
Embodied copying for richer evolution

Adam Nellis and Susan Stepney
York Centre for Complex Systems Analysis (YCCSA), University of York, UK, Y010 5GE

adam@cs.york.ac.uk

Abstract

We address the process of copying in Artificial Life organ-
isms. Copying is a source of mutations, a crucial component
in evolution. We propose that rich copying mechanisms, and
thereby rich evolutionary systems, can be obtained by em-
bodying the copying process in a lower-level simulation.

We demonstrate an embodied copying process that has the
potential to alter its own mutation rate, without having the
concept of a mutation rate parameter explicit in the system.

Introduction
In computing, the concept of copying is important. Many
programs copy data during computation. So programming
languages often have the concept of copying as a primi-
tive instruction. For example, all high-level imperative lan-
guages have an assignment operator; a := b copies the con-
tents of b and puts the result in a.

In Artificial Life (ALife), the concept of copying is also
important. To reproduce, life-forms (whether biological or
artificial) need to copy themselves. ALife organisms in com-
puters can make use of the copy operations in program-
ming languages, using these to copy themselves. But the
requirements of ALife organisms and traditional computer
programs are different. Copying in ALife is a source of mu-
tations. It is a novelty-generation process driving evolution.

In biological organisms, copying is not an abstract con-
cept implemented by a defined instruction. It is an emer-
gent property of lower level processes. Copying is embod-
ied within the biological systems that are being copied, and
so mutations caused by the copying process can change the
copying process.

We propose that ALife organisms should not blindly use
the copy operations provided by programming languages.
Here, we focus on copying as an embodied process, rather
than as a computational result.

Artificial Chemistry (AChem) is the medium we use to
embody the copying process. We explain how existing work
has started to implement embodied copying reactions in
AChems. We build on this by designing an AChem and us-
ing it to implement an embodied copying process.

Crisp, stochastic, and embodied copying
In normal computer programs, copying should happen
crisply, without any errors. If a programmer writes a := b
in their code, they expect the copy to work perfectly. They
expect a to contain an exact copy of b.

However, this is not the case in ALife. When biological
life-forms (such as bacteria) clone themselves asexually, the
clones are not exact copies of their parents (see any biology
textbook, e.g. [1]). The biological ‘copy operation’ does not
work perfectly. But this is not a mistake. Biology would not
be improved by a perfect copy operation. Imperfect copy-
ing in biology causes the mutations and novelty that allow
evolution to happen.

Stochasticity is a way of introducing variation into com-
puter programs (or more generally, any systems). ALife or-
ganisms can use this variation to explore the design space of
possible organisms. Stochastic programs are crisp programs
with variation introduced via pseudo-random number gener-
ators. Stochastic programs can influence ALife organisms,
allowing the organisms to vary. But the variation originates
outside the simulation of the organisms, so the organisms
can not influence the variation process. They can not change
the stochastic programs. If the programs are to be changed
during a simulation, they much be changed by another ab-
stract process, operating on a higher level. This process,
in turn, can only be changed by a process operating on an
even higher level. This chain of meta-processes and meta-
parameters can be broken by embodying the process in the
simulation.

Embodying means implementing one system (the process)
within another (the environment). It is frequently used in
robotics to refer to building physical robots rather than simu-
lated ones, thus embodying the robot system (process) in the
physical world (environment). But the environment within
which a process can be embodied is not limited to the phys-
ical world [6]. All processes are embodied within some en-
vironment, but stochastic programs are embodied in a trivial
environment outside the simulation of the ALife organisms.
This is why the ALife organisms can not change the stochas-
tic programs.

Algorithm 1 Deconstructing the string copy operation, as a
prerequisite to embodying it

result string A := string B

i := start(string B)
while i not at-end(string B) do

string A(i) := char-copy(string B(i))
i := next(i)

end while

In order for an ALife organism to change a stochastic pro-
cess, the process must be implemented in the same language
as the organisms: the process must be embodied within the
simulation of the organism. A stochastic copying process
allows the organisms in a simulation to vary, and so evolve.
If the copying process is itself part of the simulation, then it
too will be able to vary and evolve.

Copying as a process
In writing an embodied copying program, we must think

about the process of copying a string, rather than the re-
sult of the copy. Algorithm 1 breaks down this process
into four parts, each involving a particular function: start,
at-end, char-copy, and next. Each of these four func-
tions can be either crisp, stochastic or embodied. If all four
are crisp, then the overall copying process is crisp, and exact
copies are always produced.

If any of these four functions are stochastic, then the
overall copying process will be stochastic. Making differ-
ent combinations of these four functions stochastic intro-
duces different kinds of variation into the copying process.
For example: making char-copy stochastic could cause
some characters to be copied incorrectly; making at-end
stochastic could cause the copy to be truncated.

We can embody the copying process in different ways,
and to different degrees. We must implement a simulation of
a system where at least one of these functions can happen as
a consequence of lower-level events. But we do not need to
embody all four of the functions. We can implement some of
them as crisp or stochastic functions in the definition of our
simulation. Thus there are many different ways in which we
can embody the copy operation. Each of these ways leads
to different systems with different properties and different
degrees of self-modification and novelty generation.

Example: the Stringmol AChem
The Stringmol AChem [3, 2, 4] has been used to implement
an embodied copy operation. In terms of algorithm 1, it
has embodied start and at-end functions, a stochastic
char-copy function and a crisp next function.

