Breaking the Model:
finalisation and a taxonomy of security attacks

John A. Clark Susan Stepney
Howard Chivers
Department of Computer Science, University of York,
Heslington, York, YO10 5DD, UK.

[jac|susan|chive]@cs.york.ac.uk

Abstract

It is well known that security properties are not preserved by re-
finement, and that refinement can introduce new, covert, channels,
such as timing channels. The finalisation step in refinement can be
analysed to identify some of these channels, as unwanted finalisations
that can break the assumptions of the formal model. We introduce a
taxonomy of such unwanted finalisations, and give examples of attacks
that exploit them.

Keywords: Finalisation, observed system, security model assump-
tions

1 Introduction

Refinement is the standard process of transforming a specification into ex-
ecutable code. A refinement can be proved correct, meaning that all the
functional properties of the abstract are present in the concrete.

It is well known that security properties are not necessarily preserved by
classic refinement [Jacob 1992]: widening the precondition may allow new,
Trojan, behaviour; peculiar resolutions of non-determinism may be used to
leak secret information. Additionally, as discussed in this paper, finalisa-
tion refinements may break the assumptions of the formal model, and allow
information to leak.



\ 4
\ 4

\ C C’ — .. /
Figure 1: The relational model of refinement

Pt N

G G’

Nt ot S

Figure 2: A simulation, used to prove refinement

Cl

2 Finalisation and refinement

2.1 The relational model of refinement

The relational model of refinement is cast in terms of a many-many relation
between an initial and final global state. Refinement is a relationship between
an abstract program expressed in some abstract world that captures this
initial-to-final relation, and an equivalent concrete program expressed in the
concrete world [He Jifeng et al. 1986]. See figure 1.

In this relational model of refinement, the refinement relationship that
must hold between the two programs reduces to the subset relation between
the two global to global relations (whilst maintaining totality, so the empty
program is not a refinement). That is, it is a resolution of non-determinism,
coupled with a change of data representation.

The existence of the subset relation is difficult to prove, being expressed
over general sequences of operations, so a (forward or backward) simulation
is introduced, reducing the global proof obligation to three simpler ones: an
initialisation, a finalisation, and one for a single operation only (figure 2).



2.2 Finalisation and observability

The last part of the process, moving from the program world (be it abstract
or concrete) to the global world, is called finalisation. The finalisation step
defines what properties of the implementation world are observable. Only the
global world is observable in the original specification relation. (Anything
not observable in the program world is there merely for implementation con-
venience. )

In a specification language like Z [Spivey 1992] [Barden et al. 1994], this
simple relational model is given additional structure so that parts of the
relational state can be used to model internal Z state, inputs, and outputs.
Also, Z operations can be partial relations. The refinement proof obligations
become correspondingly more complicated [Spivey 1992], primarily by the
introduction of an applicability (precondition) law to handle partial relations.

The traditional Z refinement rules in [Spivey 1992] make certain simpli-
fying assumptions [Woodcock & Davies 1996] [Stepney et al. 1998], leading
to certain restrictions. In particular, the rules do not permit any refinement
of the inputs or outputs, or any observation of state except by inputs and
outputs. (Technically, nothing at all is observed until the finalisation step,
at the end of the computation. But yet another simplifying assumption,
about the way the outputs are embedded in the relational world, allows the
sequence of independent outputs to be observed incrementally, as each one
happens, since nothing that occurs subsequently can change them.)

Under these assumptions, and for forward simulations [Spivey 1992], the
finalisation step reduces to the identity transformation on the outputs (the
program outputs and the global world outputs are always identical, at both
the abstract and concrete levels), and the null function on the internal state
(no internal state is observable). Hence there is no explicit finalisation proof
obligation in the classic Z refinement rule [Spivey 1992].

When these simplifying assumptions are relaxed, however, more general
refinements are possible. For example, consider an abstract program that has
an operation that outputs a set, where the corresponding concrete operation
outputs a sequence. If the finalisation step for the abstract model is the
identity function (the set is observed), then the corresponding finalisation
step for the concrete program extracts the range of the sequence (collapsing
the sequence to the observed set).

In the refinement process, the most abstract model usually has an identity
output finalisation (if it models the outputs in the most abstract way, that of
the global model). But in a series of stepwise refinements, the concrete model
in one step becomes the abstract model in the next, and so both models can
soon have non-trivial finalisations.



cC ———— Cl —™» .. —— > Cn-l—> (Cn

Figure 3: Generalised m:n simulation

The more general refinement rules in [Stepney et al. 1998] provide the
proof obligations for output refinement. There is an explicit finalisation proof
obligation, and a need for a retrieve relation between abstract and concrete
outputs.

