Artificial Immune Systems and the Grand Challenge for
Non-Classical Computation

Susan Stepneyl, John A. Clark!, Colin G. Johnson?, Derek Palrtridge3 ,
Robert E. Smith*

! Department of Computer Science, University of York
* Computing Laboratory, University of Kent
? Department of Computer Science, University of Exeter
* The Intelligent Computer Systems Centre, University of the West of England

Abstract. The UK Grand Challenges for Computing Research is an initiative to
map out certain key areas that could be used to help drive research over the next
10-15 years. One of the identified Grand Challenges is Non-Classical
Computation, which examines many of the fundamental assumptions of
Computer Science, and asks what would result if they were systematically
broken. In this discussion paper, we explain how the sub-discipline of Artificial
Immune Systems sits squarely in the province of this particular Grand
Challenge, and we identify certain key questions.

The UK Grand Challenges in Computing Research

The UK Computing Research Committee (UKCRC) is organising Grand Challenges
for Computing Research, to discuss possibilities and opportunities for the
advancement of computing science. It has asked the UK computing research
community to identify ambitious, long-term research initiatives. The original call
resulted in 109 submissions, which were discussed at a workshop in late 2002, and
refined into a handful of composite proposals. (Further details, and how to get
involved, can be found at [16]).

In this discussion paper, we explain how Artificial Immune Systems (AIS) sit
squarely in the province of one of the resulting composite proposals: Journeys in Non-
Classical Computation. First we summarise the Challenge itself [16], and then show
where the sub-discipline of AIS falls within its remit, and the particular questions AIS
raise and address. AIS provide excellent exemplars of non-classical computational
paradigms, and provide a resource for studying emergence, necessary for a full
science of complex adaptive systems.

We hope this discussion paper will encourage the AIS community to position and
exploit their research within the wider Non-Classical Computation arena.

The Grand Challenge of Non-Classical Computation

Some events permit huge increases in kinds and levels of complexity; these are
termed gateway events [7]. Such events open up whole new kinds of phase space to a
system’s dynamics. Gateway events during evolution of life on earth include the
appearance of ecukaryotes (organisms with a cell nucleus), an oxygen atmosphere,
multi-cellular organisms, and grass. Gateway events during the development of
mathematics include each invention of a new class of numbers (negative, irrational,
imaginary, ...), and dropping Euclid’s parallel postulate.

A gateway event produces a profound and fundamental change to the system: once
through the gateway, life is never the same again. We are currently poised on the
threshold of a significant gateway event in computation: that of breaking free from
many of our current “classical computational” assumptions. The corresponding
Grand Challenge for computer science is to journey through the gateway event
obtained by breaking our current classical computational assumptions, and
thereby develop a mature science of Non-Classical Computation.

Journeys versus Goals

Many Grand Challenges are cast in terms of goals, of end points: “achieving the goal,
before this decade is out, of landing a man on the moon and returning him safely to
earth” [11], mapping the human genome, proving whether P = NP or not. We believe
that a goal is not the best metaphor to use for this particular Grand Challenge,
however, and prefer the metaphor of a journey.

The journey metaphor emphasises the importance of the entire process, rather than
emphasising the end point. In the 17th and 18th centuries it was traditional for certain
sections of “polite society” to go on “a Grand Tour of Europe”, spending several
years broadening their horizons: the experience of the entire journey was important.
And in the Journey of Life, death is certainly not the goal! Indeed, an open journey,
passing through gateway events, exploring new lands with ever expanding horizons,
need not have an end point.

Journeys and goals have rather different properties. A goal is a fixed target, and
influences the route taken to it. With an open journey of exploration, however, we are
not able to predict what will happen: the purpose of the journey is discovery, and our
discoveries along our journey will suggest new directions for us to take. We can
suggest starting steps, and some intermediate way points, but not the detailed
progress, and certainly not the end result.

Thinking of the Non-Classical Computation Challenge in terms of a journey, or
rather several journeys, of exploration, we can today spy some early way points, as we
peer through the gateway. As the community’s journey progresses, new way points
will heave into view, and we can alter our course to encounter these as appropriate.

