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A cellular automaton (CA) is in a homogeneous configuration if
every cell has the same state. The preimages of a configuration
s are those configurations which evolve to s within a single time
step.

We present two methods of finding the total number of preimages
for a given homogeneous configuration. The first is more intu-
itive, and gives a clear picture of how the number of preimages
varies with the number of cells on which the CA operates, but it
is only workable for elementary CAs (1-dimensional binary state
CAs with neighbourhood size 3). The second method, based on
de Bruijn matrices, is more abstract, but more readily extends to
general 1-dimensional CAs.
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1 INTRODUCTION

A cellular automaton (CA) is a dynamical system, discrete and uniform in
space and time. A CA is composed of a number of sites (cells), each of which
is assigned one of a finite set of states. An assignment of states to cells is a
configuration of the CA, and is analogous to what is usually called the “state”
of a dynamical system. The dynamics of the CA is defined by the local update
rule, a function mapping the “current” state of a cell and its neighbours to the
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“next” state of that cell. The local update rule extends to the global map, a
function mapping the “current” configuration to the “next” configuration, in
the natural way.

In general, the global map is not bijective, so strictly speaking it has no
inverse. However, it is often useful to find the preimages of a given configu-
ration; that is, those configurations which the global map sends to the given
configuration. Intuitively, if the configuration at time t is known, then the
preimages of that configuration are the possible configurations at time t − 1.
Wuensche and Lesser [13] give an efficient algorithm for finding preimages.

One way of visualising the dynamics of a CA is by drawing a transition
graph (or transition diagram). This is a directed graph whose vertices repre-
sent the configurations of the CA, and whose edges represent the transitions
between configurations according to the global map. The in-degree of a ver-
tex in the transition graph is precisely the number of preimages for the cor-
responding configuration, and so numbers of preimages are a measure of the
“branchiness” of the graph.

In [7], we study symmetries (formally, automorphisms or self-isomorphisms)
of transition graphs. By studying how the number of symmetries varies with
the number of cells, we obtain a partial classification of the elementary CAs
(1-dimensional, binary state CAs with neighbourhood size 3).

In [8], we specialise our results to linear CAs: CAs whose local rules
(and thus global maps) are linear functions. We derive an expression for the
number of automorphisms of the transition graph for a linear CA, and one of
the terms in this expression is the number of preimages for the homogeneous
configuration of zeroes.

In this paper, we discuss how to find the numbers of preimages of homo-
geneous configurations. Even though linear CAs motivate us to carry out this
work, the results are equally applicable to nonlinear CAs. After introducing
the necessary definitions in Section 2, we describe two different approaches
to counting preimages.

The first approach (Section 3) works by considering the possible lengths
of sequences of consecutive cells in the same state. When the number of
preimages is considered as a function of the number of cells, we see three
distinct types of behaviour: constancy, periodicity, and exponential growth.
The string length approach gives an intuitive understanding of when and why
these behaviours arise.

The second approach (Section 4) applies results from spectral graph theory
to the de Bruijn graphs of the CA. Specifically, we consider the eigenvalues
of the adjacency matrices of the de Bruijn graphs (these adjacency matrices
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are known as de Bruijn matrices). While this method is not quite as intuitive
as considering string lengths, it is far more useful for producing numerical
results. In Section 4.3, we show that this approach can also be applied to
configurations which are heterogeneous but periodic.

2 DEFINITIONS AND NOTATION

Consider a 1-dimensional CA with state set Σ, neighbourhood radius r and
local rule f : Σ2r+1 → Σ, operating on a lattice of N cells. In this paper we
consider lattices with periodic boundary condition, where the leftmost cell is
considered to be adjacent to the rightmost, so that the cells are indexed by
the elements of ZN (the integers modulo N ). This is not the only choice of
boundary condition, but the alternatives (treating the boundary cells differ-
ently to the rest, or allowing the lattice to be unbounded so that the effective
number of cells is infinite) present obvious practical problems.

A configuration of this CA is a mapping from ZN to Σ. We will write such
a configuration as a string over Σ of length N , and write ΣN for the set of all
configurations. A homogeneous configuration in which each cell has state q
is denoted qN .

The local rule f extends to the global map F : ΣN → ΣN . The preim-
ages of a configuration u are those configurations v such that F (v) = u. The
successor of u is the configuration F (u). Note that CAs are deterministic
(every configuration has precisely one successor), but not necessarily surjec-
tive or injective (a configuration may have zero, one, or many preimages). If
a configuration has at least one preimage, it is said to be reachable; an un-
reachable configuration (one with no preimages) is often called a Garden of
Eden configuration.