2.3 Finalisation glasses

An intuitive explanation of the meaning of finalisation is as follows. Finalising
the state can be thought of as “breaking open the device” and observing its
state, through “finalisation glasses” (or finalisation spectacles). Finalising
the outputs can be thought of observing the outputs, through “finalisation
glasses”. These finalisation glasses transform the raw program values into
the corresponding global specification values. In the earlier example, they
transform the concrete sequence into the global set. (As they transform
mundane brickwork into the Emerald City [Baum 1900].)

Finalisation solves the old paradox of why the clock that is 5 minutes
slow (hence never right) is better than the stopped clock (right twice a day).
The first clock has a simple finalisation that can be applied to it: add five
minutes to the displayed time. The second has no finalisation that produces
a useful result (without recourse to a second clock).

2.4 Other models

2.4.1 Schellhorn’s Generalised forward simulation, and breaking
atomicity

Generalised forward simulation [Schellhorn 2001] allows arbitrary m:n dia-
grams between abstract and concrete operations (figure 3), rather than the
1:1 diagrams assumed above, with no requirement for the simulation to hold
part way through. So it is possible to have a single, atomic abstract operation
refined by a compound sequence of concrete operations.



In the 1:1 relational model it is possible to finalise at any point. For a
correct refinement in the m:n model, finalising part way through the sequence
of concrete operations (for example, by removing power from the device so
that it cannot continue functioning) should result in a state that corresponds
to no abstract change. However, we can also use this model to investigate
the consequences of breaking of the atomicity assumption.

2.4.2 CSP refinement

CSP [Hoare 1985] [Roscoe 1998] has a rather different model of computa-
tion, in that there is no explicit finalisation step, no finite end point to the
computation: processes can continue engaging in events without limit. But
refinement in CSP is still dictated by what one chooses to observe.

In the simplest case, of traces refinement, the chosen observations are
just the traces of events, and the refinement condition reduces to subsets
of traces, giving behaviour-equivalent processes. More sophisticated obser-
vations can be made, each restricting the set of concrete processes that are
allowed as valid refinements of the abstract. So failures refinement addi-
tionally gives deadlock-equivalent processes. Failures-divergences refinement
additionally gives livelock-equivalent processes. In all these cases, the pro-
cesses must have the same alphabets, so there is no input/output refinement.
([Derrick & Boiten 2002] augments a relational state model with an observed
component that records these more sophisticated observations, allowing these
form of process refinement to be incorporated into the relational model.)
There are more yet more sophisticated observations possible, for example,
including timing [Reed & Roscoe 1988| or fairness [Morgan et al. 1996].

In all these cases, however, the key thing is that the process is defined by
what we chose to observe. The fact of whether a system is a refinement of
another depends solely on those observations. So the arguments we make in
the rest of the paper also apply to CSP-style refinements.

3 Unwanted finalisations in practice

3.1 Unwanted finalisations as covert channels

The specification defines what is intended to be observable about the system,
and what is not. Parts of the system may be intended to be unobservable,
often for security reasons (for example, a secret cryptographic key). The
specifier captures this property in terms of a finalisation.

Once the refinement model constraints have been relaxed to include non-
trivial finalisations, it becomes easier to see how certain covert channels arise.



It may be possible to apply finalisations other than the intended one, in order
to observe different information. Such finalisations may not provide formal
refinements of the original models, but are important because they may be
performable in practice.

In the sequence/set example, what if you take off your finalisation glasses,
and observe the raw values actually output? You see the concrete sequence,
which has more information, because it orders its elements. If you can use
that order to deduce something about the internals of the system that are
supposed to be secret, you have observed a covert channel. You have per-
formed an unwanted finalisation (unwanted by the system owners, that is).

3.2 The maximal identity finalisation, and the Real
World

The identity finalisation (no finalisation glasses) enables the most data to
be seen, within the modelling assumptions. By the time a very concrete
level of model (or physical implementation) has been reached, there may
be a remarkable amount of data visible to other finalisations: not simply a
bit-stream, but also real world information outside the formal model, such
as timing information, or power consumption. Also, the actual finalisations
possible depend on the details of the implementation technology chosen.

Note that the maximal identity finalisation result is the case only for
classical computation. Quantum finalisations are not composable: there is
no such thing as the maximal identity finalisation. The observation “collapses
the wavefunction”, rendering complementary variables no longer observable;
a different observation might have given different information, and so have
allowed different inferences.