Six classical paradigms to disbelieve before breakfast

Classical computing is an extraordinary success story. But there is a growing
appreciation that it encompasses only a tiny subset of all computational possibilities.

Discoveries may emerge when an assumption that this has to be the case is found
merely to be an instance of this has always been the case, and is changed. We wish to
enable such discoveries by highlighting several assumptions that define classical
computing, but that are not necessarily true in all computing paradigms. Researchers
in many different fields are already challenging some these (for example, [8]), and we
encourage the community to challenge more, in whatever ways seem interesting. In
later sections we discuss alternatives in more detail. (Some of the categories arguably
overlap.)

1. The Turing paradigm
classical physics: states have particular values, information can be can be freely
copied, information is local. Rather, at the quantum level states may exist in
superpositions, information cannot be cloned, and entanglement implies non-locality.

atomicity: computation is discrete in time and space; there is a before state, an after
state and an operation that transforms the former into the latter. Rather, the
underlying implementation realises intermediate physical states.

unbounded resources: Turing machines have infinite tape state, and zero power
consumption. Rather, resources are always constrained.

substrate as implementation detail: the machine is logical, not physical. Rather, a
physical implementation of one form or another is always required, and the particular
choice has consequences.

universality is a good thing: one size of digital computer, one size of algorithm, fits
all problems. Rather, a choice of implementation to match the problem, or hybrid
solutions, can give more effective results.

closed and ergodic systems: the state space is pre-determined. Rather, the progress
of an interactive computation may open up new regions of state space in a contingent
manner.

2. The von Neumann paradigm
sequential program execution. Rather, parallel implementations already exist.
fetch-execute-store model of program execution. Rather, other architectures
already exist, for example, neural nets, FPGAs.
the static program: the program stays put and the data comes to it. Rather, the data
could stay put and the processing rove over it.

3. The output paradigm
a program is a black box: it is an oracle abstracted away from any internal structure.
Rather, the computation’s trajectory can be as interesting, or more interesting, than its
final result.

a program has a single well-defined output channel. Rather, we can chose to
observe other aspects of the physical system as it executes.

a program is a mathematical function: logically equivalent systems are
indistinguishable. Rather, correlations of multiple outputs from different executions,
or different systems, may be of interest.

4. The algorithmic paradigm
a program maps the initial input to the final output, ignoring the external world while
it executes. Rather, a system may be an ongoing adaptive process, with inputs
provided over time, with values dependent on how it interacts with the open
unpredictable environment; identical inputs may provide different outputs, as the
system learns and adapts to its history of interactions; there is no prespecified
endpoint.

the computer can be switched on and off: computations are bounded in time,
outside which the computer does not need to be active. Rather, the computer may
engage in a continuous interactive dialogue, with users and other computers.

randomness is noise is bad: most computer science is deterministic. Rather, nature-
inspired processes, in which randomness or chaos is essential, are known to work
well.

5. The refinement paradigm

incremental transformational steps move a specification to an implementation that
realises that specification. Rather, there may be a discontinuity between specification
and implementation, for example, bio-inspired recognisers.

binary is good: answers are crisp yes/no, true/false, and provably correct. Rather,
probabilistic, approximate, and fuzzy solutions can be just as useful, and more
efficient.

a specification exists, either before the development and forms its basis, or at least
after the development. Rather, the specification may be an emergent and changing
property of the system, as the history of interaction with the environment grows.

emergence is undesired, because the specification captures everything required,
and the refinement process is top-down. Rather, as systems grow more complex, this
refinement paradigm is infeasible, and emergent properties become an important
means of engineering desired behaviour.

6. The “computer as artefact” paradigm
computation is performed by artefacts: computation is not part of the real world.
Rather, in some cases, nature “just does it”, for example, optical Fourier transforms.
the hardware exists unchanged throughout the computation. Rather, new hardware
can appear as the computation proceeds, for example, by the addition of new
resources. Also, hardware can be “consumed”, for example, a chemical computer
consuming its initial reagents. In the extreme, nanites will construct the computer as
part of the computation, and disassemble it at the end.
the computer must be on to work. Rather, recent quantum computation results [9]
suggest that you don’t even need to “run” the computer to get a result!

