInit ∧ SBookInit

∧ ABorrowsInit ∧ AToCollectInit ∧ ACopyOfInit ∧ ARecallInit

3.3 State Snapshots

Fig. 2. Snapshot of a desired system
state.

State snapshots are UML object dia-
grams describing one specific state of
the system.

Figure 2 is a valid snapshot of
the system state, comprising a book,
UsingZ , with two copies, C1 and C2.
There are three library members, two
of whom are borrowing the copies of
UsingZ ; and the third of whom has is-
sued a recall. Informally, one can see
that this snapshot illustrates a valid
state of our class model.



Fig. 3. Snapshot of an undesired sys-
tem state.

Figure 3 is an invalid state snap-
shot. Here, copy c2 is being borrowed
by John but also being kept awaiting
collection for Alan. We want the sys-
tem to disallow this – as soon as a
copy of a recalled book is returned, its
Borrows link should be replaced by a
ToCollect link with a recalling mem-
ber.

We considered placing a dis-

joint constraint between Borrows and
ToCollect , with the intention of mak-
ing the snapshot in Figure 3 in-

valid. Formal analysis shows that such a constraint would leave the snap-
shot valid, as the tuples in the snapshot are disjoint: Borrows comprises
{(Ralph,C1), (John,C2)} and ToCollect comprises {(Alan,C2)}. We express
this in a Z constraint schema (included in the System schema, above), by stat-
ing that the tuples of those associations may not have copies in common (the
ranges of relations Borrows and ToCollect must be disjoint).

ConstraintNoCommonCopiesBorrowsToCollect

ABorrows ; AToCollect

disjoint〈ran borrows , ran toCollect〉

3.4 Formally Representing Snapshots

Each snapshot is formalised as a specific instance of the system, by equating each
general concept to a specific set of instances. The representation of the snapshot
of Fig. 2 is given below; this is fully generated from the snapshot diagram by
instantiating templates (names are declared axiomatically).

LibrarySnapshot1
System

books = {oUZ} ∧ bookSt = {oUZ 7→ uz} ∧ copys = {oC1, oC2}

copySt = {oC1 7→ c1, oC2 7→ c2} ∧ members = {oR, oJ , oA}

memberSt = {oR 7→ ralph, oJ 7→ john, oA 7→ alan}

copyOf = {oC1 7→ oUZ , oC2 7→ oUZ}

borrows = {oR 7→ oC1, oJ 7→ oC2}

recall = {oA 7→ oUZ} ∧ ordRecall = {oUZ 7→ 〈oA〉} ∧ toCollect = ∅

4 Analysing State

State analysis involves: checking the consistency of the class model; and checking
the class model against state snapshots.



4.1 Class Model

To demonstrate the consistency of state, we prove initialisation theorems. An
initialisation theorem is of the form, ` ∃State ′ • StateInit . This says that there
is some valid instance of State satisfying its initialisation (hence the model of
state is satisfiable). We need to prove initialisation theorems for the various
system components, including, class intensions and extensions, associations, and
the whole system.

For the example (and most that we studied), with correctly-instantiated tem-
plates,

– the initialisation theorem on class extensions and associations are true by
construction;

– the initialisation theorem on the class intensions are trivially true;

– the initialisation theorem on the whole system, which ensures that all the
constraints hold in the initial state, is (easily) provable.

In our example, the Copy intension initialisation, ` ∃Copy ′ • CopyInit , is
automatically discharged (proved true) by Z/Eves. Since Copy has an invariant
stating that the number of renewals of a copy loan must be no more than the
maximum number of renewals allowed (renewals ≤ renewalLimit), the proof
confirms that this constraint is satisfiable. Suppose that Copy state has the
contradictory invariant, renewals < 5 ∧ renewals > 10. Z/Eves would now
reduce the initialisation conjecture to false; no initialisation can be made in
which this invariant is satisfied.