Stringmol’s embodied copying process has been shown
to produce interesting behaviour [3]. Because the process
of copying is embodied in a ‘replicase’ chemical, evolution

can change the process when the replicase copies (another
instance of) itself. One sequence of changes observed in
Stringmol (described in detail, in [3]) is the emergence of
an unprogrammed ‘macro-mutation’ that chops off the first
few characters of a chemical. The emergence of the macro-
mutation exploited the two embodied stages of Stringmol’s
copying process: the start and at-end functions.

Stringmol produced something different from what would
normally be expected of a copy operation: an unpro-
grammed type of mutation. The emergence of a new type
of mutation is not possible using just a stochastic copy op-
eration. Embodiment is needed to allow the intermediate
stages of the copying process to be exploited and changed.
This shows the potential power of embodying the copying
process (or more generally, any process).

Our hypothesis is that by embodying different stages of
the copying process, we will be able to observe different,
unprogrammed types of mutation emerging from our ALife
simulations.

The Graphmol AChem

In our Graphmol AChem, the chemicals are graphs, and re-
actions change the topology of the graphs. We use Graph-
mol to build an embodied copy operation that has an em-
bodied next function. Here we use crisp start, at-end
and char-copy functions, because we are interested in
investigating the effect of embodying the next function.
However, Graphmol has been designed so that the start,
at-end and char-copy functions can (in the future) be
made stochastic or embodied.

We embody the next function by building a “walker”
chemical in Graphmol. This chemical is a graph that can
change its own topology by running short computer pro-
grams. Some of its graph nodes are “feet” that walk along
the string being copied (which is also represented as a
graph). The next function (incrementing a pointer) is bro-
ken down into two stages: (1) lifting up a foot; and (2)
putting that foot down in the ‘next’ place. A stochastic pro-
cess controls where the feet are put down, allowing them to
be put down in the “wrong” place and so causing mutations
in the copied string (variations in the copying process). The
next function is embodied because the stochastic process
depends on the composition of the walker chemical. Chang-
ing the walker chemical changes the stochastic process, and
so an evolving walker chemical can change the way in which
it performs its next function.

We show that this embodiment allows the walker chem-
ical to change its mutation rate through evolution. This
demonstrates the usefulness of an embodied next function
(increment operation) used to make an embodied copy oper-
ation.

[begin Begin defining a binding site
] end End definition of a binding site
< show Show binding site
> hide Hide binding site
! stop Stop the execution of a program

a-z, 0-9 junk Non-functional atoms

Figure 1: The alphabet of Graphmol atoms.

Definition of Graphmol
The chemicals in Graphmol are represented by graphs. Each
graph is both a data structure and a program. The execution
of the program changes the structure of the graph.

A Graphmol chemical is defined by a string of atoms over
an alphabet (figure 1). This string is parsed into three types
of nodes (binding sites, which can be shown or hidden;
functions; and junk), and folded into a graph with three types
of edge (program edges, fold edges, and bind edges). Dis-
tances through the graph are used in a stochastic binding
process (distances are calculated using the number of atoms
in each node).

Reactions are defined by the Graphmol programming lan-
guage, which has two parts: a declarative part (binding pro-
cess) and an imperative part (instruction pointers).

The declarative part defines how chemical graphs bind to
each other, implemented by a simple aspatial physics engine.
This continually changes the graph structure by adding bind
edges between shown binding sites. The process is stochas-
tic, and the chance of two binding sites binding (having a
bind edge added) depends on: (1) how closely their binding
site patterns match; and (2) their distance apart, through the
graph (measured as the length of the shortest path between
the two binding sites).

The function nodes in the graph are the imperative lan-
guage instructions. Instruction pointers move through the
graph, executing the function nodes. This changes the graph
structure by showing and hiding binding sites. When
binding sites are shown, new binds become possible; when
binding sites are hidden, some binds become impossible.

Junk affects how programs run in two ways: (1) it acts as
a no-op for instruction pointers moving through the graph,
slowing down execution of programs with respect to the
timescale of the binding process; (2) it affects the graph dis-
tance between nodes, used to calculate binding probabilities.

Parsing and Folding There are two steps in converting a
string of atoms into a chemical graph. These are (1) parsing
atoms into nodes and (2) folding: connecting function nodes
to their binding site nodes (figure 2).

A sequence of non-functional atoms enclosed in brackets
[nnnnn] (with no internal brackets) defines a binding site.
So the string [hdfggd[icsd]bdgd[dhdhd]ixr]ss
defines two binding sites, icsd and dhdhd. The string of

Figure 2: Parsing and folding: (a) a string of atoms; (b)
the parsed graph of nodes connected by program arcs (solid
edges); (c) temporary edge between u1u1u binding node
and t1t1t binding node (dash-dotted edge), used to find
closest functional node and binding site (dotted arrows); (d)
resulting fold edge between the function node and its bind-
ing site (dashed edge).

atoms is parsed into a linear graph (figure 2 (b)) of binding
site nodes, function nodes, and junk (everything else).

When executed, each < or > function shows or hides
a particular binding site. The folding process connects these
functions to the sites they affect. A temporary graph edge is
added between a binding site node of the form uxuxu and
its matching txtxt binding site node (where x is any non-
functional atom). The closest show or hide function node,
and closest the binding site node (measured along edges in-
cluding the temporary edge), to the uxuxu node, are joined
by a fold edge, and the temporary edge is removed. The
result is the folded chemical graph (figure 2 (d)).

The fold edge is a form of indirect addressing. Instead of
the function note