Doubtless there are other classical paradigms that we accept almost without question.
They too can be fruitfully disbelieved.

There is a gulf between the maturity of classical computing and that of the
emerging non-classical paradigms. For classical computing, intellectual investment
over many years is turning craft into science. To fully exploit emerging non-classical
computational approaches we must seek for them such rigour and engineering
discipline as is possible. What that science will look like is currently unclear, and the
Grand Challenge encourages exploration.

The Real World : breaking the Turing paradigm

Real World as its own computer
The universe doesn’t need to compute, it just does it. We can take the computational
stance, and view many physical, chemical and biological processes as if they were
computations: the Principle of Least Action “computes” the shortest path for light;
water “computes” its own level; evolution “computes” fitter organisms (evolution of
bacterial resistance is evolution of real bacteria against an increasingly strong “data
set” of attacks to the bacterial “population”); DNA and morphogenesis “computes”
phenotypes; the immune system “computes” antigen recognition.

This natural computation can be more effective than a digital simulation. For
example, the real world performs quantum mechanical computations exponentially
faster than can classical simulations [6].

Real World as our computer

Taking the computational stance, we may exploit the way the world works to perform
“computations” for us. We set up the situation so that the natural behaviour of the
real world gives the desired result.

There are various forms of real world sorting and searching, for example.
Centrifuges exploit differences in density to separate mixtures of substances, a form
of gravitational sorting. Vapours of a boiling mixture are richer in the components
that have lower boiling points; distillation exploits this to give a form of thermal
sorting. Chromatography provides a chemical means of separation. Other kinds of
computations exist: for example, optics performs Fourier transforms.

Real World as analogue computer

We may exploit the real world in more indirect ways. The “computations” of the
“real world as our computer” are very direct, yet often we are concerned with more
abstract questions. Sometimes we can harness the physical world to provide the
results that we need: we may be able to set up the situation so that there is an analogy
between the computation performed by the real world, and the result we want.

There is an age-old mechanism for finding the longest stick of spaghetti in an
unruly pile, exploiting the physics of gravity and rigidity: we can use this to sort by
setting up an analogy between spaghetti strand length and the quantity of interest.

Classical computing already exploits physics at the level of electron movements.
But there are other ways of exploiting nature.

Analogue computing itself exploits the properties of electrical circuits as analogues
of differential equations (amongst other analogues).

DNA computing encodes problems and solutions as sequences of bases (strands)
and seeks to exploit mechanisms such as strand splitting, recombination and
reproduction to perform calculations of interest. This can result in vast parallelism, of
the order of 10* strands.

Quantum computing presents one of the most exciting developments for computer
science in recent times, breaking out of the classical Turing paradigm. As its name
suggests, it is based on quantum physics, and can perform computations that cannot
be effectively implemented on a classical Turing machine. It exploits interference,
many worlds, entanglement and non-locality. Newer work still is further breaking out
of the binary mind-set, with multiple-valued qudits, and continuous variables.

Real World as inspiration

Many important techniques in computer science have resulted from simulating
(currently very simplified) aspects of the real world. Meta-heuristic search
techniques draw inspiration from many areas, including physics (simulated
annealing), evolution (genetic algorithms, genetic programming), neurology (artificial
neural networks), immunology (artificial immune systems [5]), and social networks
(ant colony optimisation [2]).

In the virtual worlds inside the computer, we are no longer constrained by the laws
of nature. Our simulations can be other than the way the real world works. For
example, we can introduce novel evolutionary operators to our genetic algorithms,
novel kinds of selection algorithms to our artificial immune systems, and even, as we
come to understand the embracing concepts, novel kinds of complex adaptive systems
themselves. The real world is our inspiration, not a restriction.

Reality based computing techniques have proved successful, or look promising, yet
the science underpinning their use comes nowhere near matching the science of
classical computing. Given a raft of nature-inspired techniques we would like to get
from problem to solution efficiently and effectively, and we would like to reason
about the performance of the resulting systems. But this falls outside the classical
refinement paradigm.

