
Heterotic Computing

Viv Kendon1, Angelika Sebald2, Susan Stepney3,
Matthias Bechmann2, Peter Hines3, and Robert C. Wagner1

1 School of Physics and Astronomy, University of Leeds, UK
2 Department of Chemistry, University of York, UK

3 Department of Computer Science, University of York, UK

Abstract. Non-classical computation has tended to consider only single
computational models: neural, analog, quantum, etc. However, combined
computational models can both have more computational power, and
more natural programming approaches, than such ‘pure’ models alone.
Here we outline a proposed new approach, which we term heterotic com-
puting4. We discuss how this might be incorporated in an accessible
refinement-based computational framework for combining diverse com-
putational models, and describe a range of physical exemplars (com-
binations of classical discrete, quantum discrete, classical analog, and
quantum analog) that could be used to demonstrate the capability.

1 Introduction

Classical computation is epitomised by the Turing machine paradigm. We are
concerned with more diverse models of computation, in particular determined
by the physical properties of the system used as a computer [27].

Given that we have different basic types of computers, not necessarily Turing
universal, it is natural to ask how to compose them into hybrid – “heterotic” –
computers, and to ask about the computational power of the composition. Thus,
we need a framework that not only allows different models of computation to be
compared and contrasted, but also allows us to compose different models and
determine the resulting computational power.

The structure of the paper is as follows. §2 describes two existing heterotic
computers that are used to motivate our approach. §3 outlines the heterotic
framework, introducing the proposed computational architecture, and outlining
a semantic bases and refinement approach. §4 describes how to progress the
classical nuclear magnetic resonance (NMR) computer within this framework.
§5 describes an approach that challenges the proposed framework. §6 concludes.

2 Motivating examples

The computational power of a given physical system is determined by:

4 Heterotic, from the Greek heterosis, a term in genetics meaning ‘hybrid vigour’.

1. How much of what type of data can be encoded in the system. Eg: identical
objects that can be placed in different collections can be used to encode
natural numbers in a unary representation, and to do simple arithmetic by
concatenation; they cannot encode negative numbers, as there is no sign bit,
or zero if only non-empty collections can exist. (See also work by Blakey [8].)

2. What operations are available to manipulate the system. Eg: quantum com-
puting, following DiVincenzo’s checklist [15], first identifies a physical system
that can represent a qubit, then identifies a set of operations sufficiently rich
to provide universal quantum computation. A CNOT gate combined with
single qubit rotations through π/8 is universal, while the gates in the Clifford
group (Pauli operators plus Hadamard and CNOT) are not universal.

3. What operations are available to decode the end result. Eg: in quantum
computing, the measurements available to obtain the result can reveal only
a limited amount of information, making the final decoding step highly non-
trivial. Additionally, they are not just observations, but can form an essential
part of the computation.

Classically, only point 2 is analysed in depth, but in wider models, points
1 and 3 are also crucial. In our heterotic approach, interaction between the
computational layers requires consideration of 1 and 3 within the framework.

Two motivating examples that demonstrate a layered approach to heterotic
computation are described here. The first motivating example from quantum
computation is the cluster state, or one-way, quantum computer. The second
example is classical computation in NMR [24], where the instruments controlling
the NMR form part (but not all) of the computation. We discuss these further
here, to illustrate the underlying heterotic principles in action.

2.1 Cluster state computing

Anders and Browne [2] noticed that the classical computation required to con-
trol and feed forward information in a quantum cluster state computer is a
crucial part of the computational power. Cluster state measurement without
feed-forward is (efficiently) classically simulable, as is (trivially) the classical
part of the computation. However, the combination of the two is equivalent to
the quantum circuit model, which is not (efficiently) classically simulable. Hence
the combination of layers is in a more powerful computational class than either
layer alone. The base and control layer are shown in figure 1a.

