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Abstract. This paper investigates whether optimisation techniques can
be used to evolve artifacts of cryptographic significance which are ap-
parently secure, but which have hidden properties that may facilitate
cryptanalysis. We show how this might be done and how such sneaky
use of optimisation may be detected.

1 Introduction

The issue of optimisation is fundamental to cryptography. Pseudo-random bit
streams should appear as random as possible, cryptanalysts try to extract the
maximum amount of useful information from available data and designers wish
to make attacks as difficult as possible. It is not surprising that some security
researchers have begun to consider the use of heuristic optimisation algorithms.
Both simulated annealing and genetic algorithms have been used to decrypt
simple substitution and transposition ciphers [6,8,13, 14], and there have been
some recent and successful attempts to attack modern day crypto protocols
based on NP-hard problems [3]. Recent research has used optimisation for design
synthesis, evolving Boolean functions for cryptographic products, most notably
using hill climbing [10] and genetic algorithms [9]. Other recent work has applied
search to the synthesis of secure protocols [1].

Some cryptographic algorithms have been shown to be insecure. Others are
thought to be secure, but subsequent discoveries may prove otherwise. Crypt-
analysts live in hope that the ciphers they investigate have as yet undiscovered
features that will allow them to be broken, ‘trapdoors’ if you like, hidden ways
of opening up the algorithms to let the secrets of those using them fall out!
Discovering such trapdoors is very hard work. There is, however, a somewhat
sneakier approach — deliberately create an algorithm with a subtle trapdoor in
it but which looks secure according to currently accepted criteria. Users of the
algorithm may communicate secrets, but the analyst who knows the trapdoor
will be able to access them. If users subsequently find out that a trapdoor had
been deliberately engineered into the algorithm, they may not be very happy.
The trapdoor should be so subtle that they have little chance of discovering it.



This paper investigates whether optimisation techniques can be used to surrep-
titiously plant such trapdoors.

This issue goes to the heart of cryptosystem design in the past. The debate
about whether the Data Encryption Standard [11] has a secret trapdoor in its
substitution boxes ! has raged since its publication [12]. A major factor in this
debate is that initially the design criteria were not made public (and the full cri-
teria are still unknown). There was a distinct suspicion that security authorities
had designed in a trapdoor or otherwise knew of one. 2 We contend that combi-
natorial and other numerical optimisation techniques can be demonstrably open
or honest. Goals are overt (that is, maximising or minimising a specified design
function). The means of achieving those ends is entirely clear — the algorithm
for design is the search technique and its initialisation data coupled with the
specified design function to be minimised. An analyst who doubts the integrity
of the design process can simply replay the search to obtain the same result.
Furthermore, the approach permits some surprising analyses.

2 Public and hidden design criteria

The set of all possible designs forms a design space D. From within the design
space we generally seek one instantiation whose exhibited properties are “good”
in some sense. (In the case of DES, one design space may be thought of as the set
of legitimate S-box configurations. The standard uses a particular configuration
but many others are possible.) When designing a cryptosystem, we may require
that certain stringent public properties P be met. Generally only small fraction
of possible designs satisfy these properties. Consider now a trapdoor property 7.
If a design has property 7" then cryptanalysis may be greatly facilitated. Some
designs may simultaneously satisfy P and T. There two possibilities here:

— All designs (or a good number) satisfying P also satisfy T. This suggests
that the basic design family is flawed (though the flaw may not be publicly
known).

— Only a small fraction of designs satisfying P also satisfy T'. Here the trapdoor
planter must drive the design in such a way that 7' is achieved simultaneously
with P.

! DES is a 16-round cipher. Each round is a mini-encryption algorithm with the out-
puts of one round forming the inputs of the next. Each round application further
obscures the relationship to the initial inputs. At the end of 16 rounds, there should
be a seemingly random relationship between the initial inputs and the final outputs.
(Of course, the relationship is not random, since if you have the secret key you
can recover the plaintext inputs) Within each round there are several substitution
boxes (S-boxes). These take 6 input bits and produce 4-bit outputs. The details need
not concern us here. Suffice it to say that S-boxes are designed to give a complex
input-output mapping to prevent particular types of attacks.