3.3 Variation in what you see

One might say, so do not allow output refinement, do not allow non-trivial
finalisations. Yet an actual computing device does not output a set of ab-
stract values in some timeless domain; it outputs electrical signals over time.
Refusing to allow output refinement requires either polluting the abstract
model using concepts at the level of electrical signals, or fudging the issue by
implementing the refinement outside the mathematical analysis.

So, many covert channels can be considered as unwanted finalisations,
as being able to observe more in the implementation than is specified at
the most abstract level. This realisation can be used to help analyse covert
channels, and to prevent them. In the end, it is observations that cause



breaches of security. Information that affects no agent cannot cause any
harm. Finalisation formalises the notion of observation by external agents
interacting with the system. The adoption of various observation strategies
can, therefore, be viewed (modelled) as applying finalisations.

Arguing about the security of modern systems grows increasingly hard,
and there have been numerous surprises over the past decade in particular
(timing attacks [Kocher 1996], power attacks [Kocher et al. 1998], etc). Sys-
tematic analysis is needed. We provide a simple taxonomy, motivated by the
formal refinement models presented earlier.

4 A taxonomy of unwanted finalisations

With any system there is an obvious finalisation: that intended by the speci-
fier. This may give sufficient security (or it may not). It is, however, a choice,
and comes with its own assumptions about the system and its context. Con-
sidering other choices of system elements and context provides an interesting
and informative means of highlighting possible unwanted analyses.

4.1 Varying the “finalisation glasses”

The intended observation is with the intended finalisation glasses (for ex-
ample, the discrete values produced by a crypto-algorithm). We can consider
the intended finalisation to correspond to the identity applied to the outputs
of the most abstract specification. Unintended observations vary the final-
isation glasses, and can observe discrete properties (for example, page faults,
interrupts, i/o buffers), or analogue properties (for example, power, timing,
RF).

The intended observations may be direct, of outputs from single ab-
stract operations. Or they may be enhanced, involving some degree of
post-processing, making use of information from sequences of abstract out-
puts, for example, cryptanalysis on millions of ciphertext blocks. Unintended
observations often also exploit an enhanced viewpoint.

We may take a single viewpoint (for example, power information) or
multiple viewpoints (intended, power and timing together).

An invasive observation requires the analyst to force an additional final-
isation channel, for example, dropping a hardware microprobe onto a circuit
track. Otherwise the observation is passive.



4.2 Varying the system being finalised

We may observe a standard system instance (operating in the intended
manner). Many innovative analyses have emerged, particularly over the past
decade, that involve a perturbed system (operating in some unintended
manner).

A perturbed instance may arise due to invasive or passive means. Fault
injection using an ion gun is clearly an invasive attack. A physical flaw could
arise in the system due to manufacturing inadequacy or simply as a result of
wearout (things do sometimes just break).

Perturbed instances can result in unreachable states (as far as the
model is concerned). Atomic abstract operations may be implemented by a
sequence of concrete operations. Disruption part way through the concrete
sequence of operations (breaking abstract atomicity) may cause the system to
end up in a state that is unreachable in terms of the abstract model. This may
permit all manner of unwanted finalisations (immediate or subsequent). This
applies not only to general operations but also to initialisation (for example,
interrupting trusted startup). Lower level perturbations (for example, bit
flipping) can result in unreachable concrete states.

A particular source of system variation is the chosen initialised system
state. This initial state may simply be insecure (for example, unfortunate
default passwords or permissions).

We may choose to observe the operation of a single instance of a system
(for example, a single smart card) or multiple instances. The single instance
is the usual user view; an analyst may well prefer the multiple instance
system, allowing differentiated analyses. Instances of standard and perturbed
systems may be analysed together.

Multiple instances may be homogeneous or heterogeneous. Collec-
tions of systems may play both roles at the same time (instances may be
homogeneous from the intended viewpoint, but heterogeneous from an unin-
tended viewpoint). Heterogeneity may be engineered deliberately (for exam-
ple, maliciously by fault injection, or for commercial reasons such as running
on different hardware platforms), or occur naturally (for example, because
no two processors of the same type are precisely the “same”).

4.3 Varying the environment

Many systems have specified environmental ranges for operation. For ex-
ample, smart cards have power supply specifications and operating temper-
ature ranges. Each attribute may be standard (within specification) or
perturbed (out of specification). Environmental variation provides oppor-



tunities for altering the finalisation; for example, digital circuitry operates
differently at different temperatures. Since we are generally dealing with
ranges, there are also possibilities for variation even within specification.