2.2 Classical NMR computing

NMR experiments provide both a classical and a quantum computing layer,
intimately intermixed with discrete and continuous parameters at several levels.
The classical layer typically comprises the spectrometer, radio-frequency (r.f.)
pulses, the detector, and the macroscopic (nuclear) magnetisation of a sample
in the magnetic field, as described by density matrix formalism. The quantum
layer is provided by the (individual) nuclear spin systems, with their discrete

(a)

measurement

 layer

cluster state layer

observe

measure

decide

(b)

signal transduction

 layer

NMR gate layer

outputs

inputs

convert

w

f

Fig. 1. (a) Cluster state computer. The base layer is a cluster state. The control layer
performs measurements on the base layer, thereby changing its state; the control layer
uses the observed results to decide what measurement to perform next. (b) Classical
NMR computer [24]. The base layer gates are implemented as NMR experiments: inputs
are frequencies ω and phase delays φ; outputs are the integrated output signal. The
control layer performs “signal transduction”: taking the integrated output, interpreting
it as a 0 or 1, and converting that to the appropriate physical input signal.

states being very well described by quantum mechanics. NMR experiments thus
involve both discrete (spin states) and continuous (e.g. r.f. pulses) parameters.
See figure 1b.

Most importantly, NMR experiments give us an element of choice: we can
opt for a purely classical behaviour by using only samples made up from iso-
lated (non-coupled) nuclear spins, the dynamics of which are fully described by
a classical vector model (for background, see [24]), while choosing a system with
coupled nuclear spins provides a mixed classical/quantum combination. More-
over, we can easily switch between the two regimes within a single experiment
(e.g. de- and recoupling [16]).

Prior work on computation using NMR mostly deals with implementations
of quantum computations, predominantly based on solution-state NMR experi-
ments [19], with some examples exploiting solid-state NMR [13]. Prior work by
ourselves has proved the suitability of NMR for classical (binary) logic gates
[24], based on a range of different solution-state NMR experiments. We imple-
mented a half-adder constructed from binary NAND gates in an NMR system
with a classical control performing ‘signal transduction’, transforming the phys-
ical outputs of one gate to the physical inputs of the next [24]. Further, we have
produced a preliminary classification of the experimental NMR parameters for
implementing classical logic gates. More recently, we have extended our work
to take advantage of the inherently continuous nature of the NMR parameter
space of non-coupled spin species [7] by implementing continuous gates, so the
combined system performs an analog computation.

The classical and quantum computational layers have thus both been demon-
strated experimentally in NMR, and the rich parameter space (together with the
very well developed theory of NMR and superb degrees of experimental control)
provide the source of the computational power of NMR implementations. How-
ever, the extent to which the control layer contributes to the computational
power of quantum or classical NMR computing has yet to be analysed.

C

B 'B

C '

B ' B ''

C ''C '

BOp BOp

COp COp

Fig. 2. The stepwise interactions between a base computation (state B, state change
BOp) and a controller computation (state C, state change COp): the input to one is
the output from the other.

3 Heterotic framework

3.1 Computational framework

Our basic heterotic model is two coupled computers, one ‘guiding’ or controlling
the other. So the base machine does a step, the guiding machine looks at its
output, and tells it what to do next, and so on. The pattern of computation
and communication alternates between the two (figure 2). In this basic model,
the state of one layer does not change during the computation by the other (for
example, the control layer remains in state C ′ as the base layer evolves from B′

to B′′). In a physical implementation this state might continue to evolve, yet
if its subsequent computation depends only on its input (either it is essentially
‘reset’ to the previous state, or the input fully determines what happens next),
it still fits the basic model. This case holds for both our motivating examples
above.

We discuss a possible semantic framework to describe the hybrid coupling
of the two machine types, and a refinement/retrenchment approach to support
a program development approach. Together, these would provide the tools to
determine the combined computational power of the heterotic computer.

3.2 Semantic framework

The ultimate goal is a form of refinement calculus for heterotic computers, suit-
able for use by the working programmer. However, producing such a framework
first requires theoretical input. In particular, we seek a suitable form of semantics
on which the refinement calculus is based. Although such models exist for the
individual systems described here, the theoretical challenge is to give a formal
description of how such systems may interact in non-trivial ways.

Classical analog computation has been modelled in several ways, from the
traditional approaches based on differential equations, to interval-based analy-
ses relying on domain theory. Similarly, quantum computation has many models,
including the stabiliser formalism, purely category-theoretic approaches, the cir-
cuit model, and density matrices particularly suitable for quantum/probabilistic
hybrid systems. Classical probabilistic computation can be modelled via cate-
gories of stochastic relations, and non-determinism frequently requires categories
of relations, or constructions based on the power set functor.

