
Type-constrained Generics for Z

Samuel H. Valentine1, Ian Toyn1, Susan Stepney2, and Steve King1

1 Department of Computer Science, University of York, UK
fsam,ian,kingg@cs.york.ac.uk

2 Logica UK Ltd, Betjeman House, 104 Hills Road, Cambridge CB2 1LQ, UK
stepneys@logica.com

Abstract. We propose an extension to Z whereby generic parameters
may have their types partially constrained. Using this mechanism it be-
comes possible to dene in Z much of its own schema calculus and re-
nement rules.

1 Introduction

The Z notation [5, 2, 7] has a type system based on given sets and on generic
types. Powerset and product constructors (Cartesian and schema) form new
types from other types. Nothing else is a type.

The resulting system is useful, exible and decidable. Generic types allow
the denitions of many relations and functions to be made in the mathematical
toolkit. The function of set union, for example, can be dened thus:

[[X] == S ;T : PX  fx : X j x 2 S _ x 2 Tg

To use this denition, the generic parameter X can be instantiated to a set of
any type whatever. Generic types are considered as atomic in themselves. No
constraint is placed on the sets which instantiate generic parameters.

Whereas this works ne for set operations like union, there are other cases
to which it does not extend, such as functions referring to arguments which are
known to be schemas, but with unknown signatures, or known to be Cartesian
products, but of unknown size. For example, the predicate

S _ T = : [: S ; : T]
is a tautology whenever it is well-typed, and one might wish to formulate it as
a theorem, or even to use it to frame a denition of schema disjunction.

In Z as it stands, any such attempt would be a type error, since it would
require S and T to be of compatible schema types, whereas if the types of S and
T are given by generic parameters, we cannot constrain them. Yet the intention
is fairly clear and the ability to dene things in this way would be useful, since
it would allow the existing schema calculus to be dened explicitly in Z, would
provide a facility for users to extend it, and would allow the statement and use
of general lemmas about schemas.

For features of the Z notation such as schema composition, existing deni-
tions and statements of proof rules either:
a) translate into equivalent Z using a translation process stated more or less
informally, such as that given in [5] or [7], or
b) omit rules about schema composition and features of similar diculty alto-
gether [11, 1, 4].

The purpose of this paper is to show how we can express most of schema
calculus, including schema composition and piping, in Z, provided we introduce
\undecoration" and allow type constraints on generic parameters.

2 Implicit Instantiation - Schema Negation

Generic denitions in Z can be written in either of two ways. One way is designed
for explicit instantiation, where the instantiation can be to any set, as in an
expression like F S . The other is to create a generic object whose type can be
inferred from the context of its use, for example where the type of a function is
inferred from the type of its argument or of its result. Throughout this paper
we shall work to the latter convention, where denitions are designed on the
assumption that the generic parameter need not be instantiated explicitly, and
is a type.

As a rst example, let us examine schema negation. As we have observed in
[10], we can dene schema negation as set complementation, by saying

schNeg [X] == S : PX  fx : X j : x 2 Sg

This denition applies to any set, rather than being restricted to schemas as the
standard schema negation is.

One of the innovations of the proposed Standard for Z [7] is a xed syntax
for conjectures. Using this, we can pose conjectures about negation, such as

[X] j=? 8S : PX  schNeg (schNeg S) = S

3 Type Compatibility - Schema Conjunction

To dene schema conjunction, we could most briey say

schConj [X ;Y] ==  S : PX ; T : PY  [S ; T]

It is clear that S and T must be schemas, since they have been used as decla-
rations. In order to be valid they must also be type-compatible. That is, if we
had declared S : PX ; T : PY , where X and Y are types, then where X and Y

have the same component names, the corresponding types must be identical. In
[7] this condition would be written as X  Y . This constraint is implicit in the

denition given, so we could relax the rules and allow that form of denition as
it stands.

It seems preferable, however, to allow the existing type checks to be imposed
on generic parameters used under the existing rules. We therefore propose a
new bit of syntax to introduce generic parameters that may be subject to type
constraints. We do this by putting a y in the generic parameter list. Generic
parameters preceding the y are subject to the existing rules, and may not be
constrained. Generic parameters following the y may be subject to type con-
straints.

It seems likely that the idea would extend to any constraints, such as the
case where the parameter is known to be a Cartesian product, but of unknown
size. The only cases we consider in detail in this paper, however, are those where
the parameters are constrained to be schemas, and those are the only cases for
which we have worked out the implications for implementation in a tool [8].