We may choose to vary a single attribute, or multiple attributes, of the
environment.

Variation may be passive (for example, the climate is extremely cold),
or invasive (for example, a power supply deliberately modulated in an un-
helpful way, or the system deliberately heated).

We can be flexible in our interpretation of the environment. The above
examples are expressed in terms of concrete environments. For an abstract
model, the environment could encompass elements such as assumptions about
operations of use, for example, that a system is subjected only to limited
demands, or that the users understand the system sufficiently well not to
breach security inadvertently.

4.4 Varying the refinement

Ideally, refinements are carried out formally and correctly. But there is always
the possibility of erroneous refinement (for example, stack overflows).

It is not always feasible to perform a pure refinement: modelling assump-
tions have to be made at the abstract level that do not hold at a more
concrete level, or in the implementation (for example, that voltage levels
are precisely binary). One formal technique attempting to handle deviations
from pure refinement is retrenchment [Banach & Poppleton 1998]. An in-
teresting open problem is how much can properties of interest be preserved
under such circumstances.

4.5 Varying which system is finalised: higher order
finalisations

Typically, the system being observed is the system being analysed. It is also
possible to make higher order observations. For example, the analysis tech-
niques themselves have standard and non-standard properties. One common
analysis technique is meta-heuristic guided search (genetic algorithms, simu-
lated annealing, etc) to find a potential solution. A guided search has a final
result, but also has a trajectory (the path followed to reach that result).
Viewing the search process merely as atomic throws away huge amounts
of information. Observing the search in action [Clark & Jacob 2002 can
reveal far more. For example, a search by simulated annealing may move
around a key space by considering moves one bit flip away from the current



one. As the process “cools”, some key bits become stuck at particular values.
The relative times when particular bits become stuck can give a great deal
of information about the underlying secret solution sought. Even if search-
based analyses “fail” (do not find the solution), repeated runs may provide
results whose distribution may allow the actual solution to be derived.

Analysis analogies can be found for other approaches too. For exam-
ple, perturbing the mathematics in some way ([Clark & Jacob 2002] uses
the term problem warping) and observing the results of searches can also
give rise to new analyses. Thus, a higher order analogue of fault injection
may apply. Due to the way metaheuristic search proceeds, non-standard
or highly perturbed cost functions typically produced better overall results
[Clark & Jacob 2002].

Some, possibly many, of the unwanted finalisations identified earlier may
have analogues when applied to the analysis processes. For example, what is
the equivalent of “power analysis” finalisations for analysis processes? The
systematic application of our finalisation taxonomy to analysis/search ap-
proaches may generate new analyses. This is currently under investigation.

5 Illustrating the taxonomy

In summary, the main points of our taxonomy cover the finalisation, the
system, or its environment being viewed as an individual or a collection, using
either a standard (intended), or a non-standard (unintended) view, the latter
of which may be brought about passively or actively. We now give examples
to illustrate our taxonomy. For presentation purposes we choose variation
in the finalisation glasses, and number of systems under observation, as the
main classifications, and annotate the specific examples with other aspects,
where they are of a “non-standard” variety.

It is interesting to note that there are few such annotations, and even
fewer multiple annotations. Published analyses tend to exploit only a single
viewpoint, for example, unintended finalisations involving power or timing.
There appears to be little in the way of multiple viewpoint analyses, where
timing and power information, say, are used together. Given the consider-
able success of the single aspect analyses, availing oneself of multiple sources
and exploiting correlations between them would seem a promising avenue to
explore (if one is an attacker).

10



5.1 Intended Finalisation, single system

This is the most common and obvious viewpoint. One simply observes the
normal abstractly defined operation of a single system instance. No clever
tricks or sophisticated equipment are needed here. It is therefore crucial that
the intended finalisation is secure.

Enhanced: Security-breaching finalisations may occur due to resource
exhaustion. Suppose a directory can contain up to 1024 files. Some files
may be highly classified, and so invisible to a lowly classified user. But the
existence of n highly classified files limits the number of unclassified files that
can be created to 1024-n. Any attempt to create more fails with “directory
full”. Deleting a highly classified file then allows a lowly classified file to be
created. We have therefore the basis of a covert channel when observed over
sequences of operations. Similar considerations apply to memory exhaustion,
and file-locks.