These approaches provide background for the development of a semantic
framework. Due to the wide range of heterotic computing systems under consid-
eration, we aim for an abstract categorical semantics, and seek concrete instan-
tiations where appropriate.

Given two dissimilar systems A and B, and models of each of these in dis-
tinct categories CA and CB , we require a formal setting in which both the joint
system, and the non-trivial interactions between systems A and B may be mod-
elled. A common approach to modelling a joint system is via the straightforward
product category CA×CB . However, for our purposes, this is entirely unsuitable:
the real object of study should instead be the non-trivial interactions between
the subsystems. Although ad hoc extensions or quotients of the straightforward
product category may have some utility, we take a more structural approach,
based on the theory of adjunctions [23].

In categorical models of logic and computation, the notion of a monoidal
closed category is often fundamental: monoidal closure has a strongly compu-
tational interpretation as β-reduction (in Cartesian closed categories) or cut-
elimination in logical systems [20], and even compositionality in models of Tur-
ing machines [18]. Formally, a monoidal closed category C, has two functors, the
monoidal tensor ⊗ : C × C → C, and the internal hom [→] : Cop × C → C
satisfying various conditions laid out in [23]. In particular, these two functors
are related by the following condition

C(A⊗B,C) ∼= C(B, [A→ C]) (1)

This is a canonical example of an adjunction. Further, in the very special case
where the system is untyped (so all objects of C are isomorphic), we expect
to recover models of universal computation (e.g. the C-monoids of [20] or the
untyped compact closure of [17]).

For our purposes, monoidal closure, in either its typed or untyped form, is too
strong — it is clearly describing the situation where the computation is carried
out in a single system. Thus, we take the notion of an adjunction between two
functors as primitive, without the additional baggage imposed by categorical
closure. The notion of an adjunction is simply a categorification of the concept
of a galois connection, thus two functors Γ : CA → CB and ∆ : CB → CA.
form an adjoint pair when CA(Γ (X), Y) ∼= CB(X,∆(Y)), for all X ∈ Ob(CA),
Y ∈ Ob(CB). The duality provided by such an adjunction allows us to model the
mutual update of system A by system B and system B by system A, without
requiring that system B is fully able to simulate the behaviour of system A, or
vice versa. We are thus able to capture the sometimes hidden symmetry within
such interactions.

A concrete example of this notion of adjunction (via its characterisation as
unit/co-unit maps in a 2-category setting), used to describe creation of quantum
systems from classical data, and measurement of quantum systems (resulting in
classical information), can be found in the categorical semantics approach of
Abramsky and Coecke [1]. It thus appears that category theory provides ready-
made abstract conditions suitable for describing the mutual update of distinct

(a)

A'A

C'C

R R'

AOp

COp
(b)

C'C

X'X

RCX RCX'

COp

Fig. 3. (a) A simulation, used to prove refinement; (b) Physical and computational
layer relationship

systems in heterotic computing, along with real concrete examples of how this
works in certain settings.

3.3 Refinement framework

Given some suitable semantic framework, such as the one outlined above, it is
necessary to cast it in a form suitable for enabling the working programmer to
analyse and develop novel heterotic systems in (relatively) familiar ways. We
suggest that a classical refinement framework is more appropriate than, say,
a process algebra approach, since this is more accessible and familiar to the
working programmer.

Introduction. State-and-operation refinement is the classical computational
approach to program development. It takes an abstract, possibly non-determin-
istic, specification of a state A evolving under a sequence of operations AOp, and
‘refines’ it (reducing non-determinism, changing data types) into a more concrete
implementation with state C and operations COp, with the abstract state A
‘retrieved’ from the concrete state C through the retrieve relation R (figure 3a).
We have the refinement correctness requirement (ignoring non-determinism here
for simplicity) that the diagram ‘commute’ (we get the same value for C ′ either
way round):

R′(AOp(A)) = COp(R(A)) (2)

Usually the process of refinement stops at a computational level suitably
concrete to allow implementation, such as a mid-level programming language. It
can in principle be carried further. Here we need to consider it all the way down
to the physical implementation, since we are interested in non-classical execution
models. So we continue refining from C down to the physical level, with a state
X, that evolves under the laws of physics, Φ. The physical state variables in X
are again ‘retrieved’ through relation RCX as computational state variables in
C (figure 3b). 5

5 Refinement ‘reduces non-determinism’ until we reach a completely deterministic im-
plementation. It is interesting to interpret this in the case of quantum computation,
where the implementation is intrinsically non-deterministic. We classically think of
the resolution of non-determinism being under the control of the programmer.