As it happens, it seems they intervened to make the algorithm secure against differ-
ential cryptanalysis, a form of attack that would be discovered by academics only in
the late 1980s.
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Fig. 1. Combining bit streams

It may be computationally very hard to locate good designs. Heuristic optimi-
sation offers a potential solution. Suppose a cost function motivated solely by
the goal of evolving a design (from design space D) to satisfy P is given by
h : D — R. (We denote this cost function by h since its choice is honest —
free from hidden motives.) Suppose also that a cost function aimed at evolving
a design satisfying the trapdoor property T is given by ¢ : D — R (¢ for trap-
door). If cryptographic functionality is developed using only trapdoor criteria T’
it is highly likely that someone will notice! Indeed, reasonable performance of
the resulting artifacts when judged against public properties P would be acci-
dental. Similarly, an artifact developed using only the honest (public) criteria P
will generally have poor trapdoor performance. There is a tradeoff between ma-
licious effectiveness (i.e. attaining good trapdoor properties) and being caught
out. The more blunt the malice, the more likely the detection. We capture the
degree of bluntness via a parameter A\, which we term the malice factor. The
design problem for malice factor A € [0.0,1.0] is to minimise a cost function of
the form

cost(d) = (1 — N)h(d) + \t(d) (1)

At the extremes we have the honest design problem, A\ = 0, and unrestrained
malice, A = 1. In between we have a range of tradeoff problems. We now illustrate
how optimisation can be used and abused in the development of perhaps the
simplest cryptographically relevant element, namely a Boolean function.

3 Cryptographic design with optimisation

3.1 Boolean Functions

Boolean functions play a critical role in cryptography. Each output from an S-
box can be regarded as a Boolean function in its own right. Furthermore, in



stream ciphers Boolean functions may be used to combine the outputs of several
bit streams. Figure 1 illustrates the classic stream cipher model. The plaintext
stream {P;} of bits is XOR-ed with a pseudo-random bit stream {Z;} to give
a cipher text stream {C;}. The plaintext is recovered by the receiver by XOR-
ing the cipherstream with the same pseudo-random stream. The pseudo-random
stream is formed from several bit streams generated by Linear Feedback Shift
Registers (LFSRs) using a suitable combining function. The initial state of the
registers forms the secret key. The function f must be sufficiently complex that
cryptanalysts will not be able to determine the initial state of the registers, even
when they know what the plaintext is (and so can recover the pseudo-random
stream {Z;}). Two desirable features are that the function should be highly non-
linear and posses low auto-correlation. These are explained below, together with
some further preliminaries.

We denote the binary truth table of a Boolean function by f : {0,1}" — {0, 1}
mapping each combination of n binary variables to some binary value. If the
number of combinations mapping to 0 is the same as the number mapping to 1
then the function is said to be balanced. A cryptographic designer may require a
Boolean function to have this property. The polarity truth table is a particularly
useful representation for our purposes. It is defined by f (z) = (=1)7@). Two
functions f, g are said to be uncorrelated when )" f(2)g(z) = 0. If so, if you
approximate f by using g you will be right half the time and wrong half the
time.

An area of particular importance for cryptanalysts is the ability to approxi-
mate a function f by a simple linear function, that is, one of the form L, (z) =
w11 B wala ... P w,x, (where @ is exclusive or). For example, x1 & x3 ® x4 is a
linear function (with w = 1011), whereas z1x2 ® x3 @ x4 is not: it has a quadratic
term. One of the cryptosystem designer’s tasks is to make such approximation as
difficult as possible; the function f should exhibit high non-linearity 3. In terms
of the nomenclature given above, the formal definition of non-linearity is given

by
) e

The 2" functions { L, (x),w : 0..(2"~ D} span the space of Boolean functions on
n variables. The term ) f(x)L,(x) (usually referred to as the Walsh value at

w) can be thought of as the dot product of f with L. Thus, we are trying to
minimise the maximum absolute value of a projection onto a linear function.

NL(f) = % (2” — max

3 If it doesn’t then various forms of attack become possible, e.g. the Best Affine Attack.
Loosely, linear functions are not very complex input-output mappings. If the function
f can be approximated by a linear function, it is just too predictable to resist attack.
See [5] for details.



Low auto-correlation is another important property that cryptographically
strong Boolean functions should possess. Auto-correlation is defined by
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It is essentially a property about dependencies between periodically spaced el-
ements. The details need not concern us here. What is important is that non-
linearity and autocorrelation of a given Boolean function f can be measured. For
the purpose of this paper we simply identify balancedness, high non-linearity and
low autocorrelation to serve as our desirable publicly stated properties P.