So we now write

schConj [yX ;Y] == S : PX ; T : PY  [S ; T]

We can pose conjectures about the functions we have dened, such as

[yX ;Y] j=? dom(schConj) = PX  PY

[yX ;Y ;Z] j=?
8S : PX ; T : PY ; U : PZ 

(S schConj T) schConj U = S schConj (T schConj U)

[yX] j=?
8S : PX  (S schConj schNeg S) = [X j false]

4 Syntactic Overloading - Schema Logical Operations

In a similar way, we could dene schema disjunction

schDisj [yX ;Y] == S : PX ; T : PY  schNeg [schNeg S ; schNeg T]

schema implication

schImp [yX ;Y] == S : PX ; T : PY  schNeg [S ; schNeg T]

and schema equivalence

schEquiv [yX ;Y] == S : PX ; T : PY  [S schImp T ; T schImp S]

In Z as it stands [7], the same symbols are used for predicate disjunction etc.
as for schema disjunction etc. That is why, in the interests of clarity, the ve
denitions above have been made in terms of separate names. The precedences
of schema disjunction etc. are also out of the range allocated to user-dened
functions. Apart from these syntactic considerations, the above denitions could
be used in the Mathematical toolkit of Z to dene the operations concerned.
Whereas the range of the precedences could be modied, the overloading of
the names of the symbols seems to be a deeper issue. We proceed therefore on
the assumption that the ve operations concerned remain dened in the core
language, but that the ideas and notation developed above will be used for the
other operations of the schema calculus as described below.

5 Schema Axiomatic Denitions

The denitions above have all been in the explicit horizontal form. If the ax-
iomatic form of denition is used, similar principles apply, but the question
arises as to whether the type constraints on the generic parameters imposed im-
plicitly by some of the predicates given in the axiomatic box necessarily apply to
all other predicates in the same box. We answer this question in the armative,
since if we wish the various parts to be considered separately, we can use more
than one box.

6 The scope of Generic Schemas

An alternative denition of schema disjunction might be something like:

schDisj2 [yX ;Y] == S : PX ; T : PY 
[X ; Y j X 2 S _ Y 2 T]

A diculty with this is that any of the names X , S , Y or T might be a compo-
nent name of one (or both) of the schemas which instantiate X and Y . Under
the current scope rules the terms X , S , Y and T must be interpreted in the
context created by the declaration X ; Y , and if any of the names X , S , Y or T

was a component name of one of them, this would destroy the intended meaning
of the whole denition.

We therefore stipulate that names brought into scope by being the compo-
nent names of schemas that are instantiations of generic parameters, belong to
a dierent name-space from other names. Thus the component names of the
schemas that instantiate X and Y above, and the names generated by the terms
X and Y , are in a dierent name-space from the stated names X , S , Y or T

themselves.
Explicit uses of names, such as those of X , S , Y or T above, must refer to

declarations which are not dependent on the instantiations of the generic param-
eters of the containing paragraph. Declarations of both sorts may occur, that
is, uses of schema generic parameters as declarations, and ordinary non-generic

or fully instantiated declarations. If they occur within the same schema-text, in
order that the type system can remain consistent there must be a constraint of
disjointness between the explicitly declared names and those that occur within
the instantiations. That is, in the scope of some [yX] a declaration like X ; a : T
imposes a constraint that there is no occurrence of the name a within the schema
X .

7 Projection

We can now dene schema projection in a similar way to the above denitions,
with the similar proviso that the name Y must be guaranteed not to be in the
scope of the declarations introduced by the schema inclusions S ; T .

 [yX ;Y] == S : PX ; T : PY  fS ; T  Y g

8 Further Schema Operations - Natural Composition

The schema calculus operations given in [5, 7] include three operations of schema
quantication. For any two schemas X and Y we can form the expressions
9X  Y , 8X  Y and 9

1
X  Y . [2] gives the rst two of these, but omits 9

1
.

With the extensions to notation proposed here, we could dene functions
which restate these operations with dierent syntax, and can also dene new
functions using them in combination. The denitions of these operations in [5]
require that in the case of 9X  Y , for example, all names in the signature of
X must also be present in the signature of Y , and similarly for the other two.
In [7] this restriction is relaxed, and the only constraint between the signatures
is that they should be type-compatible. For further discussion and motivation
of this point see [10]. We continue on the basis of the denitions in [7].