A cyclic shift is a transformation which shifts the entire configuration by
a certain number of cells, respecting the periodic boundary condition of the
lattice. For example, applying a cyclic shift to the right by one cell to the
configuration

x0x1 . . . xN−2xN−1 (1)

yields the configuration

xN−1x0 . . . xN−3xN−2 . (2)

Cyclic shifts are “symmetries” of any CA, in the sense that shifting a con-
figuration cyclically and then applying the CA’s global map to the result is
equivalent to applying the global map first and shifting the result.
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An elementary CA (ECA) has neighbourhood radius r = 1 and state set
Σ = Z2 = {0, 1}. There are 223

= 256 possible local rules for an ECA.
Following Wolfram [10], we assign each of these rules a number between 0
and 255 inclusive, by considering the string

f(1, 1, 1)f(1, 1, 0) . . . f(0, 0, 0) (3)

as an 8-bit binary number and converting to decimal notation.
Consider two ECA rules to be “equivalent” if one can be obtained from the

other by exchanging states 0 and 1, or by reflecting (reversing) the neighbour-
hood, or by performing one of these transformations after the other. Then the
space of local rules is partitioned into 88 equivalence classes [12, 13]. From
each of these classes we choose the rule whose number is smallest, thus ob-
taining the 88 essentially different ECA rules.

ECAs have the advantage that they can be studied exhaustively: compare
the total number of ECA rules (256) to the number of r = 2, Σ = Z2 rules
(225 ≈ 4.3 × 109) or r = 1, Σ = Z3 rules (333 ≈ 7.6 × 1012). Applying
the types of equivalence classifications described above does not significantly
change the relative magnitudes of these numbers. ECAs also exhibit a wide
range of dynamical behaviours: in particular, at least one (rule 110) is Turing
complete [1].

3 STRING LENGTHS

In this section, we determine numbers of preimages by considering the pos-
sible lengths of sequences of consecutive cells in the same state.

3.1 For ECAs
Every heterogeneous configuration of an ECA is a cyclic shift of a configura-
tion of the form

0l0,11l1,1 . . . 0l0,k1l1,k , (4)

for some positive integers k, l0,1, . . . , l1,k. In other words, every heteroge-
neous configuration can be written, modulo cyclic shift, as strings of zeroes
alternated with strings of ones. Since the state set has only two elements, het-
erogeneity is sufficient to ensure that the configuration contains at least one
string of each state.

Consider the homogeneous configuration qN . Let x be a state, and let
x = 1 − x be the “other state”, i.e. the member of the state set {0, 1} which
is not x. Assume that there exist preimages of qN which contain the state
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x, and consider the permitted lengths lx,i of strings composed of x in such
preimages. The assumption that the preimage contains x guarantees that these
strings do not cover the entire lattice, so each string has a beginning and an
end. By considering the action of the CA rule, we can write down necessary
conditions for various string lengths in terms of the entries of f ’s rule table:

a. lx,i = 1 can occur only if f(x, x, x) = q;

b. lx,i = 2 can occur only if f(x, x, x) = f(x, x, x) = q;

c. lx,i ≥ 3 can occur only if f(x, x, x) = f(x, x, x) = f(x, x, x) = q.

Note that condition c implies condition b; that is, if lx,i ≥ 3 is permitted then
lx,i = 2 is also permitted. Also note that these conditions are not sufficient:
for example, if condition a holds but f(x, x, x) 6= q and f(x, x, x) 6= q, then
lx,i = 1 cannot occur.

We have the following three cases:

1. If none of these conditions are met then our initial assumption, that
there are preimages containing both states x and x, is contradicted.
Thus qN has no heterogeneous preimages.

2. Suppose that, for each choice of x, there is precisely one possibility for
lx,i; say l0,i = l0 and l1,i = l1. This means that, for each x, either
condition a or condition b (but not both, and not condition c) is met.
Thus l0, l1 ∈ {1, 2}. Then a heterogeneous preimage of qN , modulo
cyclic shift, has the form

0l01l1 . . . 0l01l1 . (5)

This defines a valid configuration if and only ifN is divisible by l0 +l1.
This configuration is unique up to cyclic shifts, and there are precisely
l0 + l1 distinct configurations which are cyclic shifts of this configura-
tion. Thus the number of heterogeneous preimages of qN in this case
is {

l0 + l1 if l0 + l1|N
0 otherwise.

(6)

Note that, since l0, l1 ∈ {1, 2}, we have l0 + l1 ∈ {2, 3, 4}.

3. Suppose that there is more than one possibility for lx,i, for either value
of x (or indeed for both). Each time a string of x appears, there are
several choices for its length. As N increases, so does the number of
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strings of x and thus the number of choices. A “combinatorial explo-
sion” takes place as N grows larger, and so the number of preimages
grows exponentially with respect to N .

These three cases account for the heterogeneous preimages. In addition,
there may be zero, one or two homogeneous preimages: specifically, xN is a
preimage of qN if and only if f(x, x, x) = q. The number of homogeneous
preimages is thus independent of N .