3.2 An honest cost function

We aim to provide balanced Boolean functions of 8 variables with high non-
linearity and low autocorrelation. We adopt a search strategy that starts with
a balanced (but otherwise random) function, and explores the design space by
moving between neighbouring functions until an appropriate solution is found.
A function f can be represented by a vector of length 256 with elements equal
to 1 or —1. The first element is f(00000000) and the last f(11111111) etc. We
define the neighbourhood of a balanced function f to be all functions § obtained
from f by negating any two dissimilar elements in the vector (that is, changing a
1toa —1and —1 to a 1). Provided the initial function was balanced, the search
maintains that balance.

To use heuristic optimisation techniques we need a cost function whose min-
imisation gives good values of non-linearity and low values for autocorrelation.
We use the (honest) cost function

W)=Y

w

3

—12 (4)
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where w, z range over {0, 1}8. The details of this cost function and the rationale
for it can be found in [2]. It gives very good results for Boolean functions of 8
variables; but we admit it is not intuitively clear. There is a tradeoff between a
“clearly” honest cost function, and one with good performance.

The primary search technique used was the simulated annealing algorithm [7]
with the honest cost function of Equation 4. This was followed by hill-climbing
(attempting to maximise directly the non-linearity as defined in Equation 2 )
from the resulting function f . Figure 2 shows the results from 400 runs of the
technique using A = 0, that is, total honesty. 115 of the 400 runs gave rise
to functions with non-linearity of 116 and autocorrelation of 32. The highest
non-linearity ever attained by any technique (ignoring auto-correlation) is 116.
Until recently the lowest autocorrelation possible was thought to be 24. Recent
optimisation based work [4] generated functions with autocorrelation of 16 (but
with nonlinearity value of 112). No function has ever been demonstrated with
nonlinearity 116 and autocorrelation 16.
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Fig. 2. Honest Evolution, sample size = 400. Simultaneous high non-linearity and low
autocorrelation (bottom right corner) are desirable.

Our approach appears to give excellent results for both criteria simulata-
neously. Thus the technique can be used effectively by honest researchers to
achieve honest goals. The search proceeded from a random starting function to
its final goals guided by the honest cost function at each stage. Now we choose
to guide the search in a malicious way.

3.3 Evolving a trapdoor

We now seek designs that perform well when judged against the public criteria
P but also possess some secret trapdoor property 7. For illustrative purposes
only, we choose to define a trapdoor property T as sufficient closeness to some

arbitrary but fixed Boolean function represented by g. We take ‘Zm flx)g(x)
as a measure of closeness. The maximum value 256 occurs when f and g are
the same function (or when one is the logical negation of the other). Since our
design framework is based around minimising cost, the closer the value to 256
the smaller should be the cost. This gives rise to a trapdoor cost function

3

t(f) = |256 — (5)

3 f@i)

The exponent 3 is adopted for comparability with the honest cost function. It
serves to punish poorly performing functions very highly and affects the rate at
which the search converges. We now combine the honest and dishonest functions
in a single cost function cost as given in Equation 1 (with the function f playing
the role of design d).

We applied the technique for various values of A in the range [0, 1]. For a
randomly generated trapdoor g, 30 runs were carried out for each of
A€ {0.0,0.2,0.4,0.6,0.8,1.0}. The same trapdoor was used in all runs. Figure 3
records the results. Thus, for A\ = 0.0, 12 of the 30 runs give rise to functions
with nonlinearity of 116 and autocorrelation of 32. The average closeness to the

trapdoor g (given by > f(x)g(x)|) for the 30 runs in this case is 12.8.

The results show that optimisation techniques can be used effectively to ob-
tain artifacts that provide good public performance measures and good trapdoor
functionality. The figures show that as A increases the performance of the evolved
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Fig. 3. Performance for various malice factors A. Sample size = 30 for all experiments.
For the A = 1 result, any remaining non-linearity and auto-correlation arises from the
dishonest g and the final hill-climb on non-linearity.

designs with respect to the public criteria worsens (i.e their non-linearity gets
smaller and autocorrelation gets bigger). Of course, the closeness of the evolved
designs to the trapdoor property gets radically better. An honest sample (that
is, A = 0) has an average closeness of 12.8. With A = 0.2 the average solution
obtained has a closeness value of 198.9. With A\ = 1.0 the average is 242.7%.

