
Multiple model simulation:
modelling cell division and differentiation in the

prostate

Alastair Droop, Philip Garnett, Fiona A. C. Polack, and Susan Stepney

YCCSA, University of York, UK, YO10 5DD
Alastair.Droop|Fiona.Polack|Susan.Stepney@york.ac.uk;

Philip.Garnett@yccsa.org

Abstract. We describe an approach to building a hybrid multi-scale
model, using a Petri net model for the top layer, and object-oriented
models at the lower layers, with a rigorous definition of how the lay-
ers compose. We apply this approach to building a model of prostate
cell division and differentiation, with each model layer describing the
processes at a suitable level of abstraction. This provides a systematic
modular approach to modelling and to model validation, allowing use
of diverse modelling techniques in developing multi-scale models with
no loss of rigour or validity. We use this prostate model to develop a
prototype simulation, and demonstrate that it is capable of simulating
biologically-relevant numbers of cells.
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1 Introduction

Simulations of complex systems have the potential to complement laboratory
based biological research, providing a platform for repeatable experimentation,
and for exploration of parts of biological systems that cannot be analysed di-
rectly in live organisms or dead tissue. Elsewhere [1, 11, 33–35], we consider how
scientific simulations can be designed and validated.

In this paper we present the modelling and simulation of cell division and
differentiation in the prostate. The results of this simulation will be used as
hypotheses to guide laboratory experimentation by suggesting the cellular be-
haviours and pathways which are most likely to be involved in early cancer
neogenesis.

Prostate cancer is a common disease, accounting for almost 25% of male
cancers in the UK. As with many cancers, prostate cancer is a complex disease
arising from the aberrant behaviour of a tissue. High-grade prostate cancer is
characterised by a breakdown of normal cell differentiation behaviour, leading
to a proliferation of terminally-differentiated cells. The study of prostate can-
cer therefore requires an understanding of the dynamics of a large population
of cells. Many of the genomic events that lead to cancer formation are rare,



stochastic events. As such, a continuous modelling approach (for example based
upon ordinary differential equations) is unable to capture the rich behaviour
necessary to model cancer neogenesis. The construction, parameterisation and
analysis of the complicated models needed to study prostate cancer requires in-
put from multiple domain experts. The work reported here has been the result of
close collaboration between domain experts in the YCR Cancer Research labora-
tory and software developers in the York Centre for Complex Systems Analysis
(YCCSA).

The prostate domain biology provides insight into cell transitions and differ-
entiation, transition rates and proportions of each cell type that can be expected
in normal, modified and cancerous prostate. However, as in all systems biology,
there are significant gaps in the domain knowledge, and there are many features
that cannot be accurately studied. In simulating the prostate cells, we seek to
be able to (a) replicate the cell behaviours and proportions in a normal prostate;
(b) replicate the modifications that biologists make – for example, knock-out ex-
periments to determine causality – and to show that appropriate behaviours are
simulated in the modified-prostate simulation; (c) to experiment with the vari-
ous forms of point mutation that have been postulated as initiators of prostate
cancer. The need to precisely measure rates and proportions, and, in particular,
the need to accurately express and explore interventions and point mutations,
dictates the use of an individual-based model; we use an agent-based simulation.
In modelling, we use diagrammatic approaches, which are easy to explain to
domain experts, as well as being familiar software engineering tools.

For the simulation, key features are the model of state change (differentiation)
and cell creation (division) in the prostate. We need design notations that help us
in validating the domain and conceptual models with our domain experts. These
models must also admit continuity in development, and be verifiable. We also
need to view the development process as part of the construction of an argument
of validity, which requires us to systematically identify and record assumptions.

We follow the CoSMoS process: a principled, systematic development, in
which domain experts co-operate closely with simulation developers. A domain
model captures the domain experts’ view of the part of the system to be simu-
lated, and the desired scope and purpose of simulation. From the domain model,
a platform model, suitable for simulation development, is produced. The sim-
ulation platform is then constructed using a systematic software engineering
process. Validation is emphasised, both in relation to the biological bases of the
simulation and the design decisions of the software engineering.

In [35] we note that the validation of the implemented simulation is facil-
itated if the software engineering models use modelling approaches that map
seamlessly with the implementation platform and language(s). In simulating as-
pects of prostate cell processes, we demonstrate that appropriate modelling not
only facilitates software engineering and validation, but can also facilitate mod-
elling and validation of the biology underpinning the simulation and simulation
experimentation.



1.1 Modelling notations for systems biology

Petri nets are widely used in modelling biological systems. Petri nets (see §2) are
based on state-transition diagrams and the theory of automata, they have strong
mathematical underpinnings, and can provide formal verification of properties.
However, in computational modelling of biological systems most uses encounter
the limitations of reactive-systems modelling. For example, for the modelling of
biological pathways, it has been found necessary to extend Petri net notations
with continuous features: Matsuno et al propose, and extensively use, Hybrid
Functional Petri Net with extensions to accommodate continuous places and
transitions [28, 31]. Such adaptations of Petri nets have the advantage (usually)
of maintaining the strong formal basis. However, the resultant models are poorly
structured and hard to read – this inhibits validation of models against the
biology. The scale and density of the Petri net models also makes them hard to
implement in current computer languages.

In 1987, Harel [14] noted the inappropriateness of conventional state-transition
modelling for transformational systems. His widely-adopted answer is statechart
diagrams, “a visual formalism for describing states and transitions in a modular
fashion, enabling clustering, orthogonality (that is, concurrency) and refinement,
and encouraging ‘zoom’ capabilities for moving easily back and forth between
levels of abstraction.” [14, p233]. Statechart-like notations are readily under-
stood by many biologists [12], and have been used in biological modelling [22,
43]. However, statechart modelling also suffers from aspects of inadequacy. In
systems with significant state (those where data are generated, stored and used,
and values persist over time), statecharts cannot capture data structures or
transactional (and reactive) structures adequately. Like Petri nets, attempting
to use a single statechart to capture a heterogeneous biological system results in
a complicated, dense model which is hard to validate and to implement from.