Note that the induced computation COp depends on both the physical sys-
tem Φ and the viewing interpretation RCX .

We would like this diagram to ‘commute’ (to get the same value for X ′ either
way round), but there will be errors (measurement, noise)6. So we can at best
require the inexact commutation

RCX
′(COp(C)) = Φ(RCX(C))± ε (3)

Analog refinement as Retrenchment? Retrenchment [3–6] is a form of in-
exact refinement. It allows deviations from exact refinements by use of various
forms of ‘concedes’ clauses; analysis of the retrenchment concessions provides
insight into the way an implementation deviates from a pure refinement. In par-
ticular, retrenchment has been applied to developing discrete implementations
of real number specifications [5], and to finite implementations of unbounded
natural number specifications, which are necessarily inexact. Also, it has been
suggested as a laboratory for analysing and understanding emergent behaviour
of complex systems [3].

Retrenchment has its critics, but we have argued elsewhere [4] that these
criticisms are invalid in the context of real world engineering developments.
Here we claim that (a rigorously posed form of) retrenchment is appropriate for
casting analog computation in a refinement-like framework. It would be used to
analyse the size, nature, and propagation of errors.

Inputs and outputs. The usual classical refinement correctness rules allow
inputs to and outputs from the operations, but require these to be the same
at the abstract and concrete levels. In previous work [12], we have generalised
these rules to allow refinement of i/o, too. This necessitated the introduction of
a ‘finalisation’ step, that can be interpreted as the definition of the ‘observation’
made on the system. There is an ‘initialisation’ step, that we have extended to
interpret inputs analogously. The finalisation of the most abstract level is usually
the identity (we see the ‘naked’ abstract i/o); more concrete implementations
have more sophisticated finalisations (eg, we see a bit stream, but view it, finalise
it, as an integer) [10].

The correctness rule (again, ignoring non-determinism) is

AFin(A) = CFin(R(A)) (4)

This work has also been extended to the retrenchment arena.
A form of i/o refinement is necessary to move between physical i/o variables

and computational i/o variables. For example, in the case of our NMR adder
[24]: the physical level is the NMR; the computational level is the XOR gate;
the initialisation is interpreting a frequency and a phase delay as a bit; the
finalisation is observing an integrated signal as a bit.
6 Classical digital hardware is extremely engineered to ensure an exact boolean imple-

mentation; this exactness cannot necessarily be assumed in the more general case.

For this form of initialisation/finalisation to work in the analysis, it has to
be possible in principle to provide all the inputs ‘up front’, and to observe (a
record of) all the outputs at the end. This cannot be done for the individual
layers of the heterotic computation, where the output from one layer becomes
the input to the other (it is closer to a Wegner interaction machine architecture
[29]) but can for the overall computation, so we need to be careful about how
we set up the analysis, and precisely what we define as i/o. This step is crucial
in our heterotic framework, since, as stated earlier, the encoding and decoding
processes (formalised as initialisation and finalisation) are non-trivial in general.

Linking outputs to inputs. We have an additional step in the NMR example
[24], where the physical inputs and outputs are of different types, but the output
from one step becomes the input to the next. We perform a ‘signal transduction’
step here (integrals over Fourier transforms transduced to phases, that preserves
the initialisation/finalisation interpretations). This does not have an analogue
in the refinement scenario, because that does not include any link between the
outputs of one operation and the inputs of the next. This is important in the
context of heterotic computing, as there is potentially significant computation
applied to outputs to produce the next inputs. This computation is performed
by the ‘other’ part of the computer.