4 Detection

If you know what the trapdoor is then you can of course verify that the artifact
has it. But what if you don’t know what the trapdoor is?

4.1 Telling truth from fiction

We wish to distinguish honestly derived functions from maliciously derived ones.
We would like to develop discriminating techniques with wide ranging applica-
bility. We observe that functions (and indeed designs more generally) have some

4 Recall that after optimising with respect to the indicated cost function, we then hill-
climb (maximise) with respect to non-linearity alone. This typically serves to reduce
the trapdoor value attained - it is simply measured at the end of the hill-climb. It
plays no part during the hill-climb.



concrete binary representation. Our current function representation is enumer-
ative, but programs that implement particular functions also have binary rep-
resentations (the vector of object code bits being a particular one). A function
within a particular family may be defined by some set of configuration data
(e.g. S-Boxes). It is the properties of such vector representations of designs that
we propose to use as the basis of detection. This has the benefit of being more
problem independent.

We illustrate one such way in which families of designs can be discriminated.
Suppose we have two groups of designs G1, G5. Each group comprises a number
of designs represented by vectors. For each group we calculate the mean vector
for the vectors in that group. Denote these mean vectors by mq, mo. Re-express
mi = umeo + z, where z is orthogonal to mso. The first component pms is the
projection of m; onto my. We now project each design onto this residual z and
measure the length of such projections. In general if the groups G; and Gs
are different we would expect those in G; to give rise to projections of large
magnitude and those in Gy to give rise to vectors of small magnitude. More
formally

— Let di; and dp; be the jth designs of Gy and Ga respectively. Let di; be
represented by a vector of N bit values (di;z), k = 1..N. Similarly for da;.

— For each group form the mean vector m; = (m;i), where m;; = % Zle dijk

— Calculate the residual vector when my is projected on msy. For vectors z,y
the residual of z after projection on y is given by resid(z,y) = = — %y,
where (z,y) is the ‘dot product’ for vectors x and y.

— for G, G5 find the dot product of each of its designs onto this residual vector

and find its absolute value.

4.2 Results

Figure 4 shows the the summary statistics (with the honest group as the reference
sample) for each of the A\ values, for 30 runs. The aim is to show the degree to
which the summary statistics for each malicious sample overlaps with the set
of values from the honest one. For A = 0, every value is < 0, by construction.
By contrast, for other values of A\, very few results are < 0. For A\ = 0.6 only
one design has a result in the range of honest results; for other values of A the
overlap is greater.

We see that the summary statistic provides a reasonable, and in some cases
good, way of discriminating between designs developed using different cost func-
tions. In some cases the discrimination capability is not as good as we should
like, because the calculated statistic loses a great deal of information. However,
even with this gross loss of information we can still detect a discernible difference
in malicious and honest designs. Clearly more sophisticated tests are needed.

The above is intended purely as an illustration that families of designs give
rise to their own distributions of summary statistics. It should be noted that the
designs within a family are not necessarily close to each other. Indeed, they may
tend to congregate in different areas (corresponding to different local optima of
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Fig. 4. Squares of projections, for different values of A. The axis is drawn at the max-
imum value of the A = 0 statistic, to highlight the contrasting behaviour for other
values of A.

cost function used). A malicious designer might take advantage of this weakness
or similar weaknesses of other discrimination techniques used. This we now show.

4.3 Games and meta-games

If the discrimination technique is known then it is possible to recast the malicious
design problem with a cost function

cost(d) = (1 — N)h(d) + Mt(d) + easeDetect(d) (6)

Here easeDetect represents how easily the solution may be identified as a mali-
ciously derived one. Given the scheme above a suitable candidate would be to
punish solutions whose summary statistic was too large. If a variety of known dis-
criminants are used each of these can similarly be taken into account. Of course,
it becomes more difficult to find a good solution, but the malicious designer is
really just looking to gain an edge.

Malicious designers can attempt to evade detection in this way only if they
know the discrimination tests to be applied. Analysts are free to choose fairly
arbitrarily which tests to apply. This makes the task of malicious designers more
difficult. They can appeal to their intuition as to what sorts of tests might
be sensible (as indeed must the analyst), but they will be second guessing the
analyst at large.