Some biological modellers turn to UML-like modelling notations. UML (Uni-
fied Modeling Language) [32] has many attractions: it provides notations for
modelling static and transactional structures as well as statechart-like nota-
tions; there is conceptual unification across notations (through a metamodel-
based language definition); there are lots of tools; some of the notations map
readily to common programming languages (principally, Java). However, UML
is a unified object-oriented (OO) modelling language, and the connotations of
object-orientation are not always appropriate for biological systems. The most
significant issues for modelling cell division and differentiation are that objects
cannot reproduce and divide, and an object cannot change its type (class). Con-
tinuous concepts such as cell populations and concentrations do not map well
to the instance-based OO modelling concepts (class, object, slot, value). These
problems are usually ignored in biological modelling [11, 12, 38–40, 48, 49]: it is
considered sufficient that the diagrams say something about the biological struc-
tures, and map to Java.

To summarise: Petri nets are a clear, elegant way to model reactive systems;
statecharts allow clarity in the modelling of transformational systems; OO mod-



elling notations such as UML provide useful and complementary visuals if we
can ignore issues of semantics.

1.2 Hybrid models

Most modellers use one base notation and extend it, adapt it or abuse it to
model the whole of a biological system. However, this approach loses much of
the clarity that abstract modelling should bring to a problem.

There is some multi-notation modelling in biology. Harel et al [7, 8, 15, 16]
address the inadequacies of statecharts for biological modelling in Reactive An-
imation, a proprietary modelling framework that uses statecharts for transfor-
mational aspects, object models for static structure, and live sequence charts for
transaction structures. The notations are integrated through their roles in gener-
ating and maintaining a simulation implementation. Setty, Cohen, and Harel [16,
42] use Reactive Animation to model pancreatic organogenesis. Statecharts are
used to model the individual cell lifecycle; other models capture the morphology
of the system. The cell division process is captured only informally: “Prolifera-
tion ends when the Cell duplicates itself by creating an identical instance. In
turn, a message is sent to the front end, which creates a new identical sphere
corresponding to the new Cell at the proper location.” [16, p9]. In Reactive An-
imation, models are complementary, and the aim is to progress as far as possible
in the analysis without connecting the models [42].

The hybrid modelling approach that we use is not proprietary (or tied to the
modelling notations used here): it focuses on finding an appropriate notation for
each aspect of the system, and an appropriate way to integrate the component
models, for example through input-output mappings. Whilst we anticipated that
this would cause problems in implementation, it turns out to be a natural way to
construct and structure simulation code. Appropriateness is determined primar-
ily by the ability of the notation to express domain concepts in ways that the
domain experts, as well as the simulation developer, can understand. However, it
is also important that models map clearly to code concepts, to support software
validation.

1.3 Structure of this paper

In this paper, we use multiple models, apply them to modelling cell differentia-
tion in the prostate, and reflect on the advantages, opportunities and limitations
of such an approach. §2 introduces Petri nets and Petri net terminology, and in-
troduces a high-level model of cell differentiation and division. §3 introduces
three notations (loosely based on UML) that are used to model the lower-level
individual cell behaviours. The behaviour of a cell is determined by its place
in the Petri net, and its environment. A key aspect is that, in moving between
two places, a cell undergoes a change in its active behaviours, and its internal
structure. §4 describes how the different models and layers can be combined.
§5 discusses how our approach amounts to defining a domain specific language.
§6 presents a prototype model of the prostate cell structure. §7 describes the



simulation implementation: this prototype replicates the dynamic changes in
cell-type proportions in a normal prostate. §8 outlines further work in develop-
ing the modelling approach, and in the prostate model itself. §9 presents our
conclusions.

2 The high level system structure: Petri net modelling

The high level Petri net model captures the structure of the cell division and
differentiation process, without considering the detailed internal structure of the
component cells. Petri nets are widely used to model signalling and pathways in
biological systems (see, for example, [5, 13, 27, 41]), and are attractive to many
systems biologists. They provide a natural way to model cell division (one object
becoming two objects) and cell differentiation (one object becoming a different
type of object).

2.1 Petri net concepts and definitions

The (draft) Petri net ISO standard website [17, 18] defines a Petri net as “a
formal, graphical, executable technique for the specification and analysis of con-
current, discrete-event dynamic systems”. There are many flavours and varieties
of Petri net; here we describe only the features necessary for our model. The
interested reader is referred to the extensive bibliography accessible from the
ISO standard website.

A Petri net is a bipartite directed graph. The two kinds of nodes are places
and transitions. Place nodes have a marking: a set of tokens occupying the place
(figure 1a). A transition can fire when all its input places hold a token: one token
per input arc is consumed from its input place, and one token per output arc is
produced in the respective output (figure 1b). Some descriptions instead talk of
tokens flowing around the net; here we emphasise that tokens are consumed and
produced by transitions, and so emphasise that their numbers and types need
not be conserved, as the focus of our modelling is on the production of new cells
and new kinds of cells.

When Petri net models get large, it can be helpful to structure them. Fusion
places [19, ch.5], an extension to standard Petri nets, allow a Petri net to be
presented in several pieces. A fusion place is marked on several nets, which
means it should be identified across the nets (figure 2). We use fusion places to
help structure the chain of cell differentiations. A fusion transition can be used
to capture an entire sub-net; we could use a simple version to help capture the
repeated pattern of cell divisions, but do not do so here (see §8.3).

