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Abstract

As part of research towards the CoSMoS unified infrastruc-
ture for modelling and simulating complex systems, we re-
view uses of definitional and descriptive models in natural
science and computing, and existing integrated platforms.
From these, we identify requirements for engineering models
of complex systems, and consider how some of the require-
ments could be met, using state-of-the-art model management
and a mobile, process-oriented computing paradigm.

Introduction
In computing contexts, and particularly the context of artifi-
cial life, complex systems are studied through computer sim-
ulation. Reynolds’ boids (Reynolds, 1987) is a classic ex-
ample, where the complex flocking or swarming behaviours
are shown by visualisation of a large number of simple boid
processes obeying simple rules.

Simulations are used to model complex systems – bio-
logical phenomena, economies, human societies, and much
more. Typically, a simulation is built to explore a specific
problem in a specific context; there is little attempt to de-
velop generic solutions, or to record any design or engi-
neering. Often a valid simulation is judged to be a model
that produces the expected results by a process that looks
a bit like reality; there is little concern for the quality of
the underlying simulation (Epstein, 1999). General support
for complex systems and agent modelling tends to be at the
implementation level (see, for instance, the ACE resources,
www.econ.iastate.edu/tesfatsi/ace.htm). An immediate re-
sult of this focus is a long-running intellectual debate about
whether it is possible to do science through simulation (see
Miller (1995); Paolo et al. (2000); Wheeler et al. (2002);
Bryden and Noble (2006)). Similar issues with the validity
of simulation evidence arise in safety engineering and other
dependability, assurance (Alexander, 2007). For ALife, it
has already been noted (e.g. by S. Bullock, in Wheeler et al.
(2002)) that to assess the role and value of complex systems
simulation, we need to address deep questions of compara-
bility: we need a record of experience, of how good solu-
tions are designed, of how to chose parameters and calibrate

agents, and, above all, how to validate a complex system
simulation.

The sorts of systems in which we are interested are com-
plex in the sense of having elaborate behaviour at a high
level that is the consequence of many simple behaviours at
a lower level. The high-level behaviour cannot be deduced
as a simple combination of low-level behaviours – in the
same way that the velocity of a flock of birds is not deriv-
able by any simple analysis of the behaviours of the indi-
vidual birds. Space, time and the environmental context are
critical features of these systems. Engineering of such com-
plex systems requires support for the software engineering
of computer simulations, for use in the investigation of com-
plex systems in nature, in vitro and in silico.

Ultimately, our goal is to engineer simulations of sys-
tems exhibiting several layers of emergence – the lowest
level gives rise to emergent behaviours at an intermediate
level, and the ensemble of these behaviours gives rise to
further behaviours at still higher levels (see Turner et al.
(2007); Stepney et al. (2006); Polack et al. (2005)). We see
this as an essential feature of initiatives such as molecular
nanotechnology that aim to engineer interventions in natural
and complicated systems through management of emergent
properties; our work is also relevant to macro-scale complex
systems – often referred to as systems of systems – such as
human organisational systems, traffic management.

This paper reports an initial investigation into the state of
the art in complex system modelling and software engineer-
ing, that leads to a consideration of how existing approaches
and techniques can be adapted and used for engineering sim-
ulations of complex systems. We consider some interdis-
ciplinary approaches to modelling and simulating complex
systems that adopt software engineering models and tools to
describe complex natural systems. We identify advantages
of these models, but also their failure to adequately express
and manage emergent properties.

The state of the art in software engineering of simulations
for systems biology comprises a number of interdisciplinary
projects that integrate modelling tools and visualisation fa-
cilities, to construct specific, flexible platforms for experi-



mentation. The review shows that these projects have many
of the expressive features needed for a platform, but that they
do not necessarily generalise in the ways that we wish. As a
first step towards a general simulation platform, we consider
how advances in software engineering might help.