4.4 Meta-meta games

The work described has concentrated on how trapdoors can be inserted and
about how claims to have used particular cost functions can be checked. We
stated in the introduction that a designer could simply publish the cost func-
tion, the search algorithm, and its initialisation data; the doubting analyst could
simply replay the search to obtain the same result. This is undoubtedly so, but
the implication that this gives us honest design must be questioned. We must
question in fact what it means to be ‘honest’.

Our “honest” cost function of Equation 4 uses an exponent of 3. Why 37
Would 2.9 be dishonest? It really depends on what our intention is for choosing
a particular value. As it happens we have found that 3.0 gives good results for
finding the desired properties, but other values may perform similarly well. Our
honest cost function is indeed significantly different from those used by other
researchers, whose cost functions are actually more intuitively clear, but seem
to perform less well.

It would not be surprising if functions derived using different honest cost
functions gave rise to results which have different properties as far as illicit trap-
door functionality is concerned. Large scale experimentation could lead to the
discovery of cost functions that give results with excellent public properties but
which happen to have a good element of specific trapdoor functionality. Such
higher level games could be played most easily by those with massive computa-
tional capability. Perhaps this could be countered by cost function cryptanalysis!

As a final game, consider the following. Suppose you discover a search tech-
nique that works better than existing ones. Suppose, for example, it could find
with ease a balanced Boolean function of 8 variables with non-linearity of 118.
(This would answer an open research question, since the best least upper bound
is 118, but the best actual non-linearity achieved is 116.) If you so desired you
could use you enhanced search capability to find functions that had, say, non-
linearity 116 but good trapdoor properties too. You know that you have sacrificed
a little non-linearity to achieve your malicious goal, but the public analyst will
compare your results against the best published ones. Enhanced search can also
be provided by increased computational power. Of course, the malicious designer
will have to do without the kudos that would be attached to publishing results
to open problems (an academic would of course never do this!).

5 Conclusions

This paper builds on extant optimisation-based cryptographic design synthesis
work and extends it to show the optimisation techniques offer the potential for
planting trapdoors. We have explored some of the consequences. We know of no
comparable work.

Different cost functions solve different problems. Someone might be solving a
different problem from the one you assumed; someone may have added a trapdoor
to their alleged cost function. However, you can use optimisation to evolve a



design against a criterion many times. The resulting sample of solutions may
provide a yardstick against which to judge proffered designs. It provides therefore
a potential means of resolving whether a trapdoor was present in the fitness
function actually used. Currently, it is hard to generate a large sample of good
designs by other techniques (without the benefit of automatic search it may be
difficult to demonstrate a single good design).

That designs evolved against different criteria should exhibit different func-
tionality is clearly no surprise — it means that optimisation based approach
works! This paper has observed that different designs have different bit level
representations and that different groups of designs can be detected by using
statistical properties of the representations.

The following consequences have emerged from the work:

an optimisation-based design process may be open and reproducible.
A designer can publish the criteria (that is, the cost function) and the optimi-
sation search algorithm (together with any initialistion data such as random
number seed).The search can be repeated by interested parties.

optimisation can be abused. If optimisation ‘works’ then ‘use’ means one
approves of the cost criteria and ‘abuse’ means one doesn’t!

optimisation allows a family of representative designs to be obtained.
The search process may be repeated as often as desired to give a set of designs
from which statistical distributions of designs evolved to possess particular
properties may be extracted.

designs developed against different criteria just look different! If
designs have different functionality then they are different in some discernible
way. In certain cases this difference may be detected by examination of the
design representations alone.

the games just do not stop. Cryptographic design and analysis go hand in
hand and evolve together. When the smart cryptanalyst makes an important
discovery, the designers must counter.

These ideas are at an early stage at the moment, but there would appear to be
several natural extensions. The simple projection method used for illustration
in this paper loses a very large amount of information. A study of available
discrimination techniques should bring great benefit. We aim to evolve larger
artifacts with trapdoor functionality, and are currently attempting to evolve
DES-family cryptosystems with built-in trapdoors (by allowing a search to range
over S-Box configurations). We acknowledge that we may have been beaten to
it! How could we tell?

6 Coda: the authors are A = 0 people

Our aim in this paper has been to point out what is possible or indeed what
might already have been attempted (secretly). We do not wish to suggest that
the techniques should be used to plant trapdoors. Indeed, this is the reason why
we have begun to investigate the abuse of optimisation via discriminatory tests.



The paper is, we hope, an interesting, original and rather playful exploration of
an intriguing issue.
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