Massive parallelism : breaking the von Neumann paradigm

Parallel processing (Cellular Automata, etc) and other non-classical architectures
break out of the sequential, von Neumann, paradigm.

Under the classical computational assumptions, any parallel computation can be
serialised, yet parallelism has its advantages.

Real-time response to the environment. The environment evolves at its own rate,
and a single processor might not be able to keep pace. (Possibly the ultimate example
of this will be the use of vast numbers of nanotechnological assemblers (nanites) to
build macroscopic artefacts. A single nanite would take too long, by very many
orders of magnitude.)

Better mapping of the computation to the problem structure. The real world is
intrinsically parallel, and serialisation of its interactions to map to the computational
structure can be difficult. Parallelism also permits colocation of each hardware
processor and the part of the environment with which it interacts most. It then
permits colocation of the software: software agents can roam around the distributed
system looking for the data of interest, and meeting other agents in a context
dependent manner. For example, artificial antibodies can patrol the network they are
protecting.

And once the classical computational assumptions are challenged, we can see that
serialisation is not necessarily equivalent.

Fault tolerance. Computation requires physical implementation, and that
implementation might fail. A parallel implementation can be engineered to continue
working even though some subset of its processors have failed. A sequential
implementation has only the one processor.

Interference/interaction between devices. Computation requires physical
implementation, and those implementations have extra-logical properties, such as
power consumption, or electromagnetic emissions, which may be interpreted as
computations in their own right (see later). These properties may interfere when the
devices are running in parallel, leading to effects not present in a serialised
implementation. (Possibly the ultimate example of this is the exponentially large state
space provided by the superposed parallel qubits in a quantum computer.)

The use of massive parallelism introduces new problems. The main one is the
requirement for decentralised control. It is just not possible for a single centralised
source to exercise precise control over vast numbers of heterogeneous devices. Part
of this issue is tackled by the sister Grand Challenges in Ubiquitous Systems [16], and
part is addressed in the later section, on open processes.

In the eye of the beholder : breaking the output paradigm

The classical paradigm of program execution is that an abstract computation
processes an input to produce an output. This input-output mapping is a logical
property of the computation, and is all that is important: no intermediate states are of
interest, the computation is independent of physical realisation, and different
instances of the computation yield precisely the same results.

Computation, however, is in the eye of the beholder. Algorithms are implemented
by physical devices, intermediate states exist, physical changes happen in the world,
different devices are distinguishable. Any information that can be observed in this
physical world may be used to enrich the perceived computation [4].

Logical Trajectory Observations. An executing algorithm follows a trajectory
through its logical state space. (Caveat: this is a classical argument: intermediate
quantum computational states may be in principle unobservable.) Typically, this
trajectory is not observed (except possibly during debugging). This is shockingly
wasteful: such logical information can be a computational resource in its own right.
For example, during certain types of heuristic search the trajectory followed can give
more information about a sought solution than the final “result” of the search itself.

Physical Trajectory Observations. An executing algorithm is accompanied by
physical changes to the world: for example, it consumes trajectory-dependent power
as it progresses, and can take trajectory-dependent time to complete. Such physical
resource consumption can be observed and exploited as a computational resource, for
example, to deduce features of the logical trajectory. (For example, recent attacks on
smart cards have observed such things to deduce secret key information [3].)

Differential Observations. An executing algorithm is realised in a physical
device. Physical devices have physical characteristics that can change depending on
environmental conditions such as temperature, and that differ subtly across logically
identical devices. So one can observe not merely the output of a single execution, but
a set of outputs from a family of executions, from multiple systems, from different but
related systems, and perform differential analyses.

Higher-order Observations. These are observations not of the program execution
itself, but of the execution of the program used to design (the program used to
design...) the program.

Open processes : breaking the algorithmic paradigm

In the classical paradigm, the ultimate goal of a computation is reaching a fixed point:
the final output, the “result” of the computation, after which we may switch off the
computer. The majority of classical science is also based around the notion of fixed-
point equilibrium and ergodicity (the property that a system has well defined spatial
and temporal averages, as any state of the system recurs with non-zero probability).