Models of Complex Emergent Simulation
A model is an abstraction that is made to aid understand-
ing or description of something. We can distinguish two
orthogonal modelling goals: description and definition. For
a complex emergent system, a descriptive model might cap-
ture aspects of the observed high-level behaviour; in mod-
elling natural systems, scientists use models to capture what
they observe. A definitional model is more typical of con-
ventional engineering – it expresses required characteristics
of a system at an appropriate level of abstraction. A def-
initional model can be refined, translated and analysed, to
improve understanding of system characteristics, and, in en-
gineering, to support construction of an artificial system.

Here, we consider some existing approaches, divided into
mathematical models and diagrams. Both include models
that are descriptive and models that are definitional. We then
consider existing tool support for these approaches. Finally,
we look at two state-of-the-art approaches that combine ex-
isting modelling and tool support. Our aim is to postulate
requirements for engineering simulations of complex sys-
tems, through identification of good practice in explanatory
and exploratory simulation of complex systems.

Mathematical Models
In science, mathematical models are essentially descriptive,
attempting to replicate observed aspects of natural struc-
ture or behaviour. Physics and biology often use differential
equations to approximate the observed behaviour of a high-
level system, based on continuous variables at a lower level.
For example, the Lotka-Volterra differential equations are
important for modelling predator-prey systems. Stochastic
models (for instance, Monte Carlo simulations) also aim to
capture the high-level behaviour of complex systems.

The scientific use of mathematical models is instructive;
the models allow scientists to explore variables that might
contribute to observed behaviour. Once candidate variables
are selected, the hypothetical result of changing the values
or relative importance of variables can be studied. The best
mathematical models provide convincing evidence that the
modelled variables do indeed influence the real behaviour.
These models also provide benchmark results: a simulation
that produces realistic observable behaviour should also pro-
duce data. Mathematical models could form a basis for eval-
uating simulation-derived data against real-world data.

However, in the context of complex systems engineering,
there are several limitations to the scientific use of mathe-
matical models. The models rely on already having identi-
fied the key system components; furthermore, there must be

an objective, typically discretised, representation of those
components. In the real world, emergent behaviour does
not arise through solving differential equations; these mod-
els are analogues, but do not provide significant insight into
the continuous internal process of a complex system. Fur-
thermore, the scientific models are not definitional – they do
not directly admit engineering refinement or analysis.

In software engineering, definitional mathematical mod-
els use discrete mathematical concepts, from set theory,
predicate logic, etc. Models are formalisations of program-
ming concepts such as the Hoare logics (Hoare, 1969) and
Dijkstra’s predicate transformers (Dijkstra, 1975). Referred
to as formal specifications, the models capture the structure,
behaviour and/or communication protocols of systems, and
provide the basis for various analyses of correctness.

Diagrams
Historically, biological illustration uses bespoke, informal
sketches to express observed relationships or interactions,
without any systematic notational definition. More recently,
modelling techniques have been adopted from other disci-
plines – systems biologists, and their interdisciplinary col-
laborators, are turning to existing diagrammatic notations
with defined syntax (and sometimes defined semantics). The
use of diagrams is still largely descriptive, even though the
notations originate in the definitional context of software en-
gineering. Three classes of diagram can be distinguished.
Connectivity diagrams express the known connectivity of
natural systems, using analogies to electrical circuits or soft-
ware components. Examples include circuit diagrams, inter-
action diagrams, and various message sequence charts. Con-
nectivity diagrams map well to mathematical languages –
process algebras have been used to model many aspects of
cells (and other biological systems) and to formally express
and analyse communication protocols.
Structural, or class, diagrams describe static components
and their relationships. The current fashion is to use class
diagrams, where a class is an intensional definition of some
local data (variables, constants) and the behaviours needed
to maintain that data. The extension of a class is an object,
that holds specific instances of data. The associations of a
class determine how objects of various classes can interact;
associations can be thought of as providing the potential for
connectivity, whilst class behaviours include those needed
to establish and maintain connectivity among objects.