The operations X ^ Y , X _ Y , X) Y and X , Y all produce schema
results whose signatures are formed by merging the signatures of the constituent
schemas. The schema expression 9X  Y , however, has a value equal to that
of X ^ Y followed by a hiding of those names present in the signature of X .
Similarly, the schema expression 8X  Y has a value equal to that of X) Y

followed by a hiding of those names present in the signature of X .
To illustrate the potential of these operations, and to prepare for the def-

initions of schema composition and piping below, we next dene an operation
which we could call \schema inner product" or \natural composition". We shall
proceed with the latter name, and dene

NatCompose[yX ;Y] ==
S : PX ; T : PY 

fS ; T  [(9 Y  X); (9X  Y)]g

This function takes two schema arguments and produces a schema obtained by
conjoining them, then hiding the common components. The type of the result is

P[(9Y  X); (9X  Y)], which can only be type-correct if X  Y . We observe
that this operation is commutative, but is not in general associative.

We generalise this denition below to the cases of schema sequential compo-
sition and schema piping. In those cases we manipulate decorations on names,
but these manipulations create the possibility of accidental coincidences between
other names than those explicitly under consideration. It is then necessary to
use a somewhat more complicated denition, equivalent to NatCompose, namely

NatCompose2[yX ;Y] ==
S : PX ; T : PY 

fb : [(9 Y  X); (9X  Y)] j
9m : 9 9Y  fbg  S 
m 2 9 9X  fbg  Tg

where the values of b are the bindings in the result, and the values of m are the
matching bindings, which are hidden. The value of the comprehension is formed
as follows:
a) take some binding b of the result type;
b) fbg is the schema whose sole member is that binding;
c) 9Y  fbg is the schema whose sole member is a binding consisting of the
components of b drawn from X ;
d) 9 9Y  fbg  S is the schema consisting of those bindings of the matching
type that are consistent with S and the parts of b drawn from X ;
e) similarly, 9 9X  fbg  T is the schema consisting of those bindings of the
matching type that are consistent with T and the parts of b drawn from Y ;
f) the value b is included in the comprehension if there is a value of m that is a
member of both these two schemas.

9 Heterogeneous State Transitions

The relaxation of the rules of generic typing given above has allowed us to
dene in Z six of the operations of schema calculus. In all of these cases no
special recognition is given to the \decoration" of names. Other operations of the
schema calculus, however, are designed to work with the \state and operations"
convention, and to do so they treat dierent schema components dierently
according to the decorations attached to their names.

The descriptions of that convention [5, 2] are in terms of a single state schema,
together with operations which relate the values of the components of that state
schema with another schema resembling it but with its component names sys-
tematically dashed. Thus the components names might be a; b; c; a 0; b0; c0, where
each of the pairs a; a 0, b; b0, c; c0 is declared as of the same type. Inputs, decorated
with ?, and outputs, decorated with !, may also be present. We can describe this
as the assumption of \homogeneous" state transitions, in that the type of dashed
state diers from that of the undashed state only in the systematic dashing of
the component names.

The operations of the schema calculus which are designed to work within the
convention, namely precondition, schema composition, schema override (given
in [2] only), and schema piping, make a weaker assumption, however, in that
they assume that there is an undashed and a dashed state, but without any
assumption that these resemble each other. That is, the recognition of a compo-
nent as \undashed" is in no way dependent on the presence of a corresponding
\dashed" component in the same schema, nor vice-versa. For example the com-
ponents names might be a; b; c; x 0; y 0; z 0, where the components a; b; c will be
recognised as undashed, and the components x ; y ; z recognised as dashed. In our
formal description here we therefore treat these as heterogeneous (that is, not
necessarily homogeneous) state transitions operations, and examine the restric-
tion to homogeneity later.

10 Removing Decorations - Schema Precondition

In order to proceed further, we propose the introduction of an operator to \un-
decorate" any schema, irrespective of whether it is a generic parameter or not.
For any schema S and decoration d the meaning of the expression

undecor d S

is the schema S with all components without the decoration d hidden, and with
the decoration d removed from all those component names that have it. For
example, the value of

undecor 0 [a; b; b0; c00 : N j a = 3 ^ b = 4 ^ b0 > a ^ c00 > b]
is equal to

[b; c0 : N j 9 a; b : N; b0 == b; c00 == c0  a = 3 ^ b = 4 ^ b0 > a ^ c00 > b]
which in turn can be simplied to

[b; c0 : N j b > 3 ^ c0 > 4]
This description makes the operation well-dened for all schemas and decora-
tions. If the schema has no uses of the given decoration, the result is a schema
of empty signature, either [] or [j false] (as legitimised fully in [7]).
For any schema S and decoration d , the equation