Many modern scientific theories consider systems that lack repetition and stability:
they are far-from-equilibrium and non-ergodic. The most obvious non-ergodic, far
from equilibrium system is life itself, characterised by perpetual evolution (change).

Consider the most basic of chaotic systems: the logistic process:

Xy = th (1 - xt)

The behaviours of various logistic processes as a function of the parameter R form the
well-know bifurcating, chaotic logistic curve (see, for example, figure 21 of [12]).
For small values of R, these logistic processes have a fixed point attractor. As R
increases, the attractor becomes period two, then four, then eight. This period
doubling continues, and the values of R where each doubling occurs get closer
together. For R > 3.569945671... the logistic process’s attractor goes through an
infinite number of values (except for a few “islands” of order, of attractors with
multiples of odd periods). There is a phase transition from order (the region of period
doubling) to chaos (“random” behaviour). The phase transition point at R =
3.569945671... is the so-called edge of chaos.

Consider a discretised process whose underlying (continuous) dynamics are those
of the logistic equation, and imagine taking samples of length L bits. Construct an
automaton machine that represents the process, for a given L. There is a clear phase
transition (a peak in the machine size versus the entropy of the bit sequence) as we
move from the period doubling region to the chaotic region. At the phase transition,
the machine size versus the length of the sequence L expands without bound. That is,
at the edge of chaos, the logistic machine requires an infinite memory machine for
accurate representation: there is a leap in the level of intrinsic computation going on.

At the edge of chaos, we can add new resources (computational or physical) and
get results that are neither redundant (as in the structured period doubling regime) nor
random (as in the chaotic regime). Within the classical paradigm, such conditions
would be anathema, indicating unceasing variety that never yields “the solution”. But
in life-like systems, there is simultaneously sustained order, and useful innovation.
New matter can be brought into such systems and used in ways that are neither
redundant nor random. In this setting, emergence of the unforeseen is a desirable
property, rather disruptive noise.

Computing often attempts to exploit the biological paradigm: cellular automata,
evolutionary computation, recurrent networks (autocatalytic, neural, genomic,
cytokine immune system, ecological webs, ...), social insect and agent-based systems,
DNA-computing, and nanite-systems that build themselves. The implementations in
most of these cases, however, are locked into themselves, closed, unable to take on
new matter or information, thus unable to truly exploit emergence.

Open systems are systems where new resources, and new kinds of resources, can be
added at any time, by external agency, or by the actions of the system. (For example,

an immune system might have inoculation material introduced by an external agent,
or evolve a new kind of immune cell.) These new resources can provide gateway
events, that fundamentally alter the character of the system dynamics, by opening up
new kinds of regions of phase space, allowing new possibilities.

Computational systems are beginning to open themselves to unceasing flows of
information (if not so much to new matter). The openness arises, for example,
through human interactivity as a continuing dialogue between user and machine [15],
through unbounded networks, through robotic systems with energy autonomy. As
computers become ubiquitous, the importance of open systems physics to
understanding computation becomes crucial.

Artificial Inmune Systems, and the Grand Challenge

The inspiration and the analogy

AIS are relatively recent example of using the real world as computational inspiration.
One such inspiration for AIS runs something like: the vertebrate immune system
fights infection by recognising and attacking non-self, can an analogous
computational system be used to detect, diagnose, and fight computer intrusions (from
hacker attacks to computer viruses)?

In addition to this obvious security metaphor, many other AIS application areas
have been developed, to cover more general anomaly detection, optimisation, fault
tolerance, and general purpose machine learning applications such as recognition and
classification.

The models

There are two main classes of models for AIS: the population-based (or selection)
model, and the network model (see [5] for details), which have impacts on different
areas of the main Challenge.

The population-based model

The population-based model is computationally inspired by the processes during early
maturation of immune cells, before they are released into the lymphatic system. It
uses some particular algorithm (positive, negative, clonal, ...) to select a set of
recognisers (supervised learning) or classifiers (unsupervised learning), of self or
non-self (details depending on the precise algorithm).

