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ABSTRACT 
In this paper, we show how genetic programming (GP) can be 
used to evolve system-size-independent quantum algorithms, and 
present a human-competitive Quantum Fourier Transform (QFT) 
algorithm evolved by GP.   

Categories and Subject Descriptors 
D.1.m [Programming Techniques]: Miscellaneous,                      
J.2 [Physical Sciences and Engineering]: Physics. 

General Terms 
Algorithms, Experimentation. 

Keywords 
Genetic Programming, Genetic Algorithms, Evolutionary 
Computing, Quantum Computing, Quantum Fourier Transform. 

1. INTRODUCTION 
Quantum Computing [4],[12] is a radical new paradigm that has 
the potential to bring a new class of previously intractable 
problems within computational reach.  Harnessing the phenomena 
of superposition and entanglement, a quantum computer can 
perform certain operations more efficiently than classical (non-
quantum) computers.  The earliest example of a ‘faster than 
classical’ quantum algorithm was Deutsch’s quantum solution to 
the binary promise algorithm.  Here a single quantum evaluation 
suffices to reveal whether a binary function f is constant 
(f(0) = f(1) = 0 or f(0) = f(1) = 1) or balanced (f(0) = 0, f(1) = 1 or 
f(0) = 1, f(1) = 0).  (This can be extended to n-input binary 
functions.)  Various other faster than classical algorithms 
followed, but real excitement was generated in 1994 by Peter 
Shor with a specific application of the Quantum discrete Fourier 
Transform. 

The Quantum Fourier Transform (QFT) is perhaps the most 
important building block in the quantum algorithm designer’s 
armoury.  It has a variety of applications (Chapter 5 of [10] gives 
a variety of specific solvable instances of the hidden subgroup 
problem such as Deutsch’s problem, Simon’s problem, period 
finding, order finding, hidden linear function finding), but the 

most important application is undoubtedly its use by Shor to 
provide a polynomial time quantum algorithm for factorisation of 
composite integers and the calculation of discrete logarithms in a 
finite field [14][15].  Some of the best-known and widely 
respected encryption algorithms in the world rely on these 
problems being computationally intractable.  Shor had provided 
what is regarded by most as the ‘killer application’ for quantum 
computing.  The field began to attract huge interest.   

One might imagine that there would be a flood of new algorithms 
to harness the power of this rapidly emerging means of 
computation.  However, this has not been the case.  It is generally 
agreed that there are still very few distinct quantum algorithms 
(see [10]).  This motivates our investigation of genetic 
programming in the quantum algorithm field.  Genetic 
programming has discovered new artefacts in other domains.  
Indeed, its use has produced various patentable outputs.  Can it 
exhibit human-competitive performance for quantum algorithm 
design? 

In this paper we show how GP has been used to evolve a human 
competitive algorithm for the Quantum Fourier Transform (QFT).  
We show how circuits can be evolved using GP that implement 
the QFT for 1, 2, and 3 qubits.  This is, however, the prelude to 
the main result of this paper: the evolution of an algorithm for the 
QFT, which when executed with specific system size (i.e. number 
of qubits) generates a circuit that implements the corresponding 
QFT.  We believe this is the most significant quantum artefact yet 
evolved using evolutionary computing.  It would appear to 
compete (in this instance) with the efforts of professional 
quantum specialists.  

The power of the result comes from its generality.  The drive to 
ever-increasing levels of abstraction goes hand in hand with 
increases in design sophistication in many domains (most notably 
software engineering).  The need to handle things at a higher level 
is recognised by quantum specialists.  It informs the evolutionary 
frameworks in the pioneering work of Spector and co-researchers 
(see below), from which we freely draw inspiration. 