(undecor d (S d)) = S

will always be valid, since the decoration is applied uniformly to all components,
and then can be equally uniformly removed from them.
On the other hand the expression

(undecor d S)d
is obtained by removing the decoration from those components which have it,
hiding the others, then replacing the decoration on the result. This has the eect
of hiding the components which do not have the decoration, and leaving the rest
unchanged. We can use this to obtain the schema in which all components of a
particular decoration have been hidden, by writing

9(undecor d S)d  S .
Using this we can dene schema precondition, as

pre[yX] == S : PX  9(undecor 0 X)0; (undecor ! X)!  S

11 Schema Override

We can take schema override nearly verbatim from [2] and say

 [yX ;Y] == S : PX ; T : PY  (S ^ : (preT) _ T)

and we have some nice theorems such as

[yX ;Y] j=?
8S : PX ; T : PY  pre(S  T) = (preS _ preT)

[yX ;Y ;Z] j=?
8S : PX ; T : PY ; U : PZ  (S  T)  U = S  (T  U)

12 Turning an Operation Schema into a Relation

Given a conventional operation schema, it is sometimes convenient to derive the
corresponding relation, as needed by [6] for example.

relate[yX] ==
A : PX  let

in == (undecor ? X)?;
out == (undecor ! X)!;
dashed == (undecor 0 X)0 

fi : in; o : out ; d : dashed ; u : 9 in; out ; dashed  X j
8 bn : [fig; fog; fdg; fug]  bn 2 A 

((u; i); (d ; o))g

13 Schema Composition

To dene schema sequential composition we need to discover all dashed com-
ponents of the rst schema operand that match undashed components in the
second. At the same time, we must not impose any unnecessary constraints;
for example, the two operands need not even be compatible. The form of the
denition is modelled on the second form of \natural composition" above, as:

o
9

[yX ;Y] ==
S : PX ; T : PY 

fb : [(9 Y 0  X); (9 undecor 0 X  Y)] j
9m : (undecor 0 (9 9Y 0  fbg  S)) 
m 2 (9 9 undecor 0 X  fbg  T)g

The denitions of schema composition given in [5, 2, 7] all include a further
constraint that the base names that match should themselves be undecorated,
that is, that the names in the binding m above should have no decoration. There
seems to be no reason to impose that constraint, however, and therefore we do
not propose the extensions to notation which doing so would require.

14 Type-correctness and Associativity of Schema

Composition

The type of the result of schema sequential composition between two schemas
of types PX and PY respectively is

P[(9 Y 0  X); (9 undecor 0 X  Y)]
provided that expression is type-correct. This is the case provided

(9Y 0  X)  (9 undecor 0 X  Y)
which in turn requires that

Y 0  X

and that
undecor 0 X  Y

If these conditions are not met, the composition cannot be formed.
The operation of sequential composition is not in general associative, but it is

associative whenever the formal statement of associativity is type-correct. That
is,

[yX ;Y ;Z] j=? 8S : PX ; T : PY ; U : PZ  (S o
9 T) o

9 U = S o
9 (T o

9 U)

is valid whenever it is well-typed. Explicitly:
[(9[(9Z 0  Y); (9 undecor 0 Y  Z)] 0  X);

(9 undecor 0 X  [(9 Z 0  Y); (9 undecor 0 Y  Z)])]
must be the same type as

[(9Z 0  [(9 Y 0  X); (9 undecor 0 X  Y)]);
(9 undecor 0 [(9Y 0  X); (9 undecor 0 X  Y)]  Z)]

More illuminating, however, is to note the counter-examples to associativity. The
cases where the same three schemas can be composed together sequentially, with
association to the left or to the right, so that either composition is type-correct
but the two cases give dierent resultant types, are shown by the following three
representative examples:

[x 00 : A] o

9 [x 0 : A] o

9 [x : A],
[x 0 : A] o

9 [x 0 : A] o

9 [x : A],
[x 0 : A] o

9
[x : A] o

9
[x : A].

15 Schema Piping

The denition of schema piping may be expressed thus:

>> [yX ;Y] ==
S : PX ; T : PY 

fb : [(9(undecor ? Y)!  X); (9(undecor ! X)?  Y)] j
9m : (undecor ! (9 9(undecor ? Y)!  fbg  S)) 
m 2 (undecor ? (9 9(undecor ! X)?  fbg  T))g

As with schema sequential composition above, this operation is associative
whenever the alternative associations are of the same type, and the representative

counter-examples are:
[x ! : A] >> [x ! : A] >> [x? : A]
[x ! : A] >> [x? : A] >> [x? : A].