2.2 Modelling cell interactions

In our Petri net model, each cell is modelled as a token, and each type of cell
is modelled as a place. The way cells differentiate (change type) and divide is



Fig. 1. Example Petri net. (a) A net with n places pi1 . . . pin, input to the transition
t, which has outputs to m places po1 . . . pom. Place pok has two incoming arcs. The
net’s current marking is 2 tokens in place pi1, one token in pin, and one token in place
pom. (b) The same net after transition t has fired. One token has been consumed from
the place along each input arc, and one token has been produced in the place along
each output arc. Hence two tokens have been produced in place pok, one for each of
its arcs.

Fig. 2. Example fusion place. The two nets on the left have the fusion place f (dark
grey). They are equivalent to the net on the right.

modelled by the transitions. We name all the places and transitions in the net;
these names are used to link the Petri net model to the lower level models (§3).

Figure 3 shows a variety of differentiation and division processes modelled
using a Petri net. These various possibilities can be captured in a single model
of cell differentiation, figure 4. (Our actual model of prostate cell differentiation
and division includes more detail; see §6.) There are two possible models. Fig-
ure 4a shows the case where the two daughter cells are distinguished separately.
This allows asymmetric transition probabilities (with d1 being highly likely to
remain a p1 cell, and d2 being highly likely to differentiate, for example). Fig-
ure 4b shows a simpler representation, that cannot capture the asymmetry at
this level of modelling. As we include a lower layer of modelling, we use the
simpler representation, and devolve handling the asymmetry to the lower level.



Fig. 3. Simple Petri net models of cell differentiation and division. (a) cell of type p
differentiates into cell of type d1; (b) parent cell of type p divides into two daughter
cells also of type p; (c) parent divides into two daughter cells, one also of type p,
one differentiated into a daughter cell of type d; (d) parent divides into two cells, one
differentiated into type d1, one into type d2. (e) parent divides into two cells, both
differentiated into type d.

(a) (b)

Fig. 4. A Petri net model of cell division incorporating all differentiation possibilities.
(a) a cell p1 divides into two daughter cells d1 and d2, which each chose either to
remain a p1 cell type (transition rem), or differentiate into a p2 cell type (transition
diff). (b) a cell p1 divides into two daughter cells d, which each chose either to remain
a p1 cell type (transition rem), or differentiate into a p2 cell type (transition diff).

3 The low level component structure

The low level component model captures the behaviour of an individual cell
through its life cycle, and the details of the division process where one cell
becomes two, and includes interactions with the environment. We use object-
oriented modelling notations to capture this structure (see, for example, [9]).



Fig. 5. The class model for the tokens. A token is in a place. Token and Place are
abstract classes; there is one subclass of each for each Petri net place. A transition
may consume many input tokens; a token is consumed by precisely one transition.
The transition may produce many output tokens; a token is produced by precisely
one transition. Transition is an abstract class; there is one subclass for each Petri net
transition. Places and transitions may be associated with many environments, which
can affect their behaviour.

3.1 Modelling cells: classes and objects

A cell, modelled as a Petri net token in the system layer, is modelled as an object
(instance of a Token class) with state and behaviour in the component layer.
Each place is modelled as a (singleton) instance of its Place class (every place is
different), as it too can have state and behaviour. The behaviour of a transition
is modelled by an instance of the Transition class, which consumes token objects
from the input places, and produces token objects into the output places. We also
allow the model to have environment(s) (instances of the Environment class or
its subclasses), to provide inputs to the behaviours (for example, to the guards
on state changes, or to the mutation rate on cell division). The relevant class
model is shown in figure 5.

3.2 Modelling cell state: state diagrams

The behaviour of a token in a place is modelled using a state diagram; each
place has a different kind of token (cell), and so has its own state diagram. This
has one or more start states, labelled with a name (corresponding to a Petri net
layer transition name, or to some initialisation), and one or more end states, also
labelled with a transition name. For example, see figure 6.

3.3 Modelling cell transitions: sequence diagrams

In the Petri net layer, the transition is where a cell divides into two new cells,
or differentiates into a new kind of cell. The low level modelling allows details of
these processes to be specified, such as what information about the cell survives
the transition, and what changes. We use a transient transition object for this,
which ‘consumes’ the input cell, and ‘produces’ the new output cell(s). In some



Fig. 6. An example state diagram. If the token in place p3 in the Petri net layer is
produced from transition ta, it starts in state s1; if produced externally, it starts in
state s3. The cell can exit to transition tb only from state s2; it can exit to transition
tf from any substate.

Fig. 7. An example sequence diagram. The input tokens a p1 and a p2 are consumed by
the transition object a ta (which can therefore have information about their state). The
transition object produces tokens a p3 and a p4; it can initialise them with processed
information from the inputs, and from the environment a env. The transition object
exists only for the duration of the interaction. X indicates object termination.

sense, this transition object can be thought of as ‘being’ a cell in its transition
state of dividing or differentiating.

So, in object-oriented modelling terms, a transition object (figure 5) exists
for the duration of the transition behaviour. It is initialised with any neces-
sary information from the input token object(s) and the environment, performs
appropriate behaviours, and initialises the output token object(s). The input
tokens(s) terminate once the transition object is initialised. The transition ob-
ject terminates once the output token(s) are initialised. The interactions can be
modelled with a sequence diagram; a typical example is shown in figure 7.



3.4 Introducing the environment

Cell behaviour (maturation, differentiation, and division) is affected by environ-
mental factors as well as internal properties. It is important to capture environ-
mental effects in the overall model; that is the purpose of the Environment class
in figure 5.

The cell model has multiple levels of detail and abstraction, and the envi-
ronment can interact with all these. Environmental effects may be global (for
example, a global irradiation of tissue), or local (for example, specific to a partic-
ular spatial region or type of cell). The environment can affect rates (transition
rates within a state model, transition rates within the Petri net model) and be-
haviours (choice of transition within a state model due to guard values). The
environment can itself be affected by the cells (for example, cells excreting chem-
ical signals that are transported by the environment to other cells).