In Section 3 we detail the software framework we have used to 
evolve quantum artefacts, indicating how solutions are 
represented and manipulated.  In Section 4 we provide details of 
the various fitness functions used.  In Section 5 we provide details 
of the QFT and known implementations.  In section 6, we provide 
some of the circuits we have evolved together with the system 
size independent algorithm for generating QFT circuits.  Section 7 
concludes.  First, we review current applications of meta-heuristic 
search to the design and exploration of quantum artefacts.  
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2. SEARCH FOR QUANTUM ARTEFACTS 
The design of quantum artefacts has emerged as a promising 
application area for evolutionary computing and other heuristic 
search techniques.  Here we provide an outline of work in the 
field.  Rather than adopt a chronological account, we present 
results according to the approximate level of abstraction of the 
quantum artefacts that were sought. 

2.1 Low level applications 
Most published circuits or algorithms make use of some particular 
set of quantum gates.  Examples of such gates are shown in 
Table 1.  One widely used two–qubit gate is CNOT (or 
Feynmann) gate.  This is often considered ‘basic’ by researchers, 
but this may be misleading.  Gershenfeld and Chuang [5] show 
how the CNOT gate can be implemented on Nuclear Magnetic 
Resonance implementations of quantum computing by a series of 
five more primitive operations.  Rethinam et al [12] use a basic 
genetic algorithm (bit string representation with single point 
crossover) to evolve sequences of length 3, more efficient than 
previously exhibited solutions.  Perkowski et al have synthesised 
‘basic’ gates such as Fredkin and Toffoli gates from lower level 
gates. 
Much quantum circuit design does not take into account physical 
implementation constraints; for example, it may be possible to 
carry out CNOT operations only on qubits in very close 
proximity.  There arise issues as to how problem variables map to 
physical qubits and how computational administrative costs (such 
as incurred when repeated qubit variable value swaps are used to 
bring the required values for an operation adjacent) can be 
minimized.  Van Meter et al [22] outline work in progress seeking 
to optimize the use of quantum resources. 

2.2 Specific circuits 
The use of genetic programming for the evolution of quantum 
artefacts has been pioneered by Spector and co-researchers.  Early 
work attempted to generate circuits to solve instances of OR, 
AND-OR, Deutsch Josza promise and database search problems 
[1][2][16][17][18].  The reader is referred to [19] for a summary 
and up-to-date discussion of the work.  Of particular importance 
is working with ‘second order encodings’; rather than evolve 
circuits directly the GP search evolves programs that when 
executed generate circuits. We too exploited this approach in  
[11].  The notion of second order encodings is also exploited in 
this paper; it is a major tool in the drive to increasing levels of 
abstraction in the evolution of quantum artefacts.  Various 
researchers have built on the work of Spector and co-researchers.  
For example,  Leier & Banzhaf have used a linear tree GP variant 
to evolve solutions to the 1-sat problem (Hogg’s algorithm) [7] 
and Massey et al investigate the use of alternative cost functions 
[11]. 

2.3 Communications 
One of the most intriguing applications of quantum phenomena is 
that of quantum teleportation [3].  Quantum teleportation aroused 
a great deal of interest and it is not surprising that various 
researchers have targeted the design of teleportation protocols.  
Williams & Gray use a genetic programming approach to evolve 
implementations of the subcircuits implementing each of the 
phases [24].  Subsequently Rubenstein has evolved teleportation 
sub-circuits. Yakubi & Iba criticise Williams & Gray’s work 

stating that the approach allowed infeasible protocols to be 
evolved and chose to evolve a whole protocol [25] but with a 
structure constrained by knowing the traditional BBS protocol.  
Spector et al have also evolved a teleportation protocol with the 
PUSH base system (see Spector’s book [19] for details).  
More recently Spector & Bernstein have used genetic 
programming to discover the communications capabilities of 
quantum circuitry [20].  This has included disproving conjectures 
on communications capacities.  It would appear that uncovering 
genuine insights in this field is computationally tractable by 
evolutionary computation and the area seems highly promising.  
Of further interest is that protocols and circuits uncovered by 
evolutionary computing were generalised by intelligent reflection.  
(The work could adequately be described as inspirational.)  A 
fuller account can be found in [19]. 