Note that if we have case 2 with lx = 2 (so that condition b holds for
this choice of x), then xN cannot be a preimage, since f(x, x, x) = q would
imply condition c. Thus, in case 2 with lx = 2 for one of the choices of x,
there is at most one homogeneous preimage; if lx = 2 for both choices of x,
then there are no homogeneous preimages.

In summary, when the number of preimages of the homogeneous configu-
ration qN is considered as a function of N , there are three possible classes of
behaviour:

1. The number of preimages is constant. Indeed, the preimages are them-
selves homogeneous, and their number can be determined by consider-
ing f(0, 0, 0) and f(1, 1, 1) as described above.

2. The number of preimages is periodic, with period 2, 3 or 4.

3. The number of preimages grows exponentially with respect to N .

Furthermore, these three possibilities can easily be distinguished by examin-
ing the rule table. The results of this for the 88 essentially different ECAs are
presented in Table 1 (Appendix A).

Example 3.1. Period 4 behaviour is relatively rare among the ECAs. Indeed,
we can show that only ECA rule 90 exhibits period 4 behaviour for preimages
of the configuration 1N .

For period 4 behaviour, the only permitted string length for both states
must be 2. For strings of 0s of length 2 to be permitted, we must have

f(1, 0, 0) = f(0, 0, 1) = 1 . (7)

For strings of lengths other than 2 to be forbidden, we must have

f(1, 0, 1) = f(0, 0, 0) = 0 . (8)

A similar argument for strings of 1s shows that

f(1, 1, 0) = f(0, 1, 1) = 1 (9)
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and
f(0, 1, 0) = f(1, 1, 1) = 0 . (10)

But these conditions completely determine the ECA’s rule table, and we find
that the rule thus defined is rule 90.

By the same method, we can show that the only ECA exhibiting period 4
behaviour for preimages of 0N is rule 165. This is the rule obtained from rule
90 by exchanging states 0 and 1. By the convention that each equivalence
class is represented by its member with the smallest rule number, rule 165 is
not among the 88 essentially different ECA rules. ♦

3.2 Beyond ECAs
The situation becomes considerably more complicated when we enlarge the
CA’s radius. For example, consider the binary state, radius 3 CA whose local
rule f is defined by

f(0, 1, 0, 1, 0, 1, 0) = 0 (11)

f(1, 0, 1, 0, 1, 0, 1) = 0 (12)

f(0, 0, 0, 1, 1, 1, 0) = 0 (13)

f(1, 0, 0, 0, 1, 1, 1) = 0 (14)
...

f(0, 0, 1, 1, 1, 0, 0) = 0 (15)

f(x−3, . . . , x3) = 1 otherwise. (16)

Here the preimages of configuration 0N are those configurations consisting
of repetition of the string 01, or repetition of the string 000111. In terms
of string lengths, there are two distinct cases: either both string lengths are
1, or both string lengths are 3. Thus the possible lengths of strings of 0s
depend on the possible lengths of strings of 1s, and vice versa. This kind of
interdependence never occurs among the ECAs.

The situation also becomes more complicated if we enlarge the CA’s state
set. Central to the results for ECAs is the fact that every heterogeneous con-
figuration of a binary state CA can be written, modulo cyclic shift, as strings
of 0s alternated with strings of 1s, as in Equation 4. A string of 0s must
always be followed by a string of 1s, and vice versa. Furthermore, a hetero-
geneous configuration must contain, but not consist entirely of, a string of 0s.
However, in a ternary state CA, a string of 0s may be followed by a string
of 1s or a string of 2s, and indeed there is no guarantee that a heterogeneous
configuration must contain a string of 0s at all.
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4 DE BRUIJN MATRICES

The approach to counting preimages described in the previous section gives
us an intuition for why the number of preimages is sometimes periodic with
respect to N : if the possible string lengths are suitably constrained, then they
can form a complete configuration only when N is a multiple of the appro-
priate value. However, the string length approach is somewhat laborious for
producing numerical results, and becomes extremely complicated when ap-
plied to CAs beyond the ECAs.

McIntosh [6] describes a method of counting preimages for general CA
configurations, by means of graphs (or more specifically, adjacency matrices
of graphs) first introduced by de Bruijn [3]; see also [9]. Jeras and Dobnikar
[5] describe the method more fully. What follows (up to, but not including,
Theorem 4.2) is a summary of this.

The de Bruijn diagram for state x has vertex set Σ2r (so the vertices are the
strings of length 2r over Σ), and an edge from vertex a1 . . . a2r to b1 . . . b2r
if and only if

a2 . . . a2r = b1 . . . b2r−1 (17)

and
f(a1, a2, . . . , a2r, b2r) = x . (18)

In other words, there is an edge between two vertices if and only if their
corresponding strings overlap to form a string of length 2r + 1, and the local
rule maps that string to state x. A de Bruijn matrix is the adjacency matrix
for a de Bruijn diagram, with the vertices ordered lexicographically.