Erroneous refinement. For systems such as cryptosystems a great deal
of effort goes into ensuring that particular known (to the designers at least)
finalisations are intractable. There remains the possibility of a “trapdoor”
or flaw in the algorithm: the given specification does not capture the intent.
A hashing algorithm may simply be flawed, allowing an easy break.

Enhanced, erroneous refinement: Although particular analyses may
require trillions or more data points, it may be that knowledge of the ci-
phertexts corresponding to, say, one hundred very specific chosen plaintexts
suffices to leak a particular key bit.

Perturbed system: [Boneh et al. 1996] describes how fault injection
on a crypto system (causing some internal state bit to flip) could be used to
break RSA and other algorithms.

Perturbed user: Even when a system works as specified and is consid-
ered secure, lack of security understanding by the user may cause problems.
There have been many examples of social engineering (“cognitive hacking”)
attacks, where the user is persuaded to carry out actions favourable to the
attacker.

5.2 Intended finalisation, multiple systems

A cryptographic key’s use may be limited on any specific smart card, but
access to 10000 smart cards all with the same key may significantly affect
cryptanalysis. Also, access to 10000 processors may radically affect the prob-
ability of a successful analysis, for example, the various distributed searches
for prime factors for the RSA challenges.

Traffic analysis most naturally consists of observation of multiple systems.

11



Even if the content of messages over a network is encrypted, analysis of
network source and destination fields leaks information. (One could instead
view this as a single networked system with multiple probes, distributed
around the system.)

5.3 Unintended finalisation, single system

Many specifications assume that operations are atomic. In practice, dif-
ferent atomic operations may take varying amounts of time to compute.
The most high profile exploitation of this has been Kocher’s timing attack
[Kocher 1996] on exponentiation; the analysis exploits the fact that the time
taken to carry out exponentiation is data dependent (and the detailed form
of that dependence does not need to be known).

There may be timing attacks on the finalisation operation itself. How
long does it take to compute a finalisation that is more complicated than the
identity? A directory listing operation invoked by an UNCLASSIFIED process
might need to filter out the names of more highly classified files. Although
the listing may output only UNCLASSIFIED files, the time taken to complete
may depend on the presence of more highly classified files.

Analysis can measure power fluctuations during computation (between
output events) [Kocher et al. 1998], which might be correlated with some-
thing internally secret.

Consider the TENEX password attack (see, for example, [Gollman 1998]).
The password is checked byte by byte, and the check aborts if an incorrect
byte is found. If the password is located in memory that crosses a page
boundary, a page fault is generated only if all initial bytes on the first page
are correct. If such configurations can be engineered then an unintended
finalisation that observes the paged faults is possible. Similar analyses may
also apply to timing considerations if protocol message fields are validated
incrementally.

Some safe locks require discs to be rotated to specific positions in a par-
ticular order to release the door. The modelling assumption is that the only
observation is success or failure in opening the safe door. Film-goers, or bank
robbers, reading this will realise that a safecracker using a stethoscope to lis-
ten to the tumblers when the discs are rotated is performing an unintended
finalisation.

It is common to assume that analysts have ideal conditions for performing
their finalisations, but we must be very careful in defining “ideal”. A user
may normally be unable to monitor the timing performance of a process
in action at sufficient granularity to breach security. If other users access
the system, however, this slows down the actual rate of execution, and could

12



make timing analysis tractable. Such cooperative analyses may be unwitting.
What might be viewed as “denial of service” here becomes “provision of
attack capability”! [Anderson 2001] provides an account of a crypto attack
in which execution is monitored one step at a time (with resets in between),
to enable electron microscopes of limited sophistication to be used.

Perturbed environment: In the early 1980s it was found that the con-
tents of static RAM could persist for up to minutes after power is removed if
the temperature were reduced to below —20 ° C [Anderson 2001]. Perturbed
system: There are accounts of RAM contents maintained at a specific value
being burned in: when the RAM is powered up about 90% of relevant bits
assume their previous values. A variation on this remanence theme should
be familiar to many whose experience includes VT100 terminals: the login
prompt burnt onto the screen.

Perturbed environment: the power consumption profile of a cryptosys-
tem may leak more information if the system is cooled, since thermal noise is
reduced. Perturbed system: temperature variation may be used to cause
the basic circuitry to malfunction (for example, by overheating), or to alter
its timing properties (for example, temperature induces time-dependencies
in FPGA circuitry [Thompson 1998]). Interference with the power supply, or
with a supplied clock frequency, may cause system malfunction (for example,
the so-called glitch attacks).