2.4 Summary and next step 
Evolutionary computation techniques have found successful 
application to the derivation of quantum artifacts at many levels, 
ranging from the evolution of implementations of ‘basic’ gates to 
the evolution of circuits for teleportation.  (A fuller review can be 
found in [21].)  The evolution of true parametrisable algorithms 
seems a natural goal to set ourselves.  We now describe the 
approach that has been used to do this for one such artifact – the 
Quantum Fourier Transform. 

3. THE GP SOFTWARE 
Our research has been conducted using successive versions of a 
software suite called Q-PACE (Quantum Programs And Circuits 
through Evolution).  The quantum program presented in Section 
6.1 has been evolved using Q-PACE III, the quantum algorithms 
presented in Sections 6.2 and 6.3 have been evolved using 
Q-PACE IV. We now describe Q-PACE’s key characteristics. 

Table 1 - Gates Recognised / Generated by Q-PACE III & IV 
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Q-PACE III & IV also recognise controlled versions of each 
of the above gates.  For example, the Controlled Hadamard 
gate H(c,x) has the same effect as the Hadamard gate H(x) if 
the value of qubit c != 0, otherwise it has no effect.  In the 
case of the NOT gate, a double-controlled version 
CCN(c1,c2,x) is also recognised (the gate N(x) is produced 
only if neither qubit c1 nor qubit c2 have a value of zero). 

 

 



Language and GP Engine.  Q-PACE is written in C++, with GP 
engines based on Wall’s GALib library [23]. 

Representation.  Q-PACE uses a second order representation: 
individuals are not quantum circuits, but higher level constructs 
that need to be decoded/executed to generate quantum circuits.  In 
Q-PACE III, individuals are programs that, when decoded, 
generate a single quantum circuit (appropriate to a single size of 
quantum system).  In Q-PACE IV, individuals are pseudo-code 
algorithms which, when decoded/executed, produce a family of 
quantum circuits (one for each size of quantum system under 
test).  

Quantum Gate Set.  The individuals generated by Q-PACE III 
and IV, when decoded/executed, create quantum circuits built 
from the set shown in Table 1.  A user of the software is able to 
constrain the GP to use any subset of these allowed gates by 
selecting (through an on-screen prompt at the start of a GP run) 
which gate-generating functions should be used in the allele set.  

Allele Set.  Individuals are trees of alleles, where each allele is 
either a function or a terminal.  In Q-PACE III, functions generate 
quantum gates, and terminals are constants (denoting which 
qubit(s) should be operated on).  In Q-PACE IV, functions may 
be gate-generating functions, arithmetic functions or control 
functions; terminals may be constants or variables.  Formal 
definitions of all the gate-generating functions used in Q-PACE 
IV are presented in Table 2; formal definitions of all other alleles 
used in Q-PACE IV are presented in Table 3.  In Q-PACE III, 
different functions take different numbers of parameters.  In 
Q-PACE IV, all functions take the same number of parameters 
(three), to allow more general mutation operators; when a 
function requires only one or two parameters, the remaining 
parameters have no effect.  The user is able to constrain the GP to 
use any subset of the allele set through an on-screen prompt at the 
start of a GP run.  A linked list object is used to store the quantum 
circuit produced when the individual is decoded for a given 
system size. 
GP Operators.  Q-PACE uses a tournament selection operator and 
a subtree-swap crossover operator.  A range of mutation operators 
are available.  The default Q-PACE III mutation operator allows 
terminals to mutate into other terminals, and functions to mutate 
into other functions of the same cardinality.  The default Q-PACE 
IV mutation operator performs one of three different types of 
mutation, known as “mini”, “midi” and “maxi” replacement, 
depending on the result of a biased coin flip.  In mini-replace, an 
allele is mutated for another allele of the same type (e.g. a 
constant can only mutate into another constant, a gate-producing 
function can only mutate into another gate-producing function, 
etc), and any children of the original allele are unchanged. In 
midi-replace, a terminal can mutate into any other terminal (e.g. a 
variable can become a constant, and vice versa), and a function 
can mutate into any other function (e.g. a gate producing function 
can become an arithmetic function, and vice versa), with any 
children of the original node left unchanged.  In maxi-replace, an 
allele can mutate into any other node.  If the original allele has 
children, they are destroyed and rebuilt at random (this capability 
allows quite extensive mutations). 