Example 4.1. The de Bruijn diagrams for an ECA have vertex set {00, 01, 10, 11}.
By Equation 17, the edge set is a subset of

{00→ 00, 00→ 01
01→ 10, 01→ 11
10→ 00, 10→ 01
11→ 10, 11→ 11}

(19)

or more succinctly,
{ab→ bc : a, b, c ∈ Z2} . (20)

By Equation 18, the edge set of the de Bruijn diagram for state x is

{ab→ bc : a, b, c ∈ Z2, f(a, b, c) = x} . (21)
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00 01

10 11

00 01

10 11

FIGURE 1
De Bruijn diagrams for ECA rule 18, for states 0 (left) and 1 (right).

ECA rule 18 is defined by the following table:

abc 111 110 101 100 011 010 001 000
f(a, b, c) 0 0 0 1 0 0 1 0

(22)

The de Bruijn diagrams for rule 18 are shown in Figure 1. The corresponding
de Bruijn matrices are the adjacency matrices of these graphs, namely

D0 =


1 0 0 0
0 0 1 1
0 1 0 0
0 0 1 1

 and D1 =


0 1 0 0
0 0 0 0
1 0 0 0
0 0 0 0

 . (23)

♦

De Bruijn matrices are defined in terms of the local rule, but they can
be extended to describe entire configurations. In particular, the number of
preimages of a given configuration is the trace (sum of diagonal entries) of the
matrix obtained by multiplying together the de Bruijn matrices corresponding
to the cell states. In other words, the configuration x0 . . . xN−1 has

Tr
(
Dx0 . . . DxN−1

)
(24)

preimages. A proof of this result appears in [5], but we can prove it easily for
the special case of a homogeneous configuration.

The following is a well-known property of adjacency matrices: if A is the
adjacency matrix of a graph, then the entry in row u, column v of the matrix
An is the number of distinct paths of length n from vertex u to vertex v.
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Let v1, . . . , vN be a cycle in the de Bruijn diagram for state q. By definition
of the de Bruijn diagram, we have

v1 = a1a2 . . . a2r (25)

v2 = a2a3 . . . a2r+1 (26)
...

vN = aNa1 . . . a2r−1 (27)

and
f(ai−2r, . . . , ai+2r) = q (28)

for all i, where the arithmetic in the subscripts takes place modulo N . Thus
the configuration a1 . . . aN is mapped to the homogeneous configuration qN

by the ECA’s global map. In other words, there is a one-one correspondence
between cycles of length N in the de Bruijn diagram for state q, and preim-
ages of the homogeneous configuration qN .

Let Dq be the de Bruijn matrix for state q. The number of cycles of length
N which begin and end at vertex u is given by the entry in row u, column u
of DN

q ; the total number of cycles is the sum of these diagonal entries, i.e.
TrDN

q .
Results from spectral graph theory [2] can now be applied to the de Bruijn

graphs:

Theorem 4.2. Let q be a CA state, and letDq be the corresponding de Bruijn
matrix. Suppose that the eigenvalues of Dq are λ1, . . . , λk. Then the homo-
geneous configuration qN has exactly

λN1 + · · ·+ λNk (29)

preimages.

The proof of this result uses the following lemmas:

Lemma 4.3. Suppose that matricesA andB share the eigenvectors v1, . . . ,vn,
with corresponding eigenvalues a1, . . . , an and b1, . . . , bn respectively. Then
AB has eigenvectors v1, . . . ,vn, with corresponding eigenvalues a1b1, . . . , anbn.

Proof. Follows immediately from the definition of eigenvalues and eigenvec-
tors.

Lemma 4.4. LetA be a square matrix with eigenvectors v1, . . . ,vn and cor-
responding eigenvalues a1, . . . , an. Then, for any positive integer k, the ma-
trixAk has eigenvectors v1, . . . ,vn with corresponding eigenvalues ak1 , . . . , a

k
n.
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Proof. By induction on k, using Lemma 4.3.

Proof of Theorem 4.2. We have already established that qN has TrDN
q preim-

ages.
It is a well-known result that the trace of a matrix is the sum of its eigen-

values [4, Chapter IV, Section 5]. Thus the number of preimages of qN is the
sum of the eigenvalues of the matrix DN

q . By Lemma 4.4, the eigenvalues
of DN

q are the N th powers of the eigenvalues of Dq , namely λN1 , . . . , λ
N
k .

Therefore qN has
λN1 + · · ·+ λNk (30)

preimages.

This result means that, once the eigenvalues of Dq are known, finding the
number of preimages of qN for any value of N is as simple as raising the
eigenvalues to the N th power and summing the results.