As much, or as little, should be put into the environment as is needed for the
particular modelling purpose. This enables environmental effects to be modelled
explicitly and rigorously within the same framework as the cell modelling, but
cleanly separated from the individual cell models.

4 Combining the layers

The high level Petri net model and the detailed object-oriented models represent
the layers of the system. These layers are combined by linking the Petri net place
and transition names to the component level class names and state diagram
labels. The token classes are named after the Petri net place names, the place
classes are named Place X, where X is the relevant token class name. The start
and end points on the state diagram are labelled with the relevant Petri net
transition names. The transition classes are named after the Petri net transition
name.

This approach provides a simple and straightforward, but nevertheless ex-
plicit and rigorous, linking of the two layers of the model. The cell state be-
haviour, cell differentiation and division, and environmental effects are all mod-
elled. These models make sense individually, at suitable levels of abstraction,
and provide a modular approach to modelling and to model validation. How the
models are related is clearly defined through this linkage process, and so there
is a clear mapping from the model to the code, further easing validation.

Systems biology aims to analyse biological phenomena as dynamic, interact-
ing systems rather than individual components [20, 24]. This high-level approach
allows us to address the complexity inherent to biological systems in a way that
is impossible using conventional, reductionist molecular biological approaches.
A major limitation to the utility of systems approaches to biology is that very
many components across multiple scales need to be simultaneously modelled.
Building single models that capture multiple levels of biological complexity is
extremely difficult. The modelling strategy proposed here provides an intuitive
framework for combining models at different biological scales (in this case a tis-
sue differentiation level and a cellular level) in such a way that each level can



be treated separately. This separation of levels allows for the construction of
manageable models, whilst providing the ability to build multi-scale models.

5 A Domain Specific Language

Our use of different models and notations effectively amounts to a domain specific
language (DSL) [10, 29] for modelling cell differentiation and division. As with
any DSL, we develop the DSL by extending and adapting existing languages.
There are three principle extensions and adaptations.

For the detail of cell behaviours, the models are based on object-oriented
modelling notations. However, we apply an agent semantics, rather than the ob-
ject semantics defined in, for example, UML2.x [32]. The agent semantics means
that an object is instantiated to an active state and allocated its own execution
thread. The object persists until it is consumed, and its thread terminates. This
alternative semantics allows us to map cleanly from the low-level specification to
an agent-based implementation, aiding software engineering validation. Further-
more, this semantics allows us to express concepts in a biologically meaningful
way, supporting biological validation.

For the system level, we use Petri nets. However, we modify the semantics
of transition firing. In standard Petri nets, a transition fires when a token is
in a place. In our usage, the firing of a transition is determined by the state
diagram of the relevant place: a token (representing a cell) remains in a place
until the conditions are achieved for firing a transition. This may depend on
the environment, or simply on passage of time to maturity. Again, this semantic
adaptation allows a biologically-meaningful representation of cell behaviours.
Note that a common alternative approach is to introduce a timing distribution
to control transitions; even if based on biological observation, this is a coarser
solution, providing a less biologically-realistic determination of transition rates.

The third key element of our DSL approach is to define the linking between
layers (§4). Like UML syntax, concepts in our models are named, and the names
are used to link the detailed and system level models, as described above.

The DSL approach opens several novel directions for our research (see also
§8). Firstly, we can exploit the metamodelling approach to DSL syntax and se-
mantics, to produce tool support for our models. Secondly, we can exploit the
formal underpinnings of Petri nets, and the fact that state diagrams and other
OO modelling notations can be represented as Petri nets [30, 45], to support
formal analysis of the cell behaviours. The potential of the DSL approach dif-
ferentiates our simulation and modelling from other multi-model solutions (for
example, the work of Harel et al discussed in §1.1), where model integration is
done at the implementation level, through a computational framework.



6 Domain model of prostate cell division

6.1 Biological domain

Cancer is a phenotype arising as the result of aberrant interactions between many
individual cells. The study of cancer is therefore the study of cell population
dynamics. Prostate cancer is the most commonly diagnosed cancer in UK men,
accounting for almost 25% of all male cancers in the UK [46]. The UK lifetime
risk for getting prostate cancer is approximately 1 in 10 men [46]. Mutations in
a wide range of genes (oncogenes) are known to increase the risk of cancer [4].
Although the presence of mutations in oncogenes confers an elevated risk of
cancer, there is a high level of variability in the timing and exact genotype of
cancers. This stochastic element makes the analysis of cancers at the expression
level very difficult. Stochasticity and genetic variability make cell population
modelling a very attractive tool for the study of cancer neogenesis.

Several cell populations are present in the prostate (figure 8). The majority
of prostatic tissue is composed of stromal cells which consist of connective tissues
and blood vessels. The tissue of interest with respect to prostate cancer is the
prostatic epithelium, which consists of basal, secretory and neuroendocrine cells
[6]. The secretory cell population consists of terminally-differentiated columnar
cells. The basal cell compartment contains less-differentiated cells that are still
in contact with the basement membrane.

The presence of small numbers of self-renewing stem cells in most tissues is
now widely accepted. The stem cell population is able to replace dead cells in
the tissue by the processes of division and differentiation. Stem cells are able
to undergo two types of division: symmetric division in which a single stem
cell divides to yield two similar daughter stem cells; and asymmetric division
in which a single stem cell divides to give rise to a daughter stem cell and a
daughter cell of a more differentiated phenotype.