For the example, we proved the initialisation theorem for the whole system,
` ∃System ′ • SysInit . This means that the overall system constraints are con-
sistent, and that the specification is a satisfiable model.

4.2 State Snapshots

A state snapshot is a witness of the system model. Analysis demonstrates whether
the snapshot is a valid witness or not. This involves proving an existence con-

jecture. As for the initialisation, if this conjecture is true then there is a state of
the specified system that satisfies the state described in the snapshot. One can
also perform negative model validation by using deliberately invalid snapshots
(see section 6.3).

The instantiated template conjectures that validate the two state snapshots
in Figures 2 and 3 are, respectively,

` ∃System • LibrarySnapshot1 ` ∃System • LibrarySnapshot2

The first is provable in Z/Eves, confirming the validity of the snapshot; the
second reduces to false, so is an invalid state of the whole system (as required),
and we can conclude that our model disallows this state.



5 Modelling Behaviour

Modelling behaviour in our framework involves: describing the reactive behaviour
of relevant classes with state diagrams ; describing changes of system state in the
context of system operations with operation snapshots ; specifying operations in
Z based on operation snapshot diagrams.

5.1 UML State Diagrams

Fig. 4. State diagram of Copy

UML state diagrams describe the
permitted state transitions of ob-
jects of each class. Figure 4 is the
state diagram of the Copy class.
We follow a Catalysis [4] convention,
that each event is described in the
form, event [guard ]/[postcondition],
where event , the name of the event,
equates to the name of a class oper-
ation; guard is an optional predicate
stating the precondition for the tran-
sition; postcondition is an optional
predicate to express what the tran-
sition is required to establish.

Here, the initial state of a copy is shelved . The loan of a copy by a member,
borrow(), results in a transition from shelved to onLoan. When in the onLoan

state, copies may be renewed, renew(), and recalled, recall(). The return of a
copy, return(), results in a transition either back to shelved , or, if there is a recall
on the copy’s book, returnRecalled(), to toCollect . When the relevant member
collects the copy, collect(), there is a transition from toCollect to onLoan. If
the recalling member indicates that they no longer require the copy awaiting
collection, cancelCollect(), there is a transition from toCollect to shelved . We
might expect a fourth state, for copies which are being borrowed but which are
subject to a recall; such a state would not allow renew() operations. However, in
our domain recalls are made upon books, not copies; a recall is active until one
of the copies of the recalled book is returned; as copies are not aware of the state
of other copies, such a state would require a message to each copy on loan to
unset the recall. Instead, in our model, there is a system level renewal operation
which takes as input a copy instance, and checks whether there are any Recall

links from the Book to which the copy is linked; only if there are no Recall links
can the copy .renew() operation be executed.

5.2 Formal Representation of UML State Diagrams

State diagrams are represented in the intensional view, as part of the intensional
definition of the class to which they are associated. Such a representation involves
defining the class’ state (to indicate the current state an object is in according



to the state model), initialisation and operations, according to the contents of
the state model. This is achieved by instantiating templates.

In our example, Copy ’s state schema includes a component state of type
{shelved , onloan, toCollect} (the possible states of Copy objects); the initialisa-
tion sets state to shelved , the initial state of the state model (see section 3.2 for
schemas Copy and CopyInit); the operations establish the state transitions of the
state model, for example, the operation CopyBorrow (see below) is associated
with the state transition shelved to onLoan, the specification has a precondition
stating that state is shelved , and a post-condition stating that state is onLoan

and renewals is 0 (post-condition of transition).

5.3 Operation Snapshots

Fig. 5. Operation snapshot in the con-
text of Recall .

Operation Snapshots describe one sys-
tem state transition in the context of
an operation. These are valuable in un-
derstanding and describing operations,
and in validating their specifications.

Figure 5 is a valid snapshot in
the context of the Recall operation,
invoked when Alan issues a recall
on UsingZ . Highlighting denotes the
change of state after execution – a link
between the member that issued the
recall and the recalled book is formed.
The changes to c1 and c2 represent the
resetting of due dates imposed when a
recall is received.