Heterotic refinement. The base and controller levels can be implemented
(‘refined’) separately. For analog computing, we expect the base level to be im-
plemented in an analogue medium (NMR, quantum cluster state – hence ‘re-
trenched’) and the controller level to be digital, but that is not a necessary
restriction.

Example 1: NMR, where the base level is the NMR gates; the controller
level is mere ‘signal transduction’ – this shows that there is no sharp separation
between the i/o refinement and the computation (in this case it can be done in
either).

Example 2: the quantum cluster state and the parity controller. The state is
set up initially, and the only ‘operation’ performed in the base layer is measure-
ment; which measurement to perform is determined in the classical controller
level based on previous measurement results. The measurement itself changes
(‘collapses’) the state, which is part of the computation.

Such concrete models could be used as the basis for developing a suitable
form of refinement calculus. Possibly the closest pre-existing work relating to
this is the use of weakest precondition semantics to study Grover’s algorithm
developed by d’Hondt and Panagaden [14] — in particular, the way that a hy-
brid quantum/probabilistic setting is modelled by the density matrix formalism.
This gives a specific case of the type of underlying logical rules that need to be
preserved by the refinement calculus, by analogy with the way that traditional
program refinement preserves the Hoare logic. However, in each concrete set-
ting, the behaviour/logic preserved by the refinement process will be different,

and the formal calculus produced in each case will be heavily dependent on the
underlying categorical models.

Moreover, for non-discretised systems, this relevant refinement calculus would
need to be extended to a retrenchment approach to allow a well-defined and prin-
cipled form of ‘inexact refinement’ This would include analysis of propagation
of errors (due to noise, and to ‘drift’), and techniques for correction and control
of these errors.

4 NMR computing within the framework

NMR technology provides a well-developed experimental system in which a va-
riety of computational implementations can be studied and combined. There is
a rich NMR variable space available to be explored, and the interaction between
classical and quantum layers in the NMR system can be adapted to many com-
binations of heterotic compositions. Our existing work [24, 7] on hybrid classical
systems provides a good starting point. To illustrate, we outline how the physical
NMR system is adapted to perform classical gates, and describe the possibilities
for extending this.

4.1 Classical NMR variables

There are three experimental categories of NMR variables that can be used in a
computational context: r.f. pulses and pulse sequences; spin system parameters;
choice of material/state of condensed matter.

Error compensation in r.f. pulses and pulse sequences. The unwanted
effects of imperfect, say π, or π/2 pulses in NMR experiments have always been
at the centre of attention in NMR pulse sequence design. Numerous error com-
pensation techniques exist, most prominently phase cycling is used in almost all
circumstances. As the name implies, phase cycling (of transmitter and receiver
phases) consists of repeating and co-adding spectra obtained with suitably cycled
sets of phases, sometimes up to 64 spectra. This experimental NMR approach to
error compensation is acceptable in many analytical NMR applications as poor
signal-to-noise ratio makes signal averaging necessary anyway. Here we cannot
afford the accumulation of multiple spectra. Instead we need to carefully assess
the imperfections in ‘single shot’ NMR spectra, and determine, for example, the
merits of ‘composite pulses’ [21] in reducing experimental errors.

Characterising spin system parameters. Computational NMR implemen-
tations usually require the presence of more than one spin species with different
resonance frequencies. The presence of a range of frequencies affects the per-
formance of different pulse sequences in different ways. Some of these effects
are experimentally unavoidable, but have an effect in accumulated errors in the
results of concatenated pulse sequences. Some pulse sequences that appeal in the-
ory may have to be discarded for practical reasons. The computational-relevant
consequences of these effects need to be determined.

Choice of material/state of condensed matter. NMR experiments using
isotropic liquids are (usually) straightforward to implement and samples are
easy to prepare. But isotropic liquids do not permit the control of resonance
frequencies as continuous variables (unless one employs field gradients, which
may often not be desirable). Solid state (anisotropic) systems, using either single
crystal or the more readily accessible polycrystalline power, can provide this
extra variable to be exploited for heterotic computation.

4.2 Analysis of classical and quantum layers in NMR computation

Quantum and classical NMR computational systems can be used as heterotic
layers effectively.