An important, and biologically attractive, aspect of class
diagrams is that the classes and associations represent fam-
ilies of conformant instances (objects and links, respec-
tively). Thus, a class cell represents arbitrarily many similar
instances of the cell. Scientists sometimes prefer to capture
the structure of specific scenarios, using object diagrams –
an object is an instance of a class. In this context, snapshot
diagrams can also be used, to express the structural effects
of the execution of methods or operations on objects.



A problem with structural diagrams for complex system
modelling is that there is no sense of the system as an entity –
the system view is a collection of type descriptions. We can
constrain the number of objects that are linked to each ob-
ject of another class, but we cannot easily define how many
objects exist (relatively or absolutely; the number of objects
may be highly dynamic). Furthermore, we can define meth-
ods to create and destroy instances, but these can only be
constrained by static predicates, not by system-wide obser-
vation or dynamic preconditions (how many are needed, or
how many can be supported by the current environment).
State machines are essentially variants on (finite) state au-
tomata. They express the possible evolutions, either of an
object or of a system as a whole. Object-level diagrams
have the advantage of simplicity – interaction is indicated
by shared events or generation of events to other state di-
agrams. There are many notations and variants, including
Petri nets, Harel state charts, UML state diagrams.

A state machine defines, firstly, the different states of exis-
tence of an object (or system). In current realisations of state
machines, a state is distinguished by the applicable range of
values of its variables (if a state machine relates to objects
of an object-oriented class, states are defined over attribute
values). Next, the state machine defines the ways in which
an object can change state, via transitions. A transition is
a response to an event, and an event is, typically, an input
received by the object (or system). Transitions are protected
by guards – a set of conditions, concerning the wider system
state (and perhaps the environmental context of the system)
that must be true if the state is to change. Semantically, a
state machine may require the state to change whenever an
event is received and the guards are true, or, less-commonly,
it may simply permit the state change.

An advantage of state machines for biological systems is
that they can express known stimuli and responses. Most
state machine notations admit concurrent states, which, with
the ability to capture incoming and outgoing events, make it
possible to construct sophisticated models of, for instance,
cell interaction. The diagrams express potentially-dynamic
structures, and can provide drivers for simulation of collec-
tions of objects. However, the same limitation arises as on
class diagrams: the number of objects that are operational at
any time cannot be defined in the models.

Tools for Models
In computer systems engineering, and in scientific descrip-
tion, modelling is increasingly tool-driven: use of models
generally means use of modelling tools. In computer sci-
ence, tools support formal specification (definitional math-
ematical modelling), providing type-checking and proof as-
sistance. Proof can be applied to conjectures about a model
and about the relationships between models (refinements, re-
trenchments, reifications). In natural sciences, descriptive
mathematical models are equations that simulate behaviour;

tools include statistical techniques to assist in identification
of variables (used in deriving equations) and in analysis of
results. Tools to solve equations (heuristic or absolute) are
also common. In both contexts, tools usually support a sin-
gle language, and generally require some expertise.

Tools for diagrammatic modelling tend to be
commercially-driven. Usability, in high-productivity
commercial contexts, takes precedence over strict confor-
mance to standards and accuracy. Like mathematical tools,
diagramming tools usually support one notation, which is
often a proprietary variant of a public, de facto or industry
standard, with at best limited documentation of less-
standard features. (Note that the widely-used UML is one
standardised notation that supports many views of a system
(http://www.omg.org/spec/UML/2.1.2/).) Traditional tools
for diagrammatic modelling support concrete syntax, and
may impose some well-formedness conditions. The ability
to check well-formedness has improved significantly in
recent tools aligned to management of models; the ability to
refine and analyse diagrammatic models is also improving.
We return to this aspect of tool support later.

A Brief Review of the State of the Art
Rather than attempting a review of complex systems mod-
elling in general, we consider two state-of-the-art ap-
proaches, noting their strengths and limitations.