16 Rules of Renement

The standard renement rules can be stated formally using this notation. We
follow [5] page 138 with minor modications.

We do not explicitly dene the abstract state or the concrete state. The
schemas we use are:
a) an abstract operation schema Aop, whose components include those of the
undashed and dashed abstract states, together with inputs and outputs as re-
quired;
b) a concrete operation schema Cop, whose components include those of the
undashed and dashed concrete states, together with inputs and outputs as re-
quired;
c) an undashed abstraction schema Abs , which relates undashed concrete and
abstract states, and possibly also their inputs;
c) a dashed abstraction schema Abs2, which relates dashed concrete and abstract
states, and possibly also their outputs.

We can then give the renement relation as

renes [yA;C ;X ;Y] ==
fAop : PA; Cop : PC ; Abs : PX ; Abs2 : PY j

(9 preA; preC  X) ^
(9(9 preA  A); (9 preC  C)  Y) ^
(8 preAop; Abs  preCop) ^
(8 preAop; Abs ; Cop  9(9 preA  A)  Abs2 ^ Aop)g

where the expression (9 preA  A) is used to declare just the after states and
outputs of Aop, and similarly the expression (9 preC  C) is used to declare
just the after states and outputs of Cop.
This diers from [5] in the following respects.
a) All the schemas have been declared. The necessary constraints on their com-
ponents and their types arise from the requirement that the formal denition be
well typed.
b) The main part of the formulation has been made shorter by using the opera-
tion and abstraction schemas directly as declarations, rather than as predicates.
c) The formulation is more general in allowing any number and names of inputs
and of outputs.
d) Separate abstraction schemas Abs and Abs2 are used where [5] has Abs and
Abs 0. This allows the operation schemas to be heterogeneous in the sense ex-
plained above, and also allows renement of the input and output components.
The restriction to the cases considered by [5] is obtained by writing Abs 0 for
Abs2 .

e) If any component is unchanged by renement, it can be omitted from the
abstraction schemas.
f) The concrete form is allowed to have extra after-states and outputs unrep-
resented in the abstract state, which will still leave (preCop) well-typed in the
environment of (preAop; Abs). This extension arises naturally from the formal-
ism, and accords with the practical realities of renement.

Following [5] page 140, we can specialise to functional renement, giving

frenes [yA;C ;X ;Y] ==
fAop : PA; Cop : PC ; Abs : PX ; Abs2 : PY j

(9 preA; preC  X) ^
(9(9 preA  A); (9 preC  C)  Y) ^
(8 preAop; Abs  preCop) ^
(8 preAop; Abs ; Cop; Abs2  Aop)g

and then operational renement is derived as the case where Abs and Abs2 are
empty, and so can be dropped, giving the form as in [5] page 136:

opRenes [yA;C] ==
fAop : PA; Cop : PC j

(8 preAop  preCop) ^
(8 preAop; Cop  Aop)g

17 Homogeneous State Transitions -  and 

As stated above, the descriptions of the \state and operations" convention in [5,
2] are all in terms of homogeneous state transitions, in that the type of the dashed
state diers from that of the undashed state only in the systematic dashing of
the component names. Inputs, decorated with ?, and outputs, decorated with !,
may also be present.

This approach makes extensive use of the convention whereby special mean-
ing is given to schemas with names whose initial characters are  or . These
characters are not themselves operators, but it has often been suggested that
they should be. This would allow them to be applied to any schema-valued
expression.
To dene  we could say:

 [yX] == S : PX  [S ; S 0]

which requires that S and S 0 should be compatible schemas. The description
in [5] requires that the base names should themselves be undecorated, but this
seems an unnecessary restriction.
The operator  would be dened similarly, as

 [yX] == S : PX  [S ; S 0 j X = X 0]

These denitions could replace, or perhaps just supplement, the existing con-
ventions.

18 Homogeneous Operation Schemas - Recognising the

State

In order to dene functions which take homogeneous state transition schemas as
arguments, it is necessary to identify the state components. In the heterogeneous
case, such as in the denition of \pre" above, we treat all components whose
names do not have a dash as \undashed", and all components whose names
have a dash as \dashed". For the homogeneous case, however, we only recognise
as \undashed" those components for which there is a dashed counterpart, and
vice versa. Other components may be present, but are treated as constant.