The modular NMR tools (pulse sequences, spin systems, state of condensed
matter) can be built into specific computational implementations, where they
can be analysed to understand and classify the relative merits of classical vs
quantum NMR implementations. A concrete example is the Deutsch-Jozsa algo-
rithm. Several NMR quantum implementations have been described [9, 11, 22],
and one can also think of equivalent classical NMR implementations [25]. Exper-
imental NMR imperfections need to be taken into account, as do specific errors
inherent in the classical and/or quantum systems themselves.

The various advantages and disadvantages of classical vs quantum NMR
implementations with regard to parallelism, superposition, and interference are
important. Both classical and quantum implementations of NMR experiments
require preparation of the spin system(s) and appropriate read-out procedures.
The relative cost of each of these is important in determining how one can exploit
the best of both layers. This can be examined by evaluating the performance
and preparation needed for a computational task using either a single n-spin
system or n single spin species.

5 Stressing the framework with continuous variable
computing

The framework described in §3 is a ‘stepwise’ approach. More complicated het-
erotic systems will be ‘continuing’ systems, where the base system’s state con-
tinues to evolve whilst the control layer computes.

An appropriate experimental basis for studying these more complex heterotic
systems is provided by continuous variable computing, both quantum and clas-
sical. Existing models of analog computation could be exploited to extend or
modify the framework to accommodate continuous variables, or clearly define
the framework’s applicability as limited to non-evolving base computation.

Despite providing many of the earliest practical computers, analog compu-
tation (both classical and quantum) has had much less thorough theoretical de-
velopment compared to digital computation. Before it can be cast in a heterotic
framework, some gaps in the theory would need to be filled. In particular, an ap-
proach to analysing the propagation of errors is needed, as is the determinations

of universal gate sets in a substrate-respecting manner (cf [28]). Although under-
developed for computation, continuous variables (both quantum and classical)
are often used in communications channels. It follows that using continuous vari-
ables as a control layer in the heterotic computer can take advantage of the more
highly developed communications technologies, thus a continuous variable con-
trol layer should be easier to achieve than a continuous variable substrate. This
architecture is known as a hybrid scheme in quantum computation (eg [26]) and
is considered one of the most promising scalable routes to useful quantum com-
putation. The inverse, using a discrete quantum control layer on a continuous
quantum base layer, as specified in detail in [28] for a micro-maser experimental
system, is suitable for studying continuous variables in the heterotic framework.

6 Discussion and conclusions

We have described a novel computational framework, heterotic computation,
that can be used to combine computational systems from different implementa-
tion paradigms in a principled and controlled manner, to produce a computa-
tional system qualitatively different from either in isolation. We have outlined
a semantic and refinement framework that could be used to support such an
approach, and indicated how classical NMR computation can be advanced to
exploit the framework.

This is only the first step in hybrid computation. We have discussed an area
that would need enhancement to the framework, where the base layer continues
its computation whilst the controlling layer is working. This will be the case
for a range of dynamical systems; one of the things the controlling layer will
need to decide is when to probe/perturb the base layer, to exploit its dynamics.
Additionally, further forms of parallelism also need to be added to the framework.

We believe the heterotic approach is needed to ensure that the many forms of
unconventional computation can be exploited fully. Each individual paradigm no
longer need be distorted to achieve Turing-completeness. Instead, different com-
ponents can be combined to form a more powerful system, with each component
doing what it does naturally, and best.

References

1. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. Proc.
IEEE Symp. Logic In Comp. Sci. pp. 415–425 (2004)

2. Anders, J., Browne, D.: Computational power of correlations. Phys. Rev. Lett. 102,
050502 (2009)

3. Banach, R., Jeske, C., Fraser, S., Cross, R., Poppleton, M., Stepney, S., King, S.:
Approaching the formal design and development of complex systems: The retrench-
ment position. In: WSCS, IEEE ICECCS’04 (2004)

4. Banach, R., Jeske, C., Poppleton, M., Stepney, S.: Retrenching the purse. Funda-
menta Informaticae 77, 29–69 (2007)

5. Banach, R., Poppleton, M.: Retrenchment: an engineering variation on refinement.
In: 2nd Intl. B Conference. LNCS, vol. 1393, pp. 129–147. Springer (1998)