Perhaps the most advanced computer contribution to the
simulation of real biological systems is currently found in
Reactive Animation (RA) (Efroni et al., 2007; Sadot et al.,
2007), an approach that combines off-the-shelf tools into a
sophisticated and flexible simulation environment. The key
modelling components are Rhapsody statecharts (state ma-
chines) and Live Sequence Charts (connectivity diagrams).
The authors describe their work as reverse-engineering bio-
logical systems into protocols and object-evolution models.
Experimentally-derived (real) biological data is used to pop-
ulate the initial state of a simulation. Among the facilities
for interacting with and manipulating the simulation are ad-
justable biological-scale time, and zoom-in and tracking fa-
cilities. It is also possible to adjust the underlying models
and see the effects directly on the simulation.

A key aspect of RA is its modularity: the modelling tools
are separate, integrated through the InterPlay application,
and manipulated through a PlayEngine. Similarly, the sys-
tems that are modelled can be composed in a modular way.
Clever integration means that modification to simulations
can either be initiated through the interface and reflected in
models, or initiated in models and reflected in the interface.

RA comes from an interdisciplinary team, with leading
researchers from several communities bringing their com-
plementary skills and problems. Although the integration is
modular and thus flexible, the current work is closely tied
to proprietary modelling tools. RA is an existence proof
that integrated, flexible simulation and modelling is possi-



ble, rather than a general solution to modelling and simula-
tion of complex systems. Also, the motivation for the work
is to model a complete organism; our more general moti-
vation is to support the engineering of complex systems.
Knowing how to replicate the behaviour of a complex sys-
tem, and being able to extend our knowledge, are critically
important, but are only part of this wider motivation.

The second example of state-of-the-art modelling of com-
plex systems comes from the process algebra community.
PEPA (Calder et al., 2006, 2008) uses stochastic process al-
gebra to construct complementary models of a biological
network – a reagent view (perhaps akin to the state ma-
chine models) and a network view (akin to the connectivity
models). The reagent view can express concentrations and
triggers to biochemical product formation, whilst the net-
work view captures time-ordered sequences of events across
the system. Whilst diagrammatic views are supported, the
PEPA modelling is strictly mathematical; the views use the
same mathematical language, and have been proved isomor-
phic. The formalism supports proof of properties – proof of
deadlock-freedom, for instance, improves the confidence of
the modellers in their networks, since nature does not nor-
mally exhibit the forms of deadlock that we observe in com-
municating (computational) systems.

Like RA, PEPA was developed in a well-integrated
interdisciplinary context, to help researchers understand
the biological networks that they could observe and
measure in the laboratory. The PEPA workbench
(http://www.dcs.ed.ac.uk/pepa/tools/), which supports prop-
erty expression and proof, also supports an algorithmic
approach to generating conventional ordinary differential
equations from the PEPA models, which allows a clear com-
parison of observed behaviour of the system represented by
the models with results of laboratory analysis.

PEPA (and other process algebra approaches such as
bioAmbients (Regev et al., 2004)) demonstrates the benefit
of deep integration. The models are different representations
in the same notation, with a common semantics. The ap-
proaches work well in closely-coupled interdisciplinary con-
texts, where experts in process algebra work alongside labo-
ratory scientists. However, experts in process algebra are not
particularly common, even in Computer Science. Like the
proprietary-tool buy-in of RA, PEPA is an existence proof
for simulation environments, rather than a general solution
to modelling complex systems that would be amenable to
use by research groups and system engineers without spe-
cific expertise.

Requirements for Complex Emergent Systems
Design

Whilst the component models of RA and PEPA are defi-
nitional, the goal of these simulation initiatives, like much
complex systems modelling, is descriptive, motivated by a
need to express observations of real systems, in order to ex-

plain or explore natural processes. In seeking models for
engineering complex systems simulations, we need defini-
tional models that are amenable to use by interdisciplinary
researchers. We need to be able to relate definitional models
(functional requirements and their realisations) to descrip-
tive models that identify what the high-level system should
achieve (the emergent behaviours that we want). We start
by considering what desirable aspects of complex systems
are expressible in the reviewed forms of model. We then
consider other requirements and how they might be met.

