Formal refinement in Z: Mondex electronic purse

Susan Stepney
Logica UK Ltd
1998
The application

NatWest Development Team

Mondex electronic purse
 Smart Card for electronic commerce

Autonomous: no external control ==> all security on card
The difficulty

ITSEC: E1 -- E6 (highest)
increasing formality

E6: formal SP (abstract), formal architecture (concrete), correctness proofs
often thought to be impossible!
Summary: the approach

Functional security properties
A correctness proof
Rigorous hand proofs
Abstract and concrete models
Not everything modelled
Security properties

1. “No value created”

2. “All value accounted”

3. “This transfer permitted”
 (classes, etc)
Formal Z models

• Abstract model
 - promoted world of ‘purses’
 - atomic value transfers

• Concrete model
 - promoted world of ‘purses’
 - n-step value transfer protocol
 - logging protocol
 - ether of protocol messages
Modelled by other means

Eg cryptography: instead, ether

some messages always present \Rightarrow forgeable

some injected only by cards \Rightarrow protected 'somehow'
(strength of mechanism arguments)
Correctness proof

Prove that abstract Security Policy is captured by concrete architecture model

Here, SP comprises functional properties, which are preserved by refinement
Proof style

rigorous hand proof
 (not deep: cut, one point, thin, Leibniz, Z toolkit laws, ...)
structure with lemmas
tools: type-checker (fuzz/Formaliser)
human evaluators/reviewers
Summary: proof problems

Resolution of non-determinism
Back to first principles
Deriving 'backwards' rules
Finalisation / i-o refinement
Two refinements required
Resolution of non-determinism

Concrete before
Abstract (Spivey)

or

Abstract before
Concrete (ours)

classic Spivey
proof rules
not sufficient
So, what is refinement?

Refinement rules ⇒ a semantics for Z

State-and-operations specifications

He, Hoare & Sanders paper

Consultancy from Jim Woodcock

Back to first principles
Deriving ‘backwards’ rules derived from first principles now published in ‘Woodcock & Davies’ also rederived the Spivey rules this way as a sanity check and confidence booster!

\begin{align*}
A & \quad \text{AOp} \\
R & \quad \text{COp} \\
R' & \quad \text{COp} ; R' \\
\exists A \cdot R \land \text{AOp}
\end{align*}
Finalisation

observability
(eg, *Stack* with no *Top* operation)

Not all properties of our model are observed by i/o: so we have a non-trivial finalisation
Input-output refinement

computational model

No good abstraction of 'balance enquiry', so:

• abstract: no i/o, + finalisation
• concrete: some i/o, + smaller finalisation
Not sufficient

Forward or backward rules alone not sufficient to prove all refinements

We needed a 2-step refinement

1) atomic transfer --> protocol + global constraints
2) global constraints --> unconstrained world
Summary: results

What was proved
Sizes and timescales
Incremental development
FM not the bottleneck
Future developments
What was proved

Proved the design:

• that the security properties hold

• that the protocol implements atomic transfer with error detection

• that local on-card constraints implement the required global constraints
Spec and proof sizes

abstract SP model: ~ 20 pages
concrete FAD model: ~ 60 pages
hand proof: ~ 200 pages
other derivations: ~ 100 pages

technical monograph PRG-126
Mondex reduced functionality specification, and proof, 230 pages
Incremental development

2 versions: first 'reduced functionality' of Swindon pilot, then upgraded to full 'roll-out functionality' of Swindon pilot, then

Main change: multiple currencies

(not bag CURR, ie not pocket: CURR)

N _→_ pocket: CURR

became

balance: N (not pocket: CURR)

CURR qlo Ø

Incremental development
Not a bottleneck

Success!

Found an error in the logging protocol.

Favourable evaluation report:

FM work ahead of schedule,

so, requirement for FM is no bar to E6.
The future

Was so successful --> now going for E6 approach on other products!

Hand proof enlightening (but tedious): looking at proof tools --- CADi