Retrenchment: Hardware implementations typically use analogue ap-
proximations to logical concepts. Consider the operation of hard disk stor-
age. We view data logically as binary 0/1 values; values are physically stored
by affecting the magnetic properties of locations on a disc. Under detailed
scrutiny minor variations in disc head positioning may leave visible traces
of previous recorded data despite that data being “overwritten”. Binary
values are implemented by analogue ranges, for example, binary 1 may be
represented by a voltage range of 4.5-5.5V. In communications, a message
may logically comprise a stream of Os and 1s, where the logical abstraction
is a step-function, but the analogue implementation is not. In principle, the
analogue waveform may encode infinite information ignored by the system’s
internal interpretational mechanisms. Variation in the rise and holding times
can be analysed.

Invasive observations: the ability to drop a single microprobe often
suffices to break a cryptosystem (for example, knowledge of a single bitplane
suffices to break algorithms such as RSA [Handschuh et al. 1999]). Electron
microscopes have been used to read voltages on smart card chip surfaces.
Thermal imaging is used to evaluate the reliability of ASICs, as hot spots
are likely to fail first; can such differences be correlated with logical dynamics
(for example, frequency of flipping)? What are the possibilities for detecting

13



minor magnetic field differences?

5.4 Unintended finalisation, multiple systems

No two processors are identical in all their performance characteristics (even if
they are of the same type). Obvious sources of variation are: clock speed; on-
chip cache capacity; timing; pipelining; power consumption. Measurements
of an algorithm running on different architectures, or on different physical
instantiations of the same architecture, could be correlated to provide extra
information (a “differential processor attack”).

For messages over a network the intended finalisation is the content, but
messages also have length, and appear on the LAN at a particular times or
intervals. Variation in these can leak information too.

6 Preventing Unwanted Finalisations

6.1 Make it impossible, or infeasible, or meaningless,
to observe

The most obvious and direct approach is to enforce the use of the intended
finalisation glasses. These may, for example, form a layer between electrical
signals and what the analyst can observe. Invasive attacks may be prevented,
or made more difficult, by a variety of means. For example, smart cards may
have resin coatings applied, and be encircled with tamper-detection coils.

Overwhelming the resources of an analyst provides another means of ef-
fecting security. For example, user A may communicate with B by very
rapidly sending trillions of bits of potential key material having secretly
agreed previously which time slot contains the actual key to be used. An
attacker without this knowledge could observe all the data but would not be
able to store it all for future reference.

The system may ensure that any finalisation an analyst can do does not
leak any unwanted finalisation. So any (practical) alternative finalisations are
not “unwanted”. In the sequence/set example, the system might deliberately
randomise the order of the sequence, or impose a particular order, so that
an analyst cannot “see” any other underlying order. (One would then have
to consider the effect this might have on timing finalisations.)

14



6.2 Intractable finalisations

In some cases, the information needed to do that intended finalisation is
secret. The output is encrypted, and the “finalisation glasses” require the use
of a secret key to work. The identity finalisation appears to be “noise”, and
only some privileged people have the ability to do the intended finalisation.
The prevention is trying to stop the analyst “putting on” the glasses. The
analyses try to get enough information to be able to put on the glasses.

6.3 Managing attacks

If an attack is detected, evasive action might be needed. A soft way to do this
is to “slug” the system: simply slow down the covert channel (for example, by
reducing processor time allocated to the suspicious process). This may allow
you to “play for time” whilst managerial action is taken. Another example
is deliberate slugging of network requests to the system to prevent resource
exhaustion.

For systems where management is not available (for example, smart cards
held by the population at large), destructive action may be needed. For
example, on detection of tampering, shared key material is destroyed, say
by overwriting memory. In some military systems explosives may be used to
render useful finalisations impossible. Explosive partial destruction may on
the other hand form an attack technique, for example, by rapid destruction
of the supporting mechanisms used to overwrite memory. (When will we see
the first high velocity ‘micro-bullet” attack on a smart card?)

7 Unusual finalisations

We have, perhaps, given the impression that covert channels are “a bad
thing”. This really depends on who you are. In some cases more powerful
finalisation can be a source of security as well as a source of insecurity.

7.1 Different finalisations, different refinements

A specification may include several different intended finalisations, to define
what is to be observed by different classes of user, or in different circum-
stances. Multiple refinements, capturing the multiple finalisations, are then
possible. For example, a system might be provided with two intended finali-
sations: an ordinary user finalisation, and a special administrator finalisation
that can observe more of the system, such as other users’ data, and audit

15



trails. In general, there may be privilege-dependent finalisations: for exam-
ple, different security clearance providing a filter (the more clearance you
have, the less dark are your finalisation glasses).