4.1 For ECAs
The de Bruijn matrices for an ECA with local rule f are

D1 =


f(0, 0, 0) f(0, 0, 1) 0 0

0 0 f(0, 1, 0) f(0, 1, 1)
f(1, 0, 0) f(1, 0, 1) 0 0

0 0 f(1, 1, 0) f(1, 1, 1)

 (31)

and

D0 =


1 1 0 0
0 0 1 1
1 1 0 0
0 0 1 1

−D1 . (32)

We can apply Theorem 4.2 to find numbers of preimages for homogeneous
configurations of ECAs.

Example 4.5. In Example 4.1, we gave the de Bruijn matricesD0 andD1 for
ECA rule 18. The eigenvalues of D1 are all zero, so 1N has no preimages.

Now consider the homogeneous configuration 0N . The eigenvalues of D0

are

0, 1,
1 +
√

5
2

,
1−
√

5
2

, (33)

and so there are

1 +
1

2N

((
1 +
√

5
)N

+
(

1−
√

5
)N)

(34)
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preimages.
These results are consistent with those given in Table 1: the number of

preimages of 1N is indeed constant (in fact it is zero); for large N , Equa-
tion 34 is dominated by (

1 +
√

5
2

)N
≈ 1.618N (35)

and so the number of preimages of 0N grows exponentially with N . ♦

Recall that the eigenvalues of a matrix A are the solutions for λ in the
equation

det(A− λI) = 0 , (36)

where I is the identity matrix. The expression det(A − λI) is a polynomial
in λ, called the characteristic polynomial. If the entries of A are real (as the
entries of de Bruijn matrices always are), then the characteristic polynomial
has real coefficients, and thus its roots (the eigenvalues of A) must be real or
occur in complex conjugate pairs.

If two matrices have the same characteristic polynomial, they have the
same eigenvalues. Among the de Bruijn matrices for all 88 essentially dif-
ferent ECAs, there are 23 distinct characteristic polynomials. These are enu-
merated in Table 2 (Appendix A), their roots are given in Table 3, and the
correspondence between characteristic polynomials and ECA rules is given
in Table 4. From these tables and Theorem 4.2 we can determine the number
of preimages as a function of N .

Figure 2 plots the number of preimages of 1N against N , for ECA rule
94 (corresponding to characteristic polynomial c10). The overall trend is ex-
ponential, but some fluctuation is also apparent. What is the source of this
fluctuation?

As N grows large, the expression

λN1 + · · ·+ λNk (37)

is dominated by the terms corresponding to those λi whose modulus is max-
imal. More explicitly, let

|λ|max = max {|λi| : i = 1, . . . , k} (38)

Λ = {λi : i = 1, . . . , k, |λi| = |λ|max} (39)
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FIGURE 2
Plot of number of preimages in ECA rule 94 for the homogeneous configuration 1N ,
against number of cells N . Note that the y-axis scale is logarithmic.
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so that |λ|max is the maximal modulus, and Λ is the set of λi on which this
maximum is attained. Then, for large N ,

k∑
i=1

λNi ≈
∑
λi∈Λ

λNi . (40)

There are several possibilities:

1. If Λ = {x} for some real x > 1, then the sum grows exponentially
with N in the manner of xN .

2. If Λ = {x} for some real 0 < x < 1, then the sum decays exponentially
with N in the manner of xN .

3. If Λ = {1}, then the sum approaches 1 as N grows large (the sum over
Λ being 1 for all N ).

4. If Λ = {0}, then all of the λi must be zero and so the sum is zero.

5. If Λ = {x} for some real x < 0, the behaviour is analogous to the first
three cases, but the sum oscillates between positive and negative. In
other words, the behaviour for Λ = {x} is the behaviour for Λ = {−x}
multiplied by (−1)N .

6. If Λ = {z, z̄} for some conjugate pair of complex numbers z, z̄, then
the sum has the form

2rN cosNθ . (41)

This follows immediately from writing zN + z̄N in polar form, where
r and θ are the modulus and argument of z.

Ignoring the rN term (which gives exponential growth or decay de-
pending on whether r is greater or less than 1), this is almost periodic
with respect to N ; whether it is actually periodic depends on whether
2π
θ (the ratio of the oscillation period to the “sampling” period corre-

sponding to the integer values of N ) is rational or irrational.

7. If Λ is a union of two or more of these possibilities, then the overall
behaviour is the sum of the corresponding individual behaviours.

For our sum λN1 + · · ·+λNk , we can only have cases 1 to 4. This is because
λN1 + · · ·+ λNk is a number of preimages, and so it cannot be negative.
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FIGURE 3
As Figure 2, but with the dominant exponential term subtracted. For this plot, we take
the inverse hyperbolic sine of the data, to give the y-axis a “signed logarithmic” scale.

In each of the exponential cases (c10 to c23 inclusive) enumerated in Ta-
ble 3 (Appendix A), we have case 1. Let λ1 be the eigenvalue with largest
magnitude, and omit it to consider the sum

λN2 + · · ·+ λNk . (42)

An example of this is plotted in Figure 3. It is now apparent that the “fluctu-
ations” noted in Figure 2 are in fact oscillations.