This model fits well with the other bio-inspired soft learning systems, such as
neural nets and genetic algorithms. The major contributions to the Grand Challenge
are in the area of breaking the refinement paradigm.

In all these soft learning approaches, there is a discontinuity between the problem
statement and the bio-inspired solution. With both NNs and AISs, the solution is
distributed over the entire system. Each artificial antibody may recognise several
different antigens: the specific response to a particular antigen is a global property of
all the antibodies. The complex response emerges from the simpler behaviour of
individual parts.

The way point questions specific to AIS include:

e What are the effect of aspects and parameters of the selection algorithm on the
outcome and applicability of the algorithms?

e Can we observe the computational trajectory taken during selection and
recognition to get useful information?

The immune system population-based model forms an excellent exemplar for

breaking the refinement paradigm. The challenge is to develop a science of non-

classical refinement, that permits quantitative reasoning about al/l bio-inspired

algorithms, including AISs, in both a bottom up and top down manner:

e understanding and predicting the global recognisers and classifiers that emerge
from a collection of local non-specific agents

e a means to design and implement appropriate sets of recognisers or classifiers for
particular applications, in a rigorous (but possibly non-incremental) way

o quantitative description methods that enable rigorous reasoning about the
behaviour of AISs, such that they can be used reliably in critical applications

Taking inspiration and input from all the bio-inspired learning algorithms, major way

points on the Non-Classical Computation journey are

e a general theory of learning systems that includes neural, evolutionary, and
immune systems as special cases

e use of the general theory to develop more effective kinds of learning systems,
inspired by, but not based upon, any known biological processes

The Network model

The immune system network model is computationally inspired by the biological
processes used to maintain a dynamic “memory” of immune responses, in a system
where the lifetime of individual immune memory cells is on the order of weeks, yet
the memory itself persists on the order of years or decades.

The immune system network model forms a superb exemplar for breaking the
output paradigm. It is one of many dynamic network models that occur in biological
and social systems, from Kauffman’s autocatalytic networks [10], and genomic
control networks, through dynamical models of neural networks, to ecological food
webs, and social and technological networks. All these subject areas could benefit
from better networks models. Much of the existing mathematical network theory is
restricted to static, homogeneous, structured, closed networks, since these are the
simplest, most tractable models to work with. However, these are not realistic models
of biological networks. Antibodies rove around the body (network, system, ...)
looking for the anomalies, and new kinds of attacks call for new kinds of defence.
The challenge is to develop a pragmatic theory of dynamic, heterogeneous,
unstructured, open networks [13].

e Dynamic: the network is not in steady state or equilibrium, but is far from

equilibrium, governed by attractors and trajectories. (Swarm networks may offer
insights to this kind of dynamics [2])

e Heterogeneous: the nodes, the connections, and the communications can be of
many different types, including higher order types.

e Unstructured: the network connectivity has no particular regularity: it is not fully
regular, or fully connected, or even fully random. Clearly there need to be some

kinds of regularity present, but these are likely to be of kinds that cannot be
reasoned about in terms of simple averages or mean field notions; they are more
likely have fractal structure. Some recent advances in Small World networks
offer intriguing new insights [1][14].

e Open (metadynamic): the structures are unbounded, and the components are not
fixed: nodes and connections may come and go; new kinds of nodes and
connections may appear.

A general theory of such networks would have application well beyond AISs. Such a
theory is a basic requirement of complex systems development in general, one
application of which is pervasive, or ubiquitous, computing (the subject of another
Grand Challenge [16]). Such a theory a necessary way point for answering such
challenging questions as

o Computation as a dynamical process. What are the various attractors of a
dynamical computation? How can we encourage the system to move to a “better”
attractor? How can we map the route through intermediate attractors that it should
take?

o Computation at the edge of chaos. What are it capabilities? How can we hold a
system at the edge, far from equilibrium, to perform useful computations? How
can we make it self-organise to the edge?

e Designed emergence. How can we design (refine) open systems that have desired
emergent properties? And do not have undesired emergent properties?

e Open systems science. What are the fundamental properties of open systems?
How can we predict the effect of interventions (adding new things, or removing
things) to the system? How can we understand the effect of a gateway event that
opens up new kinds of regions of phase space to a computation? How can we
design a system such that gateway events, natural changes to phase space, can
occur endogenously?