Fig. 6. Operation snapshot in the con-
text of Return.

Figure 6 is a snapshot in the con-
text of the Return operation, invoked
when John returns C2. Since UsingZ

has an active recall, a link is formed
between Alan and C2; as the recall is
satisfied, the Recall link is deleted.

The snapshots increase confidence
that the class and state diagrams and
operation specifications are sensible.
Later we see how we can use them to
validate the model.

5.4 Operation Specifications

Operations are specified in Z from operation snapshot diagrams.



Class operations have intensional and extensional definitions. The intension
specifies the required state changes of one class object. The extension promotes

the intensional operation to all existing objects of a class. Below, CopyRenew is
the intensional definition of Copy .renew() and SCopyRenew the extensional one
(each defined in intensional and extensional views respectively); SCopyRenew is
defined by using Z promotion [7], where ΦSCopyUpdate is the update promo-
tion framing schema, and CopyRenew the intensional operation being promoted.
These definitions have templates that capture their structure; CopyRenew is gen-
erated with information coming from the state diagram (state predicates), and
provided by the user; SCopyRenew can be automatically generated.

CopyRenew

∆Copy

state = onLoan

state ′ = onLoan

renewals ′ = renewals + 1

dueDate ′ = nextDueDate (loanType, todayD)

loanType ′ = loanType

SCopyRenew == ∃∆Copy • ΦSCopyUpdate ∧ CopyRenew

System operations are defined in the global view by conjoining a framing schema2,
class extensional operations, association operations, and predicates. This struc-
ture is captured by a template. The system operation Renew() is generated from
this template with parameters provided by the user to yield,

SysRenew == ΨSysRenew ∧ AIsBorrowing ∧ ¬ AIsCopyRecalled

∧ SCopyRenew

which states that the renewal of a Copy involves: making sure that the member
is indeed borrowing the Copy being renewed (AIsBorrowing), making sure that
there is no active recall upon the Copy (¬ AIsCopyRecalled), and calling the
renew operation upon the Copy being renewed (SCopyRenew), which performs
a change of state in the Copy being renewed.

6 Analysing Behaviour

Analysis of behaviour consists of: checking the consistency of state diagrams
against class models and operation specifications; pre-condition investigation of
operations; and using operation snapshots to validate the model.

2 Indicates what parts of system state change with the operation; this kind of framing
schemas are preceeded by Ψ , to distinguish them from Φ promotion framing schemas.



6.1 State Diagrams

A state diagram sets requirements upon the initialisation and operations of a
class intension. To check the consistency of a state diagram against initialisation
and operation specifications, we state and try to prove conjectures expressing
what we wish to hold. This gives us one conjecture for the initial state, and
two conjectures per state transition: one for the pre-condition of the operation
associated with the transition and one for the post-condition. These conjectures
are captured by templates that can be fully generated from the state diagram.

In our example, the initialisation conjecture:

CopyInit ` state ′ = shelved

assumes the initialisation to show that the initial value of state is set as described
by the state model. This conjecture is true by construction.

The approach to check pre- and post-conditions of operations is similar. The
precondition conjecture for Copy .renew():

preCopyRenew ` state = onLoan ∧ renewals < renewalLimit

assumes the precondition of the operation to show that the before-state (state =
onLoan) and the guard of the Renew state transition (renewals < renewalLimit)
are satisfied by the operation’s precondition. This is trivially true. However, if
we had made the common mistake of simply using the relevant class invariant
(renewals ≤ renewalLimit) as the guard, the calculated precondition would no
longer establish the consequent, and the conjecture would be false – in some
cases, a further renewal would exceed the limit set in the state constraint.

The postcondition conjecture for Copy .renew():

CopyRenew ` state ′ = onLoan

assumes the operation to show that the Copy is left in the after-state of the
Renew state transition (state ′ = onLoan). This is true by construction in this
example, as there is no explicit postcondition in the state model for this transi-
tion.