The role of stem cells in the formation and maintenance of tumours is not well
understood. Viable mutations in a stem cell will be passed on to its large number
of progeny by the normal processes of cell division and differentiation. The cancer
stem cell model [25] suggests that, if these stem cell mutations confer a malignant
phenotype, then these progeny will form a cancerous population (a tumour). If
this model is correct, then the stem cell population is of utmost importance in
cancer treatment; the common therapy of removal of the bulk tumour mass will
not impact the long-term patient survival rate, whereas ablation of cancerous
stem cells would allow successful treatment.

Here we are studying a population of cells moving through a differentiation
topology (modelled by the high-level Petri net). The decision-making processes
and the underlying molecular biology are encapsulated in the lower level mod-
els. The two-level modelling allows us to easily create appropriate agent-based
simulations of cell population dynamics. The cell types used in the model are
illustrated in figure 8.
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Fig. 8. The major cell types present in the prostate. The stromal cell compartment
contains various structures, for example blood vessels, and is not modelled in our work.
SC: stem cells; TA: transit amplifying cells; CB: committed basal cells; L: luminal cells.
The transit amplifying cells in our model include both non-stem basal cells and transit
amplifying cells. Figure adapted from [26].

6.2 The division pathway model

Figure 9 shows our Petri net model of prostate stem cell division and differentia-
tion. A stem cell can divide; its daughters can each either remain a stem cell, or
differentiate to a Transit Amplifying cell TA. In figure 9 the place TA is shown
as a fusion place, indicating it occurs in another Petri net in this model (here,
in figure 10). A stem cell can also differentiate directly to a TA cell without
division, or can undergo apoptosis, and become dead. A TA cell can revert to a
stem cell.

Figure 10 shows our Petri net model of TA cell division and differentiation.
The pattern is similar to the SC diagram, except that a committed basal cell
(CB) cannot revert to a TA cell (there is no analogue of the revTA transition).
Note that the dead place is not modelled as a fusion place: each cell type has its
own dead place. This is because a dead cell is still present in the tissue, taking
up space and potentially influencing different locations of the environment in
different ways (for a while at least; a more sophisticated model could have a
further transition to a Decayed place).

Figure 11 shows our Petri net model of CB cell division and differentiation.
The logic of division and differentiation is identical to the TA cell model in
figure 10, but with different cell types and transition types.

Figure 12 shows our Petri net model of luminal cell division. A luminal cell
can divide into two luminal cells (although this happens at a very low rate in
normal tissue, it is included here because it occurs in the cancerous case). Note
we do not need the intermediate daughter cell places in this model, as biologically
there is no “remain or differentiate” choice in this division process. A luminal
cell can also undergo apoptosis, and and become dead.



Fig. 9. A Petri net model of stem cell (SC) division and differentiation. A stem cell
can divide (divSC); its daughters DSC can each either remain a stem cell (remSC), or
differentiate (diffdSC) to a Transit Amplifying cell TA. A stem cell can also differentiate
(diffSC) directly to a TA cell without division, or can undergo apoptosis (apSC), and
become dead (DeadSC). A TA cell can revert (revTA) to a stem cell.

Fig. 10. A Petri net model of transit amplifying (TA) cell division and differentiation.
The pattern is similar to the SC diagram, except that a committed basal cell (CB)
cannot revert to a TA cell.

6.3 The cell state model

Figure 13 shows the class model of the place tokens, with a subclass for each place
type (the daughter cell subclasses and dead cell places are omitted for clarity).
This is an instantiation of figure 5, and as such could mostly be automatically
derived by a tool. We have chosen to bundle together the similar D classes and
the Dead classes into abstract classes, and not show the individual subclasess, for



Fig. 11. A Petri net model of committed basal (CB) cell division and differentiation.
The logic is identical to the TA cell model in figure 10.

Fig. 12. A Petri net model of luminal (L) cell division. A luminal cell can divide (divL)
into two luminal cells, or can also undergo apoptosis (apL), and and become dead
(DeadL).

Fig. 13. The class model of the cell tokens (the tokens in the various places). Apart
from the Cell and D instance variables, this can be automatically generated from the
Petri net model. There is a parallel class model for the places themselves.

brevity. The only addition compared to figure 5 is the instance variable genome
in the abstract Cell class, and the instance variable next in the abstract D class.

The next instance variable indicates whether the daughter cell should prefer-
entially remain as its originator type, or differentiate into the next type of cell.
This captures the asymmetry of the cell division, and leaves enough flexibility for



Fig. 14. A state model of a stem cell (a token in the SC place). It has two sub-states:
quiescent and active. It is produced in the active state, and it exits to differentiate or
divide from the active state. It can apoptose from any state.

the actual transition taken to be influenced by environmental factors in addition
to the value of this instance variable.

The genome instance variable encodes an individual cell’s transition rates
and mutation rates. The genome is the part of the state that is preserved (pos-
sibly slightly modified) as a cell transitions between places. Since the genome
is modified at certain points (particularly on division due to copying errors,
but also more slowly at at other times), we can model the fact that mutations
change an individual cell’s transitions rates, which potentially initiate cancerous
behaviours. Thus our model does not have a ‘flag’ that says whether the cell
is cancerous or not (cancer is a phenotypical property of a collection of cells,
not a property of a single cell), but is a model of a population of cells with
varying properties, which allows investigation of the situations that lead to the
emergence of a cancerous phenotype.

Figure 14 shows our state model of a stem cell SC. It has two sub-states:
quiescent and active. It is produced (via reversion, or from a divided daughter
cell) in the active state, and it exits to differentiate or divide from the active
state. It can apoptose from any state.

Figure 15 shows our state model of a TA cell. It has three sub-states: juvenile
(just produced), excreting (active)1, and mature (ready to divide or differenti-
ate). A TA cell is produced (via differentiation of a stem cell, or from a divided
daughter cell) in the juvenile state. It can revert to a stem cell from this juvenile
state; it can differentiate or divide from the mature state. It can apoptose from
any state.