An atomic abstract operation might be implemented in a multiple step
concrete operation. Breaking atomicity by finalising part way through the
sequence of concrete operations could yield a useful partial result (accurate,
but not yet as precise as that specified) that could be valuably observed (for
example, the partial loading of certain image files by Web browsers).

7.2 Finalising the user

Consider hand signatures. It is relatively easy to forge a facsimile (the in-
tended visual finalisation) but very difficult to forge the signature dynamics
(speed, acceleration, pressure). So observing the dynamics can give a more
secure signature authentication system.

Similarly, keyboard dynamics can be used as source of continuous au-
thentication (a modern day equivalent of recognising Morse code operators
from their signalling styles). A user’s typing patterns could be observed and
used as the basis of continuous authentication. The user does not consciously
“supply” this information when at the terminal, and should not be able to
successfully spoof another user. Or alternatively, this observation might be
used as a kind of “audio Tempest” attack. It can be an interesting exercise
to (occasionally) ask people who enter one’s office to close their eyes and try
to guess what keys are being pressed on one’s computer keyboard. Every-
one is able to recognise a spacebar: how would more sophisticated acoustic
analyses perform?

Written text has been analysed to verify claims of authorship. The usual
finalisation is semantic content, but more detailed linguistic processing (an
enhanced finalisation) can be applied.

In a sense, we may view the above as unintended finalisations of the user.
We must consider what the security policy of the system is to decide whether
this is a good thing or not. If anonymity is a security requirement, then such
authentication channels would be viewed in a poor light. There is also an
issue as to differences between stated policy and actual policy. The general
user may simply be unaware that they are being finalised in an unintended
(by them) way.

7.3 Destructive quantum finalisation

Quantum computing achieves great potential power by simultaneously act-
ing on superpositions of states. Here finalisation is an act of measurement,

16



causing projection onto one of a number of subspaces (the state space is of-
ten said to “collapse”). The particular projection witnessed is probabilistic.
Quantum computer scientists do not normally talk in terms of finalisation;
[Sanders & Zuliani 1999)’s provision of finalisation as part of their quantum
guarded command language forms a welcome bridge to classical formal meth-
ods.

The destructiveness of quantum finalisation is at the heart of security of
quantum-related systems. It forms, for example, the basis for detection of
eavesdropping in quantum key distribution protocols [Nielsen & Chuang 2000).

8 Conclusions

We have shown how finalisation can be viewed as a crucial formal framework
for explaining many security-related aspects of systems. We have exam-
ined the power of various finalisations, enabling factors and countermeasures.
Above all we have shown that finalisation is a practical as well as a formal
issue. When we do formal specification and refinement we are working on
formal models of an envisaged system. Each model comes complete with a
set of assumptions. These may be particular to the application concerned or
else derive from the semantics of the representations used. If the assumptions
do not hold (or can be made not to hold) in an implementation then we have
the basis of an attack. Our taxonomy and many of the attacks outlined (for
example, multiple systems) indicate that a useful criterion for formal analysis
may be to model the system not as the user is expected to access it, but as
an attacker may view it.

We have summarised a variety of ways in which abstract assumptions can
be broken, and provided a taxonomy that may be used to categorise attacks.
It is well known that vulnerabilities come from “incomplete” modelling. Our
taxonomy should provide a mechanism for reasoning about which aspects of
a model may be incomplete.

As Jackson [Jackson 1995] points out, the world is unbounded. There is
a richer set of experiences to be had in the implementation (physical) world.
The quest for attackers is to sample that richness, in order to avail themselves
of correlations and relationships with data of interest.

As technology gets ever more sophisticated, opportunities for analysis
increase. Other computing paradigms affect finalisations. DNA computing
algorithms to break DES have been suggested [Boneh et al. 1995]. Quan-
tum computing increases what is tractable, for example, Shor’s polyno-
mial time Quantum Discrete Fourier Transform [Shor 1997] renders factori-
sation tractable, on a quantum computer. We cannot know where future

17



technology-dependent finalisations will take us.

References

[Anderson 2001]
Ross Anderson. Security Engineering: A Guide to Building Dependable
Distributed Systems. Wiley, 2001.

[Banach & Poppleton 1998]
R. Banach and M. Poppleton. Retrenchment: An engineering variation

on refinement. In B’98: 2nd International B Conference, Montpellier,
France, volume 1393 of LNCS. Springer, 1998.