6.2 Precondition Investigation

The precondition of an operation describes the sets of states for which the out-
come of the operation is properly defined. Precondition calculation is routine in
formal analysis. Systematic precondition analysis of class-level operations can
reveal flaws in the specification. For example, consider a specification of Recall

that has a precondition that (a) the recall must must be done by a member, (b)
the requested book must be a book in the library catalogue, and (c) there are
no copies of the book available in shelves. Pre-condition analysis reveals that
this is too weak, in that it allows the recall of a book that have no copies (the
multiplicity of the Copy end of CopyOf is 0 . . ∗), the placing of two or more
active recalls by the same member, and recall by a member who already has a
copy of the book on loan or awaiting collection. Analysis allows the precondition
to be strengthened to disallow such behaviour.



6.3 Operation Snapshots

Snapshots of system-level operations result in a dual formal representation: the
before-state, and the after-state. Both are generated by instantiating templates
with information coming from the diagram, and both need to be challenged.

The before-state of the snapshot is required to satisfy the operation’s pre-
condition. This results in a conjecture that assumes the formal representation
of the snapshot’s before-state, and establishes the precondition of the system
operation. For instance, the snapshot in Fig. 5, representing the system-wide
effect of a recall, would result in the following instantiated template conjecture:

LibraryBeforeRecallSnp ` preSysRecall

This is provable in Z/Eves.
For the after-state, we require that from the snapshot’s before-state, the

system-level operations establish the snapshot’s after-state. The conjecture as-
sumes the formal representation of the snapshot’s before-state and the system
operation, and establishes the snapshot’s after-state. For the snapshot in Fig-
ure 5, the instantiated template conjecture is:

LibraryBeforeRecallSnp; SysRecall ` LibraryAfterRecallSnp

This is provable in Z/Eves. The pre- and post- conjectures for the snapshot in
Figure 6 are similarly constructed and proved.

Fig. 7. State snapshot of an undesired
behaviour in the context of Return.

We can also perform negative val-
idation. Figure 7 illustrates a state
transition, in the context of operation
Return, that our model should disal-
low. The snapshot differs from that
in Figure 6 in that the Borrows link
between John and C2 is not deleted,
violating the constraint added to the
system state to prevent simultaneous
Borrows and ToCollect links on the
same copy.

If the post-condition conjecture on
the formalised snapshot does not re-
duce to false, this indicates there may
be missing preconditions or other con-
straints. Once determined, these can

be added to the specification, and the conjecture reinvestigated, until it does re-
duce to false. (Clearly, other conjectures involving the same operation will also
need to be reproved as part of this process.)

7 Discussion

Our template approach provides a Z formalisation of class, state, and snapshot
diagrams, and, in addition, provides an analysis strategy for models composed



of these diagrams. Currently, our approach allows rigorous hand-generation of Z
from diagrams by instantiating templates. Future work should address automa-
tion (tool development).

By using the templates of our framework, we can challenge a model by draw-
ing snapshot diagrams; the associated formal representations and conjectures
are generated by template instantiation (hence potentially automatable). The
discharging of snapshot conjectures can also be partially automated; snapshots
deal with model instances, which are more tractable by theorem provers. We
can see snapshots as giving life to a model. Snapshot-based validation is a useful
technique even if one builds Z-only specifications in a OO style.

The current drawback of our approach is that the discharging of some of the
proofs in Z/Eves requires expertise in using the prover (mainly proofs dealing
with system operations). We are looking at ways to mitigate this problem by
using proof tactics and patterns that, potentially, could substantially simplify
and perhaps fully automate some of the proofs.

Our approach of formalising UML class and state diagrams in Z with a state
and operations style, using the schema calculus, enhances the analysis capabili-
ties of our approach. Analysis in Z is tied to the state and operations style, where
one is required to prove initialisation theorems and calculate pre-conditions.