We omit discussion here of the CB and Luminal L cell state models, for
brevity. The state models of the various daughter cells are essentially trivial

1 The term excreting is used here to refer to a metabolically active cell before it
commits to differentiation, division or death. Excreting cells in this model can emit
signals to the environment.



Fig. 15. A state model of a TA cell (a token in the TA place). It has three sub-states:
juvenile, excreting, and mature. A TA cell is produced in the juvenile state. It can
revert to a stem cell from this juvenile state; it can differentiate or divide from the
mature state. It can apoptose from any state.

Fig. 16. A state model of a daughter cell (a token in the DSC place). The model for
the other daughter cell places has identical logic.

Fig. 17. A class model of the divSC transition. This can be automatically generated
from the Petri net model.

(figure 16), having no substates. The state models of the various dead cells are
even more trivial (no substates, one input, no outputs).

All the transitions in these state models have conditions and rates associated
with them, some affected by environmental conditions. We omit discussion of
these, again for brevity.

6.4 The cell transition model

There is a subclass of Transition for each transition in the Petri net (not shown).
The subclassing is an instantiation of figure 5, and automatically generatable
from the Petri net model. Figure 17 shows our class model of a divSC transition,
an (automatically generatable) instantiation of figure 5.



The operation of the specific transition object is to take the genome of the
parent stem cell, and ‘replicate’ it, subject to an environmentally and genomi-
cally specified mutation. So, in pseudocode:

div SC()
output1.genome = mutate(input.genome, env)
output2.genome = mutate(input.genome, env)

This gives two potentially different resulting genomes, as the mutate() operation
is stochastic.

6.5 The full combined model

All the separate models are combined automatically by matching cell layer and
Petri net layer names, as described in §4.

6.6 Model and simulator validation process

Validation is a continuous review process between the biological domain experts,
the modellers, and the simulation developers [33]. The validation process for the
models presented in this paper comprised walk-throughs of the diagrammatic
models, with highlighting and discussion of the appropriateness of assumptions
and abstractions. Meeting notes are recorded in the project wiki.

In the prostate cancer modelling, our domain expert is a group of researchers
from Maitland’s Yorkshire Cancer Research lab at the University of York. One
of the development team is also a member of this lab; his roles are: to identify
biological issues as they arise; to provide background and interpretation of the
biology for the developers; and to set up review meetings at which both develop-
ers and lab members are represented. In producing the first prototype simulator,
there were four major review meetings, at which diagrammatic models were dis-
cussed in detail, and changed to better represent the biological understanding
of the laboratory researchers. The developer team comprised an implementation
expert, two modelling experts and the link-biologist, who has experience of mod-
elling and simulating biological systems. Many of the advances in modelling the
prostate cell behaviours occurred in regular discussions among the team.

A validation argument for the models and simulator has been captured in a
rigorous form after the modelling [36]. The information needed for this argument
was captured during the development process.

7 The platform model and prototype simulator

In moving from the domain model to the platform model, we focus on the im-
plementation detail of the simulator. This requires design decisions about the
implementation of the concepts in the domain model.

At the time of writing, we have completed a first prototype simulator, us-
ing a platform model developed from the domain model in §6, which was fully



validated with YCR biologists before implementation started. The prototype
simulator is being calibrated, and we are testing its scalability properties and
performance.

7.1 The platform model derived from the domain model

To implement the prostate cell behaviours, we chose to use a process-oriented
programming language, since this provides a natural implementation for the
state-transition structure of the high-level model in §6. For prototyping, we use
the JCSP (Java Communicating Sequential Processes) class library for Java: this
also gives us a seamless development from the low-level OO models.

JCSP2 provides a natural way to capture the agent semantics. Any class
that implements the JCSP class CSProcess has instances that each run in its own
separate Java thread. The Petri net domain model places and transitions map to
platform model CSProcess classes, and the Petri net arcs map to communication
channels between the processes.

The use of JCSP requires the addition of structures to implement process
synchronisation: JCSP barriers to synchronise operations, so that all parts of
the simulation experience the same number of time-steps, at the same time.

The prototype simulation is developed from the stem cell division and differ-
entiation domain model (figure 9), with the addition of transit amplifying cell
apoptosis (figure 10). The platform model is summarised in a Java class diagram
(figure 18). Each place and transition from the domain model is a singleton Java
class that implements the JCSP class CSProcess. Because places and transitions
have common characteristics, inheritance hierarchies are used (not shown in fig-
ure 18).

The current prototype simulator includes stem cells (SCs), daughter stem
cells, TA cells, and dead stem and TA cells. Stem cells move between the sub-
states active and quiescent, and can apoptose, differentiate or divide (figure 14).
The TA cells have only limited behaviour: they are either active or resting, and
can only revert to a stem cell or apoptose.

Cell division and differentiation in the platform model is derived from the
Petri net structures, with the detailed actions of each behaviour defined in the
state diagrams of the domain model. The sequence diagrams in the domain
model (not illustrated) provide the interaction detail for the implementation.

The cell state and operations are defined on the hierarchy of Cell classes
(implementing figure 13) Each cell type has appropriate methods for changing
its state, and an instance of the Genome class. The design decision to extract
the genome as a Java class supports the operations needed to enact the state-
diagram state changes (such as the move from active to quiescent states of the
stem cell, figure 14). The genome stores and sets probabilities for different cell
events, which gives the necessary control over state change for biological exper-
imentation with the simulator; as in the cell biology, the genome representation
allows differentiation to change the ‘active genes’ in the genome.

2 http://www.cs.kent.ac.uk/projects/ofa/jcsp/



Fig. 18. Platform model of places, transitions, and cells.