The sum without λ1 can be negative, and so all of the cases enumerated
above are possible. In many of the cases listed in Table 3, we have case 6:
a conjugate pair of complex numbers dominate, so the overall behaviour is
sinusoidal oscillation.

From Equation 41, the magnitude of the oscillation is 2rN , so the oscil-
lation decays as N tends to infinity if and only if r < 1. This is the case
for all but three of the cases in Table 2, the exceptions being c10, c18 and
c19. Of these, the latter two have r = 1 (so the magnitude of the oscillation
is constant with respect to N ), so only c10 gives rise to oscillations whose
magnitude grows with N . Thus, among the 88 essentially different ECAs,
such growing oscillations only occur with ECA rules 94 and 122 for homo-
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geneous configuration 1N (they also occur for those rules, not among the 88
essentially different rules, that are equivalent to rule 94 or rule 122).

We can continue to examine the sums in this way until no more terms
remain, thus decomposing the overall behaviour into a sum of exponential
growths, decays, and sinusoidal oscillations.

4.2 Beyond ECAs
De Bruijn matrices are equally applicable to more general 1-D CAs. In gen-
eral, for a k-state CA with neighbourhood radius r, the de Bruijn matrices
are square matrices with k2r rows and columns. Furthermore, Theorem 4.2
applies to general 1-D CAs, the matrix in question having k2r eigenvalues.
When the number of preimages is written as a sum ofN th powers of eigenval-
ues, the cases enumerated in the previous section still apply, so the qualitative
types of behaviour are the same as for ECAs.

4.3 Preimages of heterogeneous periodic configurations
This method is applicable whenever the matrix product

Dx0 . . . DxN−1 (43)

can be expressed as a power of a matrix. For example, consider a spatially
periodic configuration of the form

a0 . . . ap−1a0 . . . ap−1 . . . a0 . . . ap−1 . (44)

The spatial period p must be a factor of the number of cells N , so N/p is an
integer (in fact N/p is the number of repetitions of the sequence a0 . . . ap−1).
The corresponding product of de Bruijn matrices is(

Da0 . . . Dap−1

)N/p
. (45)

By a similar argument to the proof of Theorem 4.2, if the eigenvalues of
Da0 . . . Dap−1 are λ1, . . . , λk, then the number of preimages is

λ
N/p
1 + · · ·+ λ

N/p
k . (46)

As before, the λi are either real or occur in complex conjugate pairs, so the
types of qualitative behaviour exhibited by this expression as a function of N
are the same as those described above for preimages of homogeneous config-
urations for ECAs.
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FIGURE 4
A typical space-time diagram for ECA rule 110. Each row of pixels represents a
configuration of the CA, with the initial configuration at the top and successive con-
figurations below it. Each column represents a cell. Pixels coloured white and black
represent cell states 0 and 1 respectively.

Example 4.6. Figure 4 shows a space-time diagram typical of ECA rule 110.
We observe a number of propagating structures (“gliders”), with the rest of the
lattice filled by a simple repeating pattern (the “ether”). We may ask whether
there is any configuration in which the gliders or other structures present are
annihilated, leaving only ether. In other words, does an ether configuration
have any preimages which are not themselves ether configurations?

Modulo cyclic shift, an ether configuration is composed of repetitions of
the string e = 00010011011111. So an ether configuration can only exist
when the number of cells N is a multiple of 14. Let

De = D3
0D1D

2
0D

2
1D0D

5
1 , (47)

where D0 and D1 are the de Bruijn matrices for rule 110. Thus an ether
configuration has

TrDN/14
e (48)

preimages (N/14 is the number of repeats of the ether pattern). Direct calcu-
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lation shows that

De =


0 0 0 0
0 0 0 0
0 0 0 0
0 2 3 2

 , (49)

and that the eigenvalues of De are 0, 0, 0, 2. Therefore the number of preim-
ages is 2N/14.

In the N = 14 case, the preimages of e are

p = 11110001001101 (50)

and
q = 11110001110101 . (51)

Configuration p is simply e shifted cyclically by four cells to the right, and is
thus also an ether configuration. Configuration q is not an ether configuration.

For larger N , the preimages are all possible sequences composed of repe-
titions of p and q. For example, for N = 14 × 3, the eight preimages of eee
are

ppp, ppq, pqp, pqq, qpp, qpq, qqp, qqq . (52)

Precisely one of the preimages (namely pp . . . p) is an ether configuration,
leaving 2N/14 − 1 non-ether preimages.