Allele selection for initial population.  While current_tree_depth 
< max_tree_depth, an allele is a randomly-selected function with 
some probability function_probability, and a randomly-selected 

terminal with probability (1 – function_probability).  When 
current_tree_depth reaches max_tree_depth, all new alleles are 
randomly selected terminals. 

Stopping Criteria.  Evolution continues until either (a) an exact 
solution to the problem under test is found (in which case it is 
displayed), or (b) a user-defined number of generations elapse (in 
which case the best result so far is displayed). 

Table 2 – Gate-generating functions used in Q-PACE IV 

Name Return 
value 

Side effects 

Create_N(x, -, -) x create N(x)  
Create_CN 
(c, x, -) 

x if c ≠ x, create CN(c, x) 
if c = x, create N(x) 

Create_CCN 
(c1,c2,x) 

x if c1=c2=x, create N(x) 
if c1=c2≠x, create CN(c1, x) 
if c1≠c2≠x, create CCN(c1,c2,x) 
if c1=x≠c2, create CN(c2, x) 
if c1≠c2=x, create CN(c1, x) 

Create_H(x, -, -) x create H(x)  
Create_CH 
(c, x, -) 

x if c ≠ x, create CH(c, x) 
if c = x, create H(x) 

Create_P(x, θ, -) x create P(x, π/2θ) 
Create_CP 
(c, x, θ) 

x if c ≠ x, create CP(c, x, π/2θ) 
if c = x, create P(x, π/2θ) 

Create_SWAP 
(x, y, -) 

x if x ≠ y, create SWAP(x,y), 
otherwise, no effect 

 

Table 3 – Other alleles used by Q-PACE IV 

Name Return 
value 

Comments 

PLUS(x, y, -) x + y  
MINUS(x, y, -) x – y  
MULTIPLY 
(x, y, -) 

x * y  

DIVIDE(x, y, -) x / y return int(x / y) if y ≠ 0, 1 
otherwise 

ITERATE 
(n, BODY, -) 

n the second child of an ITERATE 
is always a BODY (enforced 
during crossover and mutation) 

BODY 
(ch1, ch2, ch3) 

ch1  

ROOT 
(ch1, ch2, …) 

ch1 all individuals are rooted in this 
function; it can appear nowhere 
else in an individual 

plus Constants (1.. current_system_size) and Variables 
(current_system_size, and loop counters for any ITERATE 
statements currently in scope) 

 
Notes for both Table 2 and Table 3: 

1. If the value of a (decoded) parameter is < 1, it is coerced to 1; if the 
value is > current_system_size, it is coerced to 
current_system_size. 

2. Parameters denoted “-” have no effect on the result. They give all 
functions the same arity, to allow more general mutation operators. 

 



4. FITNESS FUNCTIONS 
The state of any n qubit quantum system can be represented by a 
state vector of 2n complex numbers.  In order to determine the 
fitness of an evolved individual, Q-PACE compares the state 
vectors generated by applying that individual to a set of known 
initial states, with those produced by applying a known model 
solution to the same set of known initial states. More specifically, 
the technique for assessing fitness is as follows:  
Initialisation:  

♦ Create a set VI of input state vectors that span the space of all 
possible inputs.  Each member of VI acts as a fitness case for 
the problem under test.  

♦ Create a set VT of target vectors, the desired results for each 
fitness case, by applying a model solution to the set VI .  

Evaluation:  

♦ Apply each candidate individual to each fitness case, to 
produce a set of result vectors VR.  

♦ Compare each member of VR with the corresponding member 
of VT .  The chosen means of comparison defines the specific 
fitness function for the particular problem under test.  

For the results presented in this paper, two fitness functions are 
used.  The first, Figure 1, gives credit only for exact matches in 
the various fitness functions.  The second, Figure 2, sums the 
differences between corresponding state vector positions in the VT 
and VR vectors.  Note that for the purposes of this fitness function, 
VT and VR are required to be in polar co-ordinate form, i.e. 

