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Abstract.  We claim that the alleged “debt” owed by Genetic and Evolutionary 
Computation (GEC) to Biology is exaggerated.  However, we do believe that 
Biology is potentially an extraordinarily rich source of inspiration, and that a highly 
fruitful way forward is to genuinely plunder it, to be more greatly inspired than at 
present.  We would simply like to increase the debt: to acquire a debt worth 
repaying.  

1   What Debt? 

“The field of Genetic and Evolutionary Computation (GEC) has greatly 
benefited by borrowing ideas from the biological sciences. Recently, it 
has become clear that GEC can help solve biological problems, and 
thereby repay its debt.”               – BioGEC call for papers, 2004 

 
We argue that far from being in a position to “repay its debt”, the bio-inspired 
computer science community still has much to learn from Biology. 

2   The power of Genetic and Evolutionary Computation 

Genetic and Evolutionary Computation (GEC) has shown great promise in 
bioinformatics: in fitting (relatively) simple models to large quantities of biological 
data.  GEC tends to be better for static problems – providing a fit to a given data set – 
rather than more dynamic problems – trying to model complex time-varying data [1].   

The search approaches taken tend to be rather inflexible, and build in quite a lot of 
modelling assumptions.  For example, the choice of particular primitive functions 
used in a GP fit to data has a very strong influence on the models that result. 

Recent innovative advances in intrinsic hardware evolution could potentially be 
carried over into biology.  Intrinsic GEC could be used to evolve parameters for 
biological experiments (we stop short of suggesting, for biological organisms, but 
maybe we should not be so coy?), with the evaluation of the population being 
performed in vivo.  An interesting recent development is that of the Robot Scientist 



Project which incorporates logic processes to suggest and refute hypotheses 
concerning the role of metabolic enzymes in a fully automatic system incorporating a 
robot for performing actual cell culturing experiments [14].   

GEC problems tend to be posed in terms of search over static “fitness landscapes”.  
Some work has been done on tracking changes to fitness landscapes in general, e.g. 
[5], and co-evolution in particular (GECCO typically has a strand dedicated to co-
evolution) , but this rather static feel pervades. 

More could be done to use GEC techniques examine models (evolved or 
otherwise) for stability, etc: more work on co-evolution of solutions and test case 
data; on evolution of parameters to stress modelling assumptions; on evolution of sets 
of diverse models to explore a problem space, etc. 

3 The weaknesses of GEC 

Many problems in biology nowadays are being cast in terms of dynamical systems 
based on complex networks of interactions – here the currency is network topology, 
phase spaces, attractors, trajectories – with short term changes in a system being 
characterised as its trajectory between attractors, longer term changes as changing 
phase space parameters altering the position, number and class of attractors, and even 
longer term changes modifying the dimension of the phase space itself [2].  Metabolic 
and regulatory networks [12], developmental processes [11], organism movement, 
and learning processes [13], all have models couched in these terms.  Classic GEC, 
with its different conceptual basis of search over fitness landscapes, does not appear 
well-suited to this important class of problems. 

4 Important questions in biology 

Rather than looking for the biological “nails” we can attack with our shiny GEC 
“hammer”, however, let us take a moment to step back and ask what the biologists 
think are the important questions and difficult problems in Biology today. 

There is a trend in Biology to become more holistic, or integrative, in 
acknowledgement of (and response to) the limits of reductionism.  With all the 
components (genes, proteins, metabolites) we can start to understand the system 
(“bottom-up”), or acknowledge the system (organism, process or pathology), and then 
discover the subsystems and their coupling (“top-down”) [15] 

Parts of Biology are undergoing a culture change to a “data rich” environment (e.g. 
the “discovery science” of ’omics), much as astronomy and particle physics have 
already undergone.  Can biology learn anything from those domains?  Or is the 
complexity of its models and systems so much greater that the situation is 
qualitatively different? 

What are the grand challenges in Biology?  At the molecular level, a robust 
solution to the Protein Folding problem (the prediction of the three-dimensional 
structure of a protein based on its amino-acid sequence alone)  is something of a holy 



grail in biophysics [4].  Folding is a test-bed for myriad search and optimisation 
methods and is a key driver in high performance computing developments [3].  Large 
multidisciplinary efforts are being targeted at whole cell modelling [e.g 8, 10]. Such 
projects  exemplify the full interplay of simulation and knowledge engineering into 
the framework of data-driven ’omics approaches.  A significant driving force for 
these efforts is the prospect of an in silico platform for developing patient-specific 
therapeutic strategies in molecular medicine.  Understanding evolution and 
development in terms of the regulatory networks of molecular interactions is a huge 
challenge and targets the basic mechanisms of these fundamental biological processes 
[9]. Simulating whole organs or organ systems requires models that link across 
multiple scales of biological organisation.  Such computational physiology is 
emerging as a highly quantitative discipline [7].   

5 What further biological inspiration should we seek? 

The fact that there are bio-inspired approached being used to analyse biological data 
is possibly just coincidence – any search technique, however it was inspired, that 
works well would be useful.  GEC techniques may be of interest to biologists mostly 
because they are couched in a veneer of biological terminology.   

This is true of bio-inspired population search models in general.  Whether the 
search be performed by an evolutionary approach, an immune system, a swarm 
system, or whatever, the underlying structure of the algorithms has a great deal of 
similarity (fittest cohort of a population being used to produce the next generation), 
and very little biological richness or diversity.  Much effort is spent on “parameter 
tweaking” (eg, small changes to rates of a simplistic mutation model), and rather less 
on more sophisticated bio-inspiration.  (There are, of course, exceptions to all these, 
but they are indeed the exception, rather than the rule.) 

Where is the biological inspiration?  Biological populations are much larger than 
their algorithmic progeny.  Biological chromosomes have much more structure than 
digit strings.  Biological search does not start from “random” populations.  
Evolutionary landscapes involve ecologies, not single species.  Genotype and 
phenotype are separated by a huge developmental distance, involving complex 
dynamics.  Biology has several levels of organisational, spatial, and temporal 
structure.  Biological “algorithms” are not solving optimisation problems.  Biological 
organisms operate within the real world, and suffer constraints (for example, and 
organism has to be viable at all stages during its development, not only at its “final 
fitness evaluation”), and exploit emergent consequences of embodiment. 

This gap between the biology and its implemented inspiration may be due to a 
cultural difference.  Biologists are interested in understanding the world as it is (and 
how it came to be).  Computer Scientists are interested in building simple and 
powerful models and tools – with the emphasis on simple (but not simplistic).  
Abstraction is the name of the game – but when considering biological mechanisms, 
too much abstraction can discard the very complexity that gives biology its power.  In 
the race to become simple, comprehensible, and tractable, the domain may have been 
divested of its complexity, emergence, realism, and power [6]. 



In addition to the subject matter of biology, GEC (and CS in general) has much to 
learn from biological experimental methods.  Simulation constitutes an experiment.  
Thus issues of hypothesis, experimental design, control, reproducibility, and 
interpretation become relevant.  Never again should we see papers or presentations 
describing the import of a single data point output from an uncontrolled simulation. 

6 In conclusion 

Rather than noticing the current similarity between vocabularies, based on  naïve 
implementations of biological “algorithms”, computer science should be embracing 
and plundering the vast wealth of structure and diversity available in biology.  Only 
once all this richness has moved into the artificial domain, and genuine light shed on 
complex problems, can computer science hope to start thinking of “repaying its debt” 
to biology. 
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