6. Banach, R., Poppleton, M., Jeske, C., Stepney, S.: Engineering and theoretical
underpinnings of retrenchment. Sci. Comp. Prog. 67(2-3), 301–329 (2007)

7. Bechmann, M., Sebald, A., Stepney, S.: From binary to continuous gates – and
back again. In: ICES 2010. LNCS, vol. 6274, pp. 335–347. Springer (2010)

8. Blakey, E.: Unconventional complexity measures for unconventional computers.
Natural Computing (2010), doi:10.1007/s11047-010-9226-9

9. Chuang, I.L., Vandersypen, L.M.K., Zhou, X., Leung, D.W., Lloyd, S.: Experimen-
tal realization of a quantum algorithm. Nature 393(6681), 143–146 (1998)

10. Clark, J.A., Stepney, S., Chivers, H.: Breaking the model: finalisation and a tax-
onomy of security attacks. ENTCS 137(2), 225–242 (2005)

11. Collins, D., et al.: NMR quantum computation with indirectly coupled gates. Phys.
Rev. A 62(2), 022304 (2000)

12. Cooper, D., Stepney, S., Woodcock, J.: Derivation of Z refinement proof rules:
forwards and backwards rules incorporating input/output refinement. Tech. Rep.
YCS-2002-347, Department of Computer Science, University of York (Dec 2002)

13. Cory, D.G., et al.: NMR based quantum information processing: Achievements and
prospects. Fortschritte der Physik 48(9–11), 875–907 (2000)

14. d’Hondt, E., Panangaden, P.: Quantum weakest preconditions. Math. Struct.
Comp. Sci. 16(3), 429–451 (2006)

15. DiVincenzo, D.P.: The physical implementation of quantum computation.
Fortschritte der Physik 48(9–11), 771–783 (2000), arXiv:quant-ph/0002077v3

16. Dusold, S., Sebald, A.: Dipolar recoupling under magic-angle spinning conditions.
Annual Reports on NMR Spectroscopy 41, 185–264 (2000)

17. Hines, P.: The categorical theory of self-similarity. Theory and Applications of
Categories 6, 33–46 (1999)

18. Hines, P.: A categorical framework for finite state machines. Mathematical Struc-
tures in Computer Science 13, 451–480 (2003)

19. Jones, J.A.: NMR quantum computation. Progress in Nuclear Magnetic Resonance
Spectroscopy 38(4), 325–360 (2001)

20. Lambek, J., Scott, P.: An introduction to higher-order categorical logic. Cambridge
University Press (1986)

21. Levitt, M.H.: Composite pulses. In: Grant, D.M., Harris, R.K. (eds.) Encyclopedia
of Nuclear Magnetic Resonance, vol. 2, pp. 1396–1441. Wiley (1996)

22. Linden, N., Barjat, H., Freeman, R.: An implementation of the Deutsch-Jozsa
algorithm on a three-qubit NMR quantum computer. Chemical Physics Letters
296(1–2), 61–67 (1998)

23. Mac Lane, S.: Categories for the working mathematician. Springer (1971)
24. Roselló-Merino, M., Bechmann, M., Sebald, A., Stepney, S.: Classical computing

in nuclear magnetic resonance. IJUC 6(3–4), 163–195 (2010)
25. Sebald, A., Bechmann, M., Calude, C.S., Abbott, A.A.: NMR-based classical im-

plementation of the de-quantisation of Deutsch’s problem, (work in progress)
26. Spiller, T.P., Nemoto, K., Braunstein, S.L., Munro, W.J., van Loock, P., Milburn,

G.J.: Quantum computation by communication. New J. Phys. 8(2), 30 (2006)
27. Stepney, S.: The neglected pillar of material computation. Physica D: Nonlinear

Phenomena 237(9), 1157–1164 (July 2008)
28. Wagner, R.C., Everitt, M.S., Jones, M.L., Kendon, V.M.: Universal continuous

variable quantum computation in the micromaser. In: Unconventional Computa-
tion 2010. LNCS, vol. 6079, pp. 152–163. Springer (2010)

29. Wegner, P.: Why interaction is more powerful than algorithms. CACM 40, 80–91
(1997)