Existing modelling approaches can express (and define)
features such as:

• known structures within and among components – using
mathematical relations, or structure diagrams;

• protocols for communication among components – using
process algebras or diagrammatic models of interaction;

• potential state changes – using state machines and other
variants of state automata.

Each form of model presents a limited view, or a single
aspect, of the system. Most of the models are static – they
either capture the state of a system or they prescribe possi-
ble histories of a system. None is really explanatory, in the
sense of providing understanding of the layered processes
that determine a particular complex system. For engineer-
ing complex systems, we need models that,

• express the characteristics of multiple instances of low-
level systems, as well as the required emergent character-
istics of high level systems;

• represent the context (in terms of space, time and relevant
environmental features) of systems;

• capture the cumulative make-up of systems (quantities of
objects etc.).

Where models of natural systems are used as a basis for
simulation, it is sometimes the case that, rather than model
knowledge about a natural system directly, the diagrams ex-
press a software engineering design or aspects of the imple-
mentation – natural concepts are modelled with computing-
related attributes (name: string) and operations (e.g.
print()). Both natural and design models are necessary,
but there is a need to be explicit about the purpose of a
model, and there is a need to understand and express cor-
respondence between the two sorts of model.

In addition to general engineering needs, we can divide
other requirements into: features of complex systems that
are not met by existing approaches to modelling; and desir-
able features of models.



System Features Not Covered
The key omissions, for accurately capturing the range of
views of a complex system, can be summarised as dimen-
sionality and scale.
Dimensionality must be considered, since a complex emer-
gent system is, by definition, concerned with time – the
emergent properties emerge when the system runs for a pe-
riod of time. In most cases, a complex emergent system is
also concerned with space, since the separation of compo-
nents fundamentally affects their ability to interact.
Scale can mean two things. Firstly, the relative or abso-
lute quantities of components in a system can affect whether
emergence occurs (what the system actually achieves). As
noted above, diagrams of the system state do not have an
obvious way to define the quantities of objects created, or to
define dynamic constraints on behaviour (other than through
transition guards).

The second meaning of scale concerns the scale of obser-
vation. This is what determines the subject of models: the
emergent system or the system components. Conventional
engineering models operate at one observation scale, so the
diagrams (even in combination) cannot be used to explore
inter-level effects such as emergence or self-organisation.
Scale of interaction is critical. Complex behaviour arises
when many (hundreds, thousands, or even billions) instances
interact. The models typically used in systems biology, and
in their conventional electronics and computer science ori-
gins, express constraints on interaction, but cannot express
the cumulative interaction that is the root of emergence.

Furthermore, the emergent characteristics of a complex
system are typically the result of interaction across scales
of observation – low-level components induce local effects
on their environment; higher-level components monitor their
environment and thus react to changes, once the cumulative
local effects are detectable at the higher level.

Desirable Features of Models
We can identify a number of desirable features for engineer-
ing models of complex systems; these features are often ap-
parent in the modelling forms that already exist.
Modifiability is essential if models are going to be effective
tools in engineering or scientific research. It is highly desir-
able that modifications in one view or instance of a model
are reflected (automatically) in other views. In all areas,
modification is used to adjust models to meet some exter-
nal criteria (e.g. realism, customer requirements, etc.) In
engineering, modification also means translation from an
abstract model to an implementation level, or between no-
tations that are in some sense equivalent. The problems of
consistency under modification have challenged designers
for many years, and are exacerbated by inconsistent or unin-
tegrated modelling tools and ill-defined notations.
Understandability has many aspects, but in complex sys-
tems it tends to rely heavily on visualisation – photographs,

sketches, diagrams, mathematical formulae, simulations.
However, the understandability of visualisations depends on
the ability of the reader to interpret the visual forms in the
ways intended by the author of the model. We need ways to
express and encourage shared interpretations.