The platform model also has a basic Environment class. This is used to rep-
resent a global environment, the simulated prostate tissue. Cells can poll the
environment at any time, and the results affect the specific behaviour of each
cell. The interaction of the cells with the environment will be used to simu-
late global mutation rates, and ultimately potential treatments that could alter
the mutation rate of the whole prostate tissue. There is significant further de-
velopment to be done, of which the refinement of the environment, and of the
behaviour and regulation of the genome during the life of a cell are perhaps the
most interesting and potentially challenging.



7.2 The platform model implementation additions

The platform model needs extra implementation specific features not derived
from the domain model: buffers between places and transitions; JCSP barriers
to synchronise processes; a global clock to simulate time.

JCSP multi-threading provides better performance than a purely-sequential
implementation. Threads are used for places and transitions, whilst individual
cells (tokens in each location) are implemented as Java objects (not CSProcess
objects, due to the limited number of threads available), with relevant behaviours
invoked each simulation timestep. This means that the cells in a place or transi-
tion can all be processed during each time-step. This design gives the potential
to support many thousands of cell objects per place, which is the biological
requirement for the eventual cancer simulations.

The Place and Transition JCSP CSProcess classes provide access to both the
read and write CSP channels (and barriers) as well as interaction with the Glob-
alClock and the Environment singleton classes. Specific places and transitions
in the platform model extend the Places and Transition classes: for example,
TACellPlace extends Place implements the domain model place TA in figure 9,
and TACellToStemCellTrans extends Transition implements revTA in figure 9.

In the implementation, cells are passed between places and transitions via
JSCP InfiniteBuffers, which are used to control synchronisation of channels con-
necting places and transitions: this means that there is one InfiniteBuffer for each
arc in figure 9. InfiniteBuffers do not impose read or write locks on the threads
accessing them (unlike other JSCP channels); this means that threads can write
data into the buffer and proceed without waiting for another process to read the
data. In the simulator, this is of particular importance when there are no cells
arriving at a particular location in a particular time-step: the place can process
any cells that are already there, rather than be suspended waiting for cells that
are not coming.

To keep track of the number of timesteps that the simulation has completed,
the GlobalClock is implemented as a JCSP CSProcess. The clocking allows state
readings to be regularly output during simulation, and allows the setting of an
end point for the simulation run. The GlobalClock synchronises on the same
barrier as all the places and transitions.

The barrier design and implementation is critical in ensuring that all places
and transitions experience the same sequence of timesteps and remain synchro-
nised. Before any place or transition can accept cells from a buffer to which it is
connected, all places and all transitions must be synchronised on a read barrier.
Once synchronised all cells are removed from the buffers and are processed for
that timestep. Once the cells are processed all places and all transitions that
output cells (that is, all locations except DeadPlaces) must synchronise on a
write barrier. Once synchronised, the locations move the relevant cells to the
correct buffer, and then synchronise on the read barrier. This ensures that all
cells are read before any are processed, and all cells are written correctly before
any are read. The additional development burden of correct barrier design can
be verified by formal CSP analysis if required.



All the places and transitions are modelled as singleton classes so that they
can access each other as the program requires, supporting essential feedback
mechanisms in the simulation. For example, in the prototype model, the prob-
ability of a TA cell reverting to a stem cell increases if there are no stem cells
in the stem cells place, and stem cells remain quiescent longer as the number of
TA cells rises; these rate changes act as a surrogate for spatial crowding in the
environment (see [36] for further discussion).

7.3 Initial Results

The prototype simulator has been used to develop an approach to implementa-
tion from multiple linked models. The simulator is subject to testing, particu-
larly of the logic of the design and performance. It has not yet been used to run
biologically-relevant experiments.

The implemented genome was designed to calibrate the prototype simulator,
to make it produce large numbers of TA cells and maintain relatively small num-
bers of stem cells, with low death rates. This will replicate the normal behaviour
of the prostate in biological experimentation.

The prototype simulator has completed testing with total cell numbers rang-
ing between 100 000 to 600 000. Typical performance is illustrated by initialising
a simulation run with 2 stem cells; the number of cells quickly grows as stem
cells divide and differentiate; the expansion then slows as the TA population gets
large, due to the surrogate crowding effects; the result after 100 000 time-steps
is 851 stem cells, 598 616 TA cells, 56 dead stem cells, and 28 153 dead TA cells.
(These numbers are not being represented as biologically relevant, since the rates
have not been calibrated, but they do give an indication of the achievable scale.)
This simulation took 23 minutes on a 3.2GHz AMD Phenom II computer. Whilst
this is not particularly fast, it is a significant improvement on the time taken
to conduct the equivalent laboratory tests on prostate cell behaviour (weeks or
months of expensive wet-lab procedures).

Simulation performance is likely to decrease as simulation complexity in-
creases but it should be possible to simulate populations of cells well into the
millions within realistic timeframes. Further work on the implementation ar-
chitecture to capture more of the natural parallel structure of the model (for
example, by increasing the implementation parallelism within individual places
and transitions) would support distribution across clusters or cloud platforms.
The full process-oriented design, with each individual cell implemented as a
process, would be transferable to high-performance parallel languages such as
occam-π [50] not limited by the number of available threads.

8 Further work

8.1 Further work on the prostate model

The prostate is a complex organ composed of many cell types. The model we
outline in this work is an excellent foundation for an iterative systems biology
programme to analyse prostate cancer neogenesis.



Parameterisation & Initial Conditions. As with any model, we have a large
number of possible variables that need to be parameterised. Transition rates in
the Petri net layer need to be defined as accurately as possible. Similarly, the
initial conditions for the model need to be sensibly defined. These parameter
values come from a variety of sources: literature searches; close collaboration
with domain experts when choosing suitable in silico proxies; focussed wet-lab
experimentation to generate the required data.