If we have some generic parameter X , constrained to be a schema and which
we wish to treat as the type of a homogeneous operation schema, the expression
that is equal to X after hiding of all dashed components that have corresponding
undashed components is given by

(9X 0  X)
which leaves the undashed components together with the constant components.
The expression

(9(9X 0  X)  X)
therefore yields the type of the dashed components alone.

Similarly the expression that is equal to X after hiding of all undashed com-
ponents that have corresponding dashed components is given by

(9 undecor 0 X  X)
which leaves the dashed components together with the constant components.
The expression

(9(9 undecor 0 X  X)  X)
therefore yields the type of the undashed components alone.

For these expressions to be type-correct, it is necessary that the type of each
undashed component is the same as the type of its dashed counterpart.

19 Schema Iteration

To illustrate the possibilities opened up by the notation developed here, we dene
two forms of schema iteration. Neither of these appears as part of the standard
schema calculus, but the facility has been called for in various forms, for example
in [3].

For simplicity, we assume that all components of the schema to be iterated
form matching pairs of undashed and dashed names of the same type, and that
there are no \constant" components. We can than dene a schema version of
the existing toolkit function iter

schIter [yX] ==
n : N   S : PX 

let state == (9X 0  X) 
[X j (state; state 0) 2 iter n fS  (state; state 0)g]

We give also a schema version of a \while" loop. This is based on the function
do as described in [9], which can be dened as

do[X] == R : X $ X T
fQ : X $ X j id(X n domR)  Q ^ R o

9 Q  Qg

For any function f the eect of applying do f to an argument is the same as the
eect of repeatedly applying f to that argument until the result is no longer in
the domain of f . Similarly for any relation R the eect of taking the relational
image of do R through a set is the union of all values obtained by taking the
relational image of R through elements of that set until the result is no longer
in the domain of R.
Using this we dene the schema version:

schDo[yX] ==
S : PX 

let state == (9X 0  X) 
[X j (state; state 0) 2 do fS  (state; state 0)g]

The eect of applying schDo S to some state is that of repeatedly re-applying
S to that state until the precondition is not satised.

20 Implementation

We have implemented these proposals in the CADiZ tool. The implementation
of \undecor" proved to be straightforward. The main proposal, to allow the
introduction of generics constrained to be schemas, was less simple but we believe
we have solved it successfully. The details are given in a companion paper [8].

21 Conclusions

We have proposed two extensions to Z. The rst is the operation \undecor"
which allows for the explicit removal of decorations from a schema. The second
is a relaxation of restriction whereby generic parameters are allowed to have their
types partially constrained. We have shown how this makes it possible to dene
in Z all the complex schema calculus operations such as sequential composition
and piping.

22 Acknowledgments

This work was done as part of the project \Standardising Z Semantics", for
which Dr. King is principal investigator, and Mr. Valentine and Dr. Toyn are
receiving EPSRC funding (Grant number GR/M 20723).

References

1. J. G. Hall and A. P. Martin. W reconstructed. In J. P. Bowen, M. G. Hinchey,
and D. Till, editors, ZUM '97: The Z Formal Specication Notation, LNCS 1212,
Reading, April 1997. Springer.

2. I. J. Hayes, editor. Specication Case Studies. Prentice Hall, second edition, 1993.
3. P. Luigi Iachini. Operation schema iterations. In J. E. Nicholls, editor, Z User

Workshop, Oxford, December 1990. Springer.
4. Andrew Martin. A revised deductive system for Z. Technical Report 98 - 21,

Software Verication Research Centre, University of Queensland, 1998.
5. J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, second edition,

1992.
6. Susan Stepney and David Cooper. Formal methods for industrial applications.

(These proceedings), 2000.
7. I. Toyn, editor. Z Notation. ISO, 1999. Final Committee Draft, available at

http://www.cs.york.ac.uk/~ian/zstan/.
8. Ian Toyn, S. H. Valentine, Susan Stepney, and Steve King. Typechecking Z. (These

proceedings), 2000.
9. S. H. Valentine. Z { {, an executable subset of Z. In J. E. Nicholls, editor, Z User

Workshop, pages 157{187, York, December 1991. Springer.
10. S. H. Valentine. Equal rights for schemas in Z. In J. P. Bowen and M. G. Hinchey,

editors, ZUM'95, LNCS 967, pages 183{202, Limerick, September 1995. Springer.
11. J. C. P. Woodcock and S. M. Brien. W: a logic for Z. In J. E. Nicholls, editor, Z

User Workshop, York, December 1991. Springer.