There have been many (very many) works defining the
meaning of model elements, and semantics is widely stud-
ied. For static models, it is useful to distinguish the spe-
cific language of the model (the visualisation – the shapes of
components, location of labels etc), from the abstract con-
cepts (the underlying model) – hence concrete and abstract
syntax. Furthermore, it is useful to provide a definition of
the meaning of the concept (semantics), for instance by ref-
erence to a well-understood or better-defined concept (so,
mathematical sets can represent the semantics of the data
aspect of a class of objects). However, an area that is less
well studied is behavioural semantics. We do not have well-
defined ways to develop models, or well-defined ways to
interpret what static models tell us about the temporal and
spatial behaviour of the systems that are modelled.

Towards Meeting the Requirements
Reviews of existing modelling approaches and their possi-
ble contributions to the engineering of complex system sim-
ulations demonstrate some ways in which the requirements
can start to be addressed. Indeed, state-of-the-art modelling
of natural systems has already provided bespoke solutions
in restricted contexts. We first consider ways in which the
required system features might be addressed in engineering
methods. Then, to address requirements for features of mod-
els, we outline ways in which model integration and model
management might be used to support the integrated tool
platforms needed to engineer complex system simulations.

Requirements for Coverage of System Features:
Exploring Simulation Environments
As demonstrated in the RA approach, above, time and space
are inherent to simulated models. The RA simulations are
derived by a specific form of execution of the static object
and state machine models on multiple (diverse) instances si-
multaneously. The visual simulation shows the emergent ef-
fects across time and space. In modelling terms, the static
models represent potential point-in-time observations of sin-
gle objects in a collection. The simulation is then a simul-
taneous running of many possible paths through the static
models.

A simulation environment for engineering complex sys-
tems needs to be able to relate simulations and static models
in ways that are not commonly attempted. Simulation envi-
ronments need to be able to constrain the simulation to fol-
low the static models, but to free the simulation from biases
– accidental constraints imposed by over-eager modelling or
by the simulation environment itself. A common form of
over-constraint is the use of absolute spatial co-ordinates –



in natural complex systems, components have only local ref-
erence, to their nearest neighbours; there is no component-
level view of the whole system. If a simulation locates com-
ponents by absolute co-ordinates, locality becomes a derived
attribute, not an inherent concept. In general, such simula-
tions are inadequate because emergence due to local inter-
action is masked by unnatural global effects. Furthermore,
simulations using absolute spatial co-ordinates pose engi-
neering problems: they are hard to distribute and hard to
extend dynamically, because the spatial algorithms are hard-
coded.

When simulating complex systems, it is difficult to avoid
bias in the execution. This can be illustrated at various lev-
els. Simulated systems of differential equations often dis-
play some realistic-looking behaviour. However, the be-
haviour is significantly biased by the way that the equation
is constructed (the formula selected) and the variables and
constants chosen. Next, spatial emergence can be shown in
simulation, but the form of spatial emergence is typically
biased by the form of underlying representation. Consider
systems such as “game of life” cellular automata, where
the representation is usually shading of cells in a regular,
two-dimensional grid: changing the grid or the shading can
make a significant difference in the perceived emergent be-
haviours. Finally, there are biases related to metrics – the
number of instances, the time step, the spatial granularity,
even the number of time-steps over which a characteristic is
measured.

A key question in the use of simulation for engineering
complex systems (or for understanding naturally-occurring
complex systems) is – how far down must we go to avoid
bias? In most cases, we do not have to go as far as a simula-
tion of quantum mechanics for a meaningful biological sim-
ulation, but it is a sobering thought that even macro-scale
complex systems (such as a galaxy, or at a more tangible
scale, traffic flows or distributed command and control sys-
tems) are subject to the fundamental laws of physics.

From this discussion, two things arise. The more obvious
is the need to integrate static modelling with simulation. Per-
haps less obvious is the need for high-performance, flexible
simulation environments, which support local reference (to
avoid building in biases such as unrealistic long-range com-
munication structures), and can handle appropriate numbers
of interacting instances.