The de Bruijn matrices corresponding to p and q are

Dp =


0 1 1 0
0 1 1 0
0 1 1 0
0 0 0 0

 and Dq =


0 1 0 0
0 1 0 0
0 1 0 0
0 0 0 0

 . (53)

These matrices do not have the same eigenvectors, so Lemma 4.3 does not
apply. However, direct calculation shows that

D2
p = 2Dp (54)

DqDp = Dp (55)

DpDq = 2Dq (56)

D2
q = Dq , (57)

and so any product involving Dp and Dq can be reduced to a scalar multiple
of Dp or Dq , whichever appears last in the product. Furthermore, TrDp = 2
and TrDq = 1, so the trace of a product involving Dp and Dq is 2c, where c
is the number of times Dp occurs. For example, for N = 14× 3:

18



1. Tr(D3
p) = 23 = 8, so ppp has eight preimages;

2. Tr(D2
pDq) = 22 = 4, so ppq has four preimages;

3. Similarly, pqp and qpp each have four preimages;

4. pqq, qpq and qqp each have two preimages;

5. qqq has one preimage.

The configuration q has one preimage, namely

s = 11011111011100 . (58)

Thus the preimages of a configuration composed of p and q are precisely
those configurations obtained by replacing each q with s, and each p with the
cyclic shift by four cells to the right of either p or q. These configurations are
“pre-preimages” of an ether configuration, or configurations from which an
ether configuration is reached after two time steps.

Configuration s has five preimages, so this kind of analysis becomes rather
more difficult at this point. In terms of transition graphs, we have reached a
particularly “branchy” vertex in the tree. Further investigation of these tran-
sients is a subject for future work. ♦

5 CONCLUSION

We have given two different methods of counting preimages of homogeneous
configurations. The second method is more useful in terms of producing nu-
merical data; the first gives more insight into the causes of the data’s qual-
itative relationship with N , and into what the preimages actually are, but is
rather cumbersome as a tool for calculation.

Both methods can explain why the number of preimages sometimes oscil-
lates with respect to N . The first method shows that oscillations occur when
the preimages have spatial periodicity, which can only occur when the number
of cells is a multiple of the spatial period. The second method’s explanation
is less illuminating but more general: as a sum of powers of complex num-
bers occurring in conjugate pairs, the expression for the number of preimages
often contains terms of the form 2rN cosNθ, and cosNθ is periodic with
respect to N (or “nearly periodic” if θ is not a rational multiple of π).

In studying the subset of initial configurations that eventually lead to a ho-
mogeneous configuration, we are effectively identifying the subspace of the

19



CA’s global state space in which the qualitative behaviour is what Wolfram
[11] calls class 1 behaviour. Numbers of preimages for homogeneous con-
figurations do not directly tell us the size of this region (as we do not count
those initial configurations that yield homogeneous configurations after more
than one time step), but they serve as an indication.
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TABLE 2: Characteristic polynomials for ECAs. The polynomials are
ordered by their roots of largest magnitude (see Table 3), and so that the
polynomials are grouped by the classes of behaviour given in Table 3,
but other than that the ordering (and thus the numbering) is arbitrary.

ci Polynomial
c1 λ4

c2 λ4 − λ3

c3 λ4 − 2λ3 + λ2

c4 λ4 − λ2

c5 λ4 − λ3 − λ2 + λ

c6 λ4 − 2λ3 + 2λ− 1
c7 λ4 − λ
c8 λ4 − λ3 − λ+ 1
c9 λ4 − 1
c10 λ4 − λ− 1
c11 λ4 − λ2 − λ
c12 λ4 − λ3 − λ2 + 1
c13 λ4 − λ3 − 1
c14 λ4 − λ3 − λ
c15 λ4 − 2λ3 + λ2 − λ+ 1
c16 λ4 − λ3 − λ2

c17 λ4 − 2λ3 + λ

c18 λ4 − λ3 − λ− 1
c19 λ4 − 2λ3 + λ2 − 1
c20 λ4 − λ2 − 2λ− 1
c21 λ4 − 2λ3 + λ2 − λ
c22 λ4 − λ3 − λ2 − λ
c23 λ4 − 2λ3
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TABLE 3: Roots of characteristic polynomials for ECAs

ci Cartesian form Modulus Argument/π Behaviour

c1

0
0
0
0

0
0
0
0

0
0
0
0

Constant

c2

1
0
0
0

1
0
0
0

0
0
0
0

Constant

c3

1
1
0
0

1
1
0
0

0
0
0
0

Constant

c4

1
−1
0
0

1
1
0
0

0
1
0
0

Period 2

c5

1
1
−1
0

1
1
1
0

0
0
1
0

Period 2

c6

1
1
1
−1

1
1
1
1

0
0
0
1

Period 2

c7

− 1
2 +

√
3

2 i

− 1
2 −

√
3

2 i

1
0

1
1
1
0

2
3

− 2
3

0
0

Period 3

c8

− 1
2 +

√
3

2 i

− 1
2 −

√
3

2 i

1
1

1
1
1
1

2
3

− 2
3

0
0

Period 3
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TABLE 3: Roots of characteristic polynomials for ECAs (continued)