( , )
i iT T TV r

i
θ= and ( , )

i i iR R RV r θ= .  This allows the fitness 

function to use a scaling factor α, the purpose of which is to 
ensure that individuals where the magnitude of the complex 
numbers match (but the phases do not) have a considerably better 
fitness than individuals where the phases match but the 
magnitudes do not.  The fitness function is designed this way to 
promote a particular evolutionary strategy: to allow the GP 
software to first evolve solutions which are basically correct but 
with incorrect angles in any phase gates (e.g. CP(2,1,π/8) instead 
of CP(2,1,π/4) ), before subsequently evolving the correct angles.  
We have found this strategy, by and large, works well for solving 
problems where quantum phase operations are an integral part of 
the solution. 

2 2
(if  then 0  else 1)

i iT R
i

f V V= =∑  

Figure 1 - "Match State Vector Positions" Fitness Function 

i i i iT R T R
i i

f r rα θ θ= − + −∑ ∑  

Figure 2 - Polar co-ordinate difference fitness function 

In addition to the functional fitness given above, the fitness 
function also contained an efficiency component defined by 

( )
_ _

target_size 100
system size tested

efficiency sz= −∑  

Figure 3. Efficiency component of fitness function 
where sz is the size of the quantum circuit generated by the 
individual for the current system size and the target_size is 
defined as 2 for a system of size 1, 6 for a system of size 2, 10 for 

a system of size 3 and 16 for a system of size 4.  (These values 
are a little greater than the most efficient sizes known.) 

An additional component was introduced to penalise the absence 
of appropriate SWAP gates in any position for the system size 
under consideration.  In this respect we have given the technique 
a small piece of system specific help.  The presence or absence of 
a SWAP gate wildly changes the r-theta difference of an 
individual, so much so that hundreds or thousands of generations 
spent working towards the delicate (and very tricky) 
CREATE_CP loops could be undone in a single generation by a 
mutation that introduced the right SWAP gate (but destroyed 
everything else of value in the algorithm). 

5. THE QUANTUM FOURIER 
TRANSFORM 
5.1 Definition 
Consider a quantum state vector (x0, x1, … xN-1 }, where N = 2n. 
Applying the QFT to this state vector gives us a result state vector 
(y0, y1, … yN-1 } such that yk is equal to the right hand side of the 
equation in Figure 4. 

1

0

1 2exp
N

k j
j

i jky x
NN

π−

=
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Figure 4 

5.2 Implementation 
The following pseudo-code algorithm, QFT(n), implements the 
QFT on any size of quantum system using only the quantum gates 
shown in Table 1:  
 

For (j = 1; j < n; j++) { 

Create_H(j); 

For (k=1; k <= (n–j); k++) { 

Create_CP(j+k, j, k+1); } } 

Create_H(n); 

For (i = 1; i <= (n / 2); i++) { 

Create_SWAP(i, n – i + 1); } 

 

The functions Create_H(x), Create_CP(x,y,z) and 
Create_SWAP(x,y) are defined in Table 2.  
Each of these circuits implements an exact QFT for that system 
size.  Table 4 shows the circuits produced by this algorithm for 
quantum systems of 1 - 4 qubits.  
 

Table 4  - Circuits to implement the QFT for n = 1-4 qubits 

n Circuit 

1 H(1) 

2 H(1), CP(2,1,π/4), H(2), SWAP(1,2) 

3 H(1), CP(2,1, π/4), CP(3,1, π/8), H(2), CP(3,2, π/4), 
H(3), SWAP(1,3) 

4 H(1), CP(2,1, π/4), CP(3,1, π/8), CP(4,1, π/16), H(2), 
CP(3,2, π/4), CP(4,2, π/8), H(3), CP(4,3, π/4), H(4), 
SWAP(1,4), SWAP(2,3) 



6. RESULTS 
6.1 An evolved program to implement the 
QFT on a 3-qubit system 
Q-PACE III is able to evolve programs which, when decoded and 
executed, implement an exact QFT on a 3 qubit quantum system.  
Using the fitness function shown in Figure 1, a population size of 
100, a crossover probability of 0.5, and a mutation probability of 
0.01, Q-PACE III is able to generate (in 1122 generations) the 
following individual:  
 