The biological models

Like many biologically inspired computational ideas, the computer science and the

biology are developing in parallel. The natural immune system, in particular, is an

exceedingly complicated and not well understood biological mechanism. The current
discipline of AIS may have been inspired by the biology, but it is painfully clear that

AlSs are but a pale shadow of the vast complexity and subtlety of the natural immune

system. Computer scientists, mathematicians, and immunologists working together

can ask, and answer, some deep and interesting questions. For example:

e How might we use the real immune system, and other real physical and biological
systems, for computation?

e To what extent is the working of the immune system, and other biological systems,
dictated by the physical substrate? Can all putative “immune” responses be
realised on all substrates? Do some diseases exploit computational constraints of
the immune system to defeat it?

e How can we use models to decide which parts of the biology are necessary for
correct robust functioning, which parts are necessary only because of the particular
physical realisation, and which parts merely contingent evolutionary aspects?

e How can we use nature inspired computation to build “better than reality” systems?
What are the computational limits to what we can simulate?

Conclusions

AIS do not break all the classic computational paradigms: for example, they do not
(yet?) use concepts from quantum physics. However, they do challenge some of the
major paradigms. The population-based model is a good exemplar for examining
alternatives to the refinement paradigm, and the network model is an excellent
exemplar for examining open network dynamics and emergence, necessary for a full
science of complex adaptive systems.

Classical physics did not disappear when modern physics came along: rather its
restrictions and domains of applicability were made explicit. Similarly, the various
forms of non-classical computation will not supersede classical computation: they
will augment and enrich it. And when a wide range of tools is available, we can pick
the best one, or the best combination, for each job. For example, it might be that
using a quantum algorithm to reduce a search space, and then a meta-heuristic search
to explore that, is more effective than using either algorithm alone. AISs form one of
a whole array of novel approaches to computation that are becoming available. It is
important that these separate areas are not seen as independent. Rather, their results
and insights should provide valuable groundwork for the overarching challenge, to
produce a fully mature science of all forms of computation, that unifies the
classical and non-classical paradigms.

References

[11 A.-L. Barabasi. Linked: the new science of networks. Perseus, 2002.

[21 E.W. Bonabeau, M. Dorigo, G. Theraulaz. Swarm Intelligence. OUP, 1999

[3] S. Chari, C. S. Jutla, J. R. Rao, P. Rohatgi. Power analysis. In A. Mclver, C.
Morgan, eds. Programming Methodology. Springer, 2003.

[4] J. A. Clark, S. Stepney, H. Chivers. Breaking the model (submitted)

[5] L.N. de Castro, J. Timmis. Artificial Immune Systems. Springer, 2002.

6] R.P.Feynman. Simulating Physics with Computers. Int. J. Theor. Phys. 21(6/7)
1982.

[71 M. Gell-Mann. The Quark and the Jaguar. Abacus, 1994.

(8] T. Gramss, S. Bornholdt, M. Gross, M. Mitchell, T. Pellizzari. Non-Standard
Computation. Wiley, 1998.

[91 R. Jozsa: Characterising Classes of Functions Computable by Quantum
Parallelism. Proc. R. Soc. Lond. A 435, 1991.

[10] S. A. Kauffman. The Origins of Order. OUP, 1993.

[11] J. F. Kennedy. Announcement to the US Congress. 25 May, 1961.

[12] H.-O. Peitgen, P. H. Richter. The Beauty of Fractals. Springer, 1986.

[13] S. Stepney. Critical Critical Systems. In Formal Aspects of Security, FASeC'02.
LNCS vol 2629, Springer, 2003.

[14] D.J. Watts. Small Worlds. Princeton University Press, 1999.

[15] P. Wegner. Why interaction is more powerful than algorithms. CACM, 40(5)
1997.

[16] UK Grand Challenges in Computing Research Website.
http://lumbriel.dcs.gla.ac.uk/NeSC/general/esi/events/Grand_Challenges