ci Cartesian form Modulus Argument/π Behaviour

c9

1
i

−i
−1

1
1
1
1

0
1
2

− 1
2

1

Period 4

c10

1.22074
−0.24813 + 1.03398i
−0.24813− 1.03398i

−0.72449

1.22074
1.06334
1.06334
0.72449

0
0.57497
−0.57497

1

Exponential

c11

1.32472
−0.66236− 0.56228i
−0.66236 + 0.56228i

0

1.32472
0.86884
0.86884

0

0
−0.77596
0.77596

0

Exponential

c12

1.32472
1

−0.66236− 0.56228i
−0.66236 + 0.56228i

1.32472
1

0.86884
0.86884

0
0

−0.77596
0.77596

Exponential

c13

1.38028
0.21945 + 0.91447i
0.21945− 0.91447i

−0.81917

1.38028
0.94044
0.94044
0.81917

0
0.42503
−0.42503

1

Exponential

c14

1.46557
−0.23279− 0.79255i
−0.23279 + 0.79255i

0

1.46557
0.82603
0.82603

0

0
−0.59094
0.59094

0

Exponential

c15

1.46557
1

−0.23279− 0.79255i
−0.23279 + 0.79255i

1.46557
1

0.82603
0.82603

0
0

−0.59094
0.59094

Exponential

c16

1+
√

5
2

1−
√

5
2

0
0

1+
√

5
2√
5−1
2

0
0

0
1
0
0

Exponential

28



TABLE 3: Roots of characteristic polynomials for ECAs (continued)

ci Cartesian form Modulus Argument/π Behaviour

c17

1+
√

5
2

1
1−
√

5
2

0

1+
√

5
2

1√
5−1
2

0

0
0
1
0

Exponential

c18

1+
√

5
2

i

−i
1−
√

5
2

1+
√

5
2

1
1√
5−1
2

0
1
2

− 1
2

1

Exponential

c19

1+
√

5
2

1
2 −

√
3

2 i
1
2 +

√
3

2 i
1−
√

5
2

1+
√

5
2

1
1√
5−1
2

0
− 1

3
1
3

1

Exponential

c20

1+
√

5
2

− 1
2 +

√
3

2 i

− 1
2 −

√
3

2 i
1−
√

5
2

1+
√

5
2

1
1√
5−1
2

0
2
3

− 2
3

1

Exponential

c21

1.75488
0.12256− 0.74486i
0.12256 + 0.74486i

0

1.75488
0.75488
0.75488

0

0
−0.44809
0.44809

0

Exponential

c22

1.83929
−0.41964− 0.60629i
−0.41964 + 0.60629i

0

1.83929
0.73735
0.73735

0

0
−0.69272
0.69272

0

Exponential

c23

2
0
0
0

2
0
0
0

0
0
0
0

Exponential
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TABLE 4: Characteristic polynomials of de Bruijn matrices for ECAs

Rule charD0 charD1 Rule charD0 charD1

0 c23 c1 56 c3 c1
1 c22 c2 57 c2 c2
2 c17 c1 58 c3 c1
3 c16 c2 60 c3 c4
4 c21 c1 62 c3 c11

5 c18 c2 72 c17 c1
6 c15 c1 73 c12 c2
7 c14 c2 74 c6 c1
8 c17 c1 76 c3 c1
9 c12 c2 77 c2 c2
10 c6 c1 78 c3 c1
11 c5 c2 90 c6 c9
12 c3 c1 94 c3 c10

13 c2 c2 104 c15 c7
14 c3 c1 105 c8 c8
15 c2 c2 106 c3 c7
18 c17 c1 108 c3 c11

19 c16 c2 110 c3 c11

22 c15 c7 122 c3 c10

23 c14 c14 126 c3 c20

24 c6 c1 128 c22 c2
25 c5 c2 130 c12 c2
26 c6 c1 132 c14 c2
27 c5 c2 134 c8 c2
28 c3 c1 136 c16 c2
29 c2 c2 138 c5 c2
30 c3 c7 140 c2 c2
32 c21 c1 142 c2 c2
33 c14 c2 146 c12 c2
34 c3 c1 150 c8 c8
35 c2 c2 152 c5 c2
36 c19 c4 154 c5 c2
37 c13 c5 156 c2 c2
38 c3 c4 160 c18 c2
40 c15 c1 162 c2 c2
41 c8 c2 164 c13 c5
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TABLE 4: Characteristic polynomials of de Bruijn matrices for ECAs
(continued)

Rule charD0 charD1 Rule charD0 charD1

42 c3 c1 168 c14 c2
43 c2 c2 170 c2 c2
44 c3 c4 172 c2 c5
45 c2 c5 178 c2 c2
46 c3 c4 184 c2 c2
50 c3 c1 200 c16 c2
51 c2 c2 204 c2 c2
54 c3 c11 232 c14 c14
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