ROOT( 
 2, 
 Create_CP( 3, Create_CH(1,1), Create_CP(1,2,2) ), 
 2, 
 Create_H(2), 
 Create_CP(2,3,2), 
 Create_CCN( 
  Create_CP( 
   Create_CCN( Create_CP(3,1,3), Create_N(1), 1 ), 
   3, 2 ), 
  Create_H(3), 1 ), 
 Create_CN(1,3), 
 2, 3 ) 
 

This individual, when decoded/executed, produces the quantum 
circuit illustrated in Figure 5. After hand-optimisation, the circuit 
can be simplified to that illustrated in Figure 6.  
 

 
Figure 5. (Unoptimised) circuit generated by the evolved solution 

to QFT(3) 
 

 
Figure 6. (Hand-Optimised) circuit generated by the evolved 

solution to QFT(3) 
 

This circuit has 10 gates.  Although the best known circuit to 
generate QFT(3) can be implemented in 7 gates (see Table 4), that 
circuit requires the use of a SWAP gate, which was not available 
as an allele to Q-PACE III in this particular GP run.  The most 
efficient known circuit to implement QFT(3) using the alleles 
given to Q-PACE III in this GP run has 9 gates, just one less than 
the solution evolved here.  

6.2 An evolved algorithm to implement the 
QFT on system sizes of 1 to 3 qubits 
Q-PACE IV is able to evolve algorithms which, when decoded 
and executed, implement an exact QFT on system sizes of 1, 2 
and 3 qubits.  One is presented here.  To evolve this algorithm, 

the GP used the fitness function shown in Figure 2 (together with 
a small efficiency component to minimise GP bloat), a population 
size of 2000 for the first two generations, and 50 thereafter (to 
ensure a “deep gene pool” at the beginning of the evolutionary 
process), a crossover probability of 0.75, and a mutation 
probability of 0.075.  With these parameters, Q-PACE IV is able 
to generate (in 2177 generations) the following individual: 
 

ROOT( 
 ITERATE( 
  MINUS(n, 1, n), 
  BODY( 
   Create_H(var1, n, n), 
   ITERATE( 
    MINUS(n, var1, n), 
    BODY( 
     Create_CP( 
      PLUS(var1,var2,n),var1,PLUS(1,var2,var2) 
     ), 
     var1, 2), 
    var1), 
   n), 
  n) 
 Create_H(n, n, n), 
 ITERATE( 
  DIVIDE(n, n, n), 
  BODY(Create_SWAP(var1,n,2), DIVIDE(n,n,n), n), 
  n) 
 ) 

 

This individual, when decoded/executed for different system sizes 
n:, produces the quantum circuits shown in Table 5.  

Table 5. Circuits produced by the first evolved algorithm, for 
n = 1-4 qubits 

n Circuit 

1 H(1), SWAP(1,1) 

2 H(1), CP(2,1,π/4), H(2), SWAP(1,2) 

3 H(1), CP(2,1, π/4), CP(3,1, π/8), H(2), CP(3,2, π/4), 
H(3), SWAP(1,3) 

4 H(1), CP(2,1, πI/4), CP(3,1, π/8), CP(4,1, π/16), H(2), 
CP(3,2, π/4), CP(4,2, π/8), H(3), CP(4,3, π/4), H(4), 
SWAP(1,4) 

 
These circuits are human-competitive for n = 1-3: there is one 
redundant gate in the circuit for a 1 qubit system, but the other 
two circuits equal the most efficient known using these quantum 
gates.  
However, this algorithm does not implement the QFT perfectly 
for systems with more than 3 qubits.  The final ITERATE loop 
always runs for precisely one iteration, and therefore there is 
always precisely one SWAP gate generated, regardless of the 
system size.  For system sizes above 3, multiple SWAP gates are 
required to implement the QFT exactly (more precisely, ⎣ ⎦2/n  
gates are needed, where n is the system size).  The n=4 circuit 
shown is a reliable QFT(4) circuit apart from a missing 
SWAP(2,3) gate at the end.  This algorithm becomes increasingly 
poor at implementing the QFT as the system size increases. 