[Barden et al. 1994]
Rosalind Barden, Susan Stepney, and David Cooper. Z in Practice. BCS
Practitioners Series. Prentice Hall, 1994.

[Baum 1900]
L. Frank Baum. The Wonderful Wizard of Oz George M. Hill, 1900.

[Boneh et al. 1995
Dan Boneh, Richard DeMillo, and Richard J. Lipton. Breaking DES

using a molecular computer. In Proceedings of DIMACS workshop on
DNA computing. AMS, 1995.

[Boneh et al. 1996]
Dan Boneh, Richard Lipton, and Chris Dunworth. On the importance of
checking computations. http://www.demillo.com/PDF /smart.pdf, 1996.

[Clark & Jacob 2002]
John A. Clark and Jeremy L. Jacob. Fault injection and a timing channel
on an analysis technique. In Furocrypt 2002, 2002.

[Derrick & Boiten 2002]
J. Derrick and E. Boiten. Unifying concurrent and relational refinement.
In REFINE’2002, volume 70(3) of ENTCS. Elsevier, 2002.

[Gollman 1998|
Dieter Gollman. Computer Security. Wiley, 1998.

[Handschuh et al. 1999]
H. Handschuh, P. Pailer, and J. Stren. Probing attacks on tamper resis-
tant devices. In Cryptographic Hardware and Embedded Systems, CHES
99, volume 1717 of LNCS, pages 303-315. Springer, 1999.

18



[He Jifeng et al. 1986]
He Jifeng, C.A.R. Hoare, and Jeff W. Sanders. Data refinement refined
(resumé). In ESOP’86, volume 213 of LNCS, pages 187-196. Springer,
1986.

[Hoare 1985]
C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall,
1985.

[Jackson 1995
Michael Jackson. Software Requirements and Specifications. Addison-
Wesley, 1995.

[Jacob 1992]
Jeremy L. Jacob. Basic theorems about security. Journal of Computer
Security, 1(4):385-411, 1992.

[Kocher et al. 1998]
Paul Kocher, Joshua Jaffe, and Benjamin Jun. Introduction to differen-
tial power analysis and related attacks.
www.cryptography.com /resources/whitepapers/DPATechlInfor.pdf, 1998.

[Kocher 1996]
Paul Kocher. Timing attacks on implementations of Diffie Hellman,
RSA, DSS and other systems. In Advances in Cryptology — Crypto 96
Proceedings, volume 1109 of LNCS. Springer, 1996.

[Morgan et al. 1996]
Carroll Morgan, Annabelle Mclver, Karen Seidel, and J. W. Sanders.
Refinement-oriented probability for CSP. Formal Aspects of Computing,
8(6):617-647, 1996.

[Nielsen & Chuang 2000]
Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and
Quantum Information. Cambridge University Press, 2000.

[Reed & Roscoe 1988]
George M. Reed and A. W. Roscoe. A timed model for Communicating
Sequential Processes. T'CS, 58:249-261, 1988.

[Roscoe 1998]
A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall,
1998.

19



[Sanders & Zuliani 1999
J. W. Sanders and P. Zuliani. Quantum programming. Technical Report
TR-5-99, Programming Research Group, Oxford University Computing
Laboratory, 1999.

[Schellhorn 2001]
Gerhard Schellhorn. Verification of ASM refinements using generalized
forward simulation. Journal of Universal Computer Science, 7(11):952—
979, 2001.

[Shor 1997]
P. W. Shor. Polynomial time algorithms for prime-factorisation and dis-
crete logarithms on a quantum computer. SIAM Journal of Computing,
26:1484, 1997.

[Spivey 1992]
J. Michael Spivey. The Z Notation: a Reference Manual. Prentice Hall,
2nd edition, 1992.

[Stepney et al. 1998]
Susan Stepney, David Cooper, and Jim Woodcock. More powerful Z
data refinement: pushing the state of the art in industrial refinement.
In ZUM’98, Berlin, volume 1493 of LNCS, pages 284-307. Springer,
1998.

[Thompson 1998]
A. Thompson. Hardware Evolution: Automatic design of electronic cir-
cuits in reconfigurable hardware by artificial evolution. Distinguished
dissertation series. Springer, 1998.

[Woodcock & Davies 1996]
J. C. P. Woodcock and J. Davies. Using Z. Specification, Refinement,
and Proof. Prentice-Hall, 1996.

20