It is arguable that an interaction model, to statically ex-
press the ways in which instances interact, is missing from
the existing approaches. Formal approaches (based on com-
municating process calculi) and associated informal visual-
isations (based on models of the connectivity diagram type)
can be extended to express this aspect. We need to under-
stand how to integrate on this scale.

Requirements for Features of Models: Managing
Models
Recent advances in the theory of and tool support for model
management are predicated on the use of modelling tools.
The issues that arise in management of mathematical and
diagrammatic models relate both to the conceptual basis of
the models, and to the ways in which models are used.

In computing contexts, model integration and model com-
parison are becoming important – often driven by com-
mercial imperatives when organisations (tool developers or
client users) merge, but also motivated by academic interest
in patterns and commonalities, and by the simple availabil-
ity of the computational resources to manage collections of
models. The solutions being explored are not one-off in-
tegrations (in the sense exemplified by RA and PEPA), but
generic bases for integration and model management.

Where groups of models are used to express features of a
system, the interaction of models is often overlooked, even
by professional designers of modelling languages. The dif-
ferent views of a system overlap, and the overlap needs to
be consistent. A classical case is where a class diagram and
state machine are used together – the states in the state ma-
chine should be expressed in terms of attributes shown in
the class diagram, and the transitions should be effected by
invoking operations of the objects of a class, in accordance
with the association structures defined in the class diagram.
Similarly, where connectivity diagrams are used, it is impor-
tant that the internal methods and links are consistent with
those in the class diagram, and the sequences of communi-
cation are consistent with those permitted in the correspond-
ing state machines. Another classical angle from Computer
Science is that, where formal models exist alongside dia-
grammatic models, there is an obligation to demonstrate the
continuing equivalence of concepts – there is a need to de-
fine correspondences, or traceability links, between different
model concepts.

Unless we understand, and can characterise, the seman-
tics of the engineering models that we adopt, we cannot ad-
equately address adaptation of models to the needs of com-
plex systems engineering – in simple terms, we need to un-
derstand the classical concepts of state, transition and class,
in order to find sensible ways of accommodating space, time
and environment.

Recently, software engineering has considerably ad-
vanced the management of models; two movements are
establishing fundamentally-comparable definitions of mod-
elling languages. The unified theory of programming
movement (see Hoare and He (1998); Woodcock (2003);
Cavalcanti and Woodcock (2006)) is seeking common
mathematical underpinnings for modelling and program-
ming languages. Separately, commercially-driven re-
search into model-driven development (Swithinbank et al.,
2005) led by organisations such as the Object Man-
agement Group (http://www.omg.org/), and large inter-



national projects such as the EU Modelplex initiative
(https://www.modelplex.org/), focus on defining common
abstract concepts for modelling languages, and domain-
specific capabilities, through the use of metamodels. The
associated model management concepts have the ability to
support formal as well as diagrammatic languages.

Both initiatives open new ways to compare, validate, ex-
tend, and transform models. Here, we focus on model-
driven development (MDD), because it is more accessible
to developers.

Model-driven development seeks to manage the conse-
quences of distributed development: developers in large
projects typically produce different variants of many types
of models that must be shown to express equivalent con-
cepts; furthermore, having produced integrated design mod-
els, implementation can be made faster and less error-prone
if repetitive programming is automated from design models.

The fundamental concept of MDD is the model stack: a
particular realisation (M 0 level) is an instance of a model
(M 1 level), whilst that model is an instance, or realisa-
tion, of a metamodel (M 2 level). The current top of
the stack defines languages for metamodelling (M 3 level).
The four layers are not always clear-cut, but they provide
a reasonable separation of concerns and a sufficient basis
for model management. MDD tool suites such as Epsilon
(http://www.eclipse.org/gmt/epsilon/, Kolovos et al. (2006))
support expression of models and metamodels, checking of
models against metamodels (for syntactically-correct use of
notations), and checking of consistency across models (that
all models in a family use concepts in the same way, at both
the notational and application levels). These tools support
model transformation, with mappings between concepts in
different metamodels being applied to transform models, ei-
ther between notations, or from design models to implemen-
tations.