Cell Genome. Currently, each cell type has a minimal genome. As the model is
refined, suitable variables can be placed upon the genome, allowing for mutable
cell phenotypes. It is tempting to add as much complexity to the model as
possible, thus initially adding all the genes that we can think of to the cell’s
genome; however, we should attempt to keep the model as simple as possible
whilst retaining the ability to address real biological hypotheses. The addition
of genes to the cell genome and the parameterisation of their rates is a major
challenge for the next stage of this project.

New Cell types. Castration-resistant prostate cancer frequently shows a neu-
roendocrine like phenotype [47]. Currently, our model does not include stromal
or neuroendocrine cells, with the interactions between these cell types and the
modelled cells being abstracted to ‘global’ signals. If necessary, the inclusion
of stromal and neuroendocrine cells would be possible, but this extra complex-
ity would have to be justified by added ability of the model to address specific
biological hypotheses.

8.2 Tool development

In this paper, the way the models in the two layers are combined is described
informally. The approach could readily be made rigorous using model-weaving
techniques from model driven engineering [2, 3, 21], allowing tool support (see
also §5).

The (draft) Petri net ISO standard [17, 18] defines the notation in terms of a
UML class diagram, or metamodel. This would make it possible to integrate, at
a deeper semantic (or at least abstract syntax) level, the Petri net notation and
UML state diagrams (as well as other UML modelling notations). Two motiva-
tions for a language integration would be semantic consistency, and integrated
tool development. Support tools would obviously help the use of combinations of
models. Semantic consistency is theoretically desirable; however, even if we unify
the semantics of two diagram notations, there is no way of guaranteeing that
the user intends their diagram to follow the semantics defined by the language
developer.



Fig. 19. An example catalytic arc. This is a small variant of figure 1, with the arc
from p1 to ta here a catalytic arc (left). The only change to the overall model is in the
sequence chart (right), where the token p1 is not consumed by the transition.

8.3 Extensions to this modelling approach

There are several extensions to this Petri net plus object modelling approach
that are needed to make this more generally applicable to biological modelling.
We outline a few here.

Petri nets can also be used to model biological processes of inhibition and
catalysis, by suitably interpreting the relevant arcs. Inhibitory arcs need no
change to the model described: they have the Petri net semantics of not per-
mitting a transition to fire if there is a token in the relevant place. Catalytic
arcs3 need one change to the sequence diagram: the catalytic token object is not
terminated (not consumed) by the transition. For example, see figure 19.

Larger models will need more structuring capabilities. We have used fusion
places (figure 2) to split our Petri net into digestible chunks. Fusion transitions
could be used to capture an entire sub-net, for example, to capture the identical
logic of the various cell division stages. This requires further work to determine
naming conventions to allow the individual models to be combined into a well-
defined whole.

8.4 Incorporating other approaches

There is nothing specific to Petri nets and object models in our general approach;
they are simply one way of capturing some high level global structure, and lower
3 Catalysis is sometimes denoted by a double-headed solid arc in the Petri net, rather

than the dashed arc of figure 19a. In our approach, this would imply that the token
is consumed, and a new different token produced to replace it. The double-headed
arc fits more readily into the ‘token flow’ interpretation (see §2.1), rather than the
‘production and consumption’ interpretation.



concept Petri net L-System

type of component place symbol
change of component transition production

instance of component token instance of symbol
current state marking current generation

Fig. 20. Relationship between high level Petri net models and L-System models

level component behaviours. This choice is a natural fit to a cell division model,
but other biological processes may be better fit by other modelling techniques.

For example, L-Systems [37] have been designed to model plant-like growth
process. Preliminary work suggests that they can be used in a hybrid model in
an analogous way.

At the highest level, an L-System component (called a module) is just a
symbol; and productions (rewrite rules) define how symbols ‘grow’ (are rewritten
into sequences of symbols).

Descending levels one can add detail. Symbols can have parameters whose
values are determined by the productions. As one adds more detail, full blown
object/simulation models can be added to give the symbols and rewrites richer
behaviours. This is the approach that the L-Studio tool [23] implements (by
calling out to C functions).

We can use our approach to make this interaction of rewrite rules and object
models fully rigorous: a high level L-System growth model can be combined with
a lower level object-based module model. The correspondence between the Petri
net approach and the L-System approach is shown in figure 20 (and hints at the
possibility of a unifying metamodel). We can use the same approach to develop
an object model that describes complicated behaviour in components and in
component transitions. The ‘glue’ between the L-System and object model layers
would need to be a little different from our Petri net/object model glue described
above, however, as it would need to incorporate communication between the low
level objects (between symbol instances), eg to implement hormone transport,
during the non-growth part of the iteration.

9 Summary and Conclusions

We have presented a rigorous hybrid modelling approach combining the strengths
of Petri nets and object-oriented models. These models make sense individually,
at suitable levels of abstraction, and provide a systematic modular approach to
modelling and to model validation, allowing us to use diverse modelling tech-
niques in developing multi-scale models with no loss of rigour or validity. This
hybrid modelling approach is not specific to Petri nets and object modelling; we
outline a similar approach to combining L-Systems models with other modelling
approaches, and discuss how the hybrid approach effectively amounts to the use
of a domain specific language.



We have developed our hybrid modelling approach in order to model cell di-
vision and differentiation in the prostate. In building the prostate cell model, we
have followed the CoSMoS process, with close cooperation between the biological
domain experts and the modellers and simulation developers, to ensure that the
model makes both biological and computational sense. In a companion paper
[36] we have argued the validity of our model. We have developed a prototype
simulation of the prostate cell model, and demonstrated that it is capable of
simulating biologically-relevant numbers of cells.

In future work we will develop the hybrid modelling approach as a generic
technique for building multi-scale models, along with tool support. We will also
develop the prostate cell model and simulation further, and use it to investigate
the onset of cancerous phenotypes.
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