Moreover, templates allow us to minimise the proof effort. We can prove
properties at the meta-level that are applicable to all instantiations of a template,
or to instantiations of particular form. We try to make as much proof as possible
at the meta-level – a property is proved once, and then it becomes true when an
instantiation relevant to the property occurs (true by construction).

The modelling framework presented here requires modellers that know both
UML and Z. Our aim is to allow UML-only modellers to use our framework,
hence, we need to make the underlying Z completely transparent to the user.
This involves devising new notations (or using existing ones like OCL), for the
expression of constraints and operation specifications, that can be easily repre-
sented in Z.

Modelling frameworks would greatly benefit from tool support. Currently we
are working on the theoretical foundations. However, we envisage a tool that
generates a formal representation of a UML model, checks that model for well
formedness (through type-checking and other means), generates the associated
conjectures (proof obligations) associated with the model, and then interacts
with a prover to discharge those conjectures.

8 Conclusions and Future Work

Modelling frameworks and the associated template mechanism give us:

– Means to introduce soundness in UML-based development. We define in-
terpretations of UML concepts in a FSL that has a formal semantics with
analysis means. This allows us to build UML models that are precise and
analysable.



– Means to make sound development more usable. Most Z of our framework’s
models is generated by template instantiation, hence potentially automat-
able. This may allow the construction of sound models composed of diagrams,
opening sound development to UML-only modellers.

– Means to make sound development more practical. Our representations in
the template form allows us to prove properties at the meta-level so that
users don’t have to actually do it.

We are looking at generalising conjectures coming from snapshot diagrams.
This will allow us to prove properties that hold in our model for any model-
instance, rather than a specific one.

Having generated an underlying formal model, we can exploit other forms of
formal analysis. For example, the Alloy tool [8] uses a subset of Z; after some
manipulation, we can use Alloy’s Alcoa model checker. We have initial results
verifying properties of class models [2], and we will also explore reachability
analysis on state diagrams. We are also looking at other aspects of development
within the formal transformational framework – Catalysis has an informal no-
tion of model refinement based on diagrams, inspired by formal refinement. We
want to combine the diagram refinement with the conventional formal refinement
calculus, whilst retaining the developer-friendly approach.

Acknowledgements. This research was supported for Amálio by the Por-
tuguese Foundation for Science and Technology under grant 6904/2001.

References

1. Saaltink, M. The Z/EVES system. In ZUM’97: The Z Formal Specification Notation,
volume 1212 of LNCS. Springer-Verlag (1997)

2. Amálio, N., Polack, F., Stepney, S. A sound modelling framework for sequential sys-
tems I: Modelling. Technical Report YCS-2004, Department of Computer Science,
University of York (2004)

3. Amálio, N., Stepney, S., Polack, F. Modular UML semantics: Interpretations in
Z based on templates and generics. In Van, H. D., Liu, Z., eds., FACS’03: For-
mal Aspects of Component Software, Int. Workshop, Pisa, Italy, 284, pp. 81–100.
UNU/IIST Technical Report (2003)

4. D’Sousa, D., Wills, A. C. Object Components and Frameworks with UML: the
Catalysis approach. Addison-Wesley (1998)

5. Amálio, N., Polack, F. Comparison of formalisation approaches of UML class con-
structs in Z and Object-Z. In Bert et al. [9], pp. 339–358

6. Jackson, D. Structuring Z specifications with views. ACM Transactions on Software
Engineering and Methodology (TOSEM), 4(4):365–389 (1995)

7. Stepney, S., Polack, F., Toyn, I. Patterns to guide practical refactoring: examples
targetting promotion in Z. In Bert et al. [9], pp. 20–39

8. Jackson, D. Alloy: A lightweight object modelling notation. ACM Transactions on
Software Engineering and Methodology, 11(2):256–290 (2002)

9. Bert, D., et al., eds. ZB 2003: Formal Specification and Development in Z and B,
Int. Conference, Turku, Finland, volume 2651 of LNCS. Springer-Verlag (2003)