Predominantly, MDD has been used for diagrammatic
models, annotated with quasi-formal constraints. However,
recent work adds consideration of text models (programs,
formal texts, meta-language texts). This raises the intriguing
possibility of creating general integrations, to exploit what-
ever models or tools are suitable for a particular system, or
to a particular research group’s expertise.

Discussion
In common with Cohen and Harel (2007), we take the view
that complex emergent systems cannot be constructed (or
simulated) solely as hierarchies of sequential transforma-
tions. We must capture the concurrent, reactive nature of
these systems. More explicitly, however, we must recognise
the importance of scale dependencies and interactions across
scales – the many concurrent inputs that Cohen and Harel
(2007) observe are themselves the results of many concur-
rent outputs at other scales. In the reviewed approaches (RA,
PEPA), the teams have, by chance or with great skill, se-

lected areas of study where one or two adjacent levels, or
scales, can be modelled to give realistic results that match
the level of observation of the research scientists concerned.

In researching a broad platform for complex systems sim-
ulation, we would exploit work in mobility and process al-
gebras. The inclusion of mobility allows the modelling of
processes that dynamically change their relative location
by changing their channels of communication with other
processes, affording an effective way to model the struc-
tural plasticity within systems. One example is the Graphi-
cal Stochastic π-calculus (GSπ), developed by Phillips and
Cardelli (2007) and proven equivalent to Milner (1999)’s π-
calculus. This provides an accessible front-end environment
whilst retaining the power of the underlying π-calculus. On
a larger scale, the CoSMoS project (http://www.cosmos-
research.org/) is building capacity in generic modelling tools
and simulation techniques for complex systems; it is pred-
icated on a well-founded process-oriented modelling plat-
form, using the occam-π language. occam-π (http://occam-
pi.org/) is a small language that implements the communica-
tion strengths of CSP (Hoare, 1985) and the mobile aspects
of π-calculus; the well-grounded semantics of these speci-
fication calculi provide a formal basis for the programming
environment, and support an engineering approach to the un-
derlying mathematics (Barnes and Welch, 2004; Welch and
Barnes, 2005). As in PEPA, process algebra can be used
to prove properties (such as deadlock-freedom), but, here,
the proven properties are then built in to the language (in
the GSπ calculus; in the occam-π Kroc compiler) and used
implicitly in models produced in the more-accessible front
ends (the GSπ environment; occam-π code). Expertise in
process algebra is not needed to use these languages, and
occam-π can efficiently support millions of concurrent pro-
cesses, distributed over multiple processors.

A general environment for simulation and modelling of
complex systems is about more than concurrent mobile pro-
gramming. The CoSMoS platform should eventually sup-
port many levels and scales – extending upwards (to ob-
serve more global effects) and downwards (in search of key
causalities and origins). Seth Lloyd (2005) eloquently pre-
sented the ultimate simulation: the quantum computer that
efficiently simulates the Universe (it is big!). A strict ap-
proach to modelling complex systems might expect to start
at the very bottom – after all, classical physics emerges from
quantum mechanics, and chemistry from classical physics.
However, a rational view is that, at each level of interest, the
effects of lower levels are of varying importance, and can
sometimes be aggregated or omitted without a significant
effect on the emergent behaviour. We hope that we will not
need to engineer a Universe computer, but to successfully
research and engineer complex systems we need tools that
helps us to determine the relative importance of lower levels
and of views of lower levels.

Finally, we are completely in agreement with Cohen and



Harel (2007) when they state, ... a computer methodology
[sic] that would allow us to zoom back and forth between
lower-scale data and higher-scale behaviour while experi-
menting in silico is an ideal way — possibly the only way
— to study emergence computationally. (Cohen and Harel,
2007).
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