6.3 An evolved algorithm to implement the 
QFT on any size of quantum system 
When set up with the same parameters as in Section 6.2, but 
allowed to test candidate solutions against system sizes of 1, 2, 3 
and 4 qubits, Q-PACE IV is able to evolve (in 2436 generations) 
an algorithm that implements the QFT operation exactly on any 
size of quantum system, as follows: 
 

ROOT( 
 ITERATE( 
  MINUS( n, 1, 4 ), 
  BODY( 
   Create_H( v1, n, n ), 
   ITERATE( 
    MINUS( n, v1, v1 ), 
    BODY( 
     Create_CP(PLUS(v1,v2,v1), v1, PLUS(v2,1,4)), 
     1, 1), 
    var1 ), 
   1), 
  n ), 
 Create_H( n, 1, n ), 
 ITERATE( 
  DIVIDE( n, 2, n ), 
  BODY( 
   Create_SWAP( 
    v1, 
    PLUS( MINUS(n,v2,1), 1, 3 ), 
    1 ), 
   n, n ), 
  3 ) 
 ) 

 

This individual, when decoded/executed for different system sizes 
n:, produces the quantum circuits shown in Table 6.  

Table 6. Circuits produced by the second evolved algorithm, for 
n = 1-5 qubits 

n Circuit 

1 H(1) 

2 H(1), CP(2,1,π/4), H(2), SWAP(1,2) 

3 H(1), CP(2,1, π/4), CP(3,1, π/8), H(2), CP(3,2, π/4), 
H(3), SWAP(1,3) 

4 H(1), CP(2,1, πI/4), CP(3,1, π/8), CP(4,1, π/16), H(2), 
CP(3,2, π/4), CP(4,2, π/8), H(3), CP(4,3, π/4), H(4), 
SWAP(1,4), SWAP(2,3) 

5 H(1), CP(2,1,PI/4), CP(3,1,PI/8), CP(4,1,PI/16), 
CP(5,1,PI/32), H(2), CP(3,2,PI/4), CP(4,2,PI/8), 
CP(5,2,PI/16), H(3), CP(4,3,PI/4), CP(5,3,PI/8), H(4), 
CP(5,4,PI/4), H(5), SWAP(1,5), SWAP(2,4) 

 
These circuits are human-competitive for all n: each one equals 
the most efficient known circuit for that system size. 

7. CONCLUSIONS AND FURTHER WORK 
7.1 Summary  
The QFT is arguably the most important building block in 
quantum algorithm construction.  Its use as a crucial component 
of polynomial time quantum algorithms for factorisation and 

discrete logarithm problems alone guarantee worldwide interest in 
its implementation. 
Spector describes circuits implementing the QFT for small 
numbers of qubits [19].  Here we have demonstrated correct 
implementations also for small numbers of qubits (up to 5).  
However, for the first time, genetic programming has been used to 
evolve a system size-independent algorithm capable of generating 
a correct circuit for any supplied n.  The algorithm, when 
executed, generates efficient circuits.  The leap in abstraction 
level is of crucial importance.  Circuits are system size specific; 
an algorithm can generate a circuit for any supplied size.  It 
captures an intellectual idea about a family of correct circuit 
structures.  

7.2 Can GP compete with humans? 
The algorithm evolved using GP described in this paper would 
appear to be one of the most significant quantum artefacts 
discovered using evolutionary computation.  Since 
implementations of the QFT have been demonstrated only very 
recently, it would appear that a claim to be human competitive is 
justified.  We hope its discovery by GP will inspire further 
interest in the field. 
However, the results presented in this paper do not extend the 
portfolio of known quantum algorithms.  Given the difficulty of 
devising new quantum algorithms analytically, an important open 
research problem remains:  can GP evolve new quantum 
algorithms to solve open problems in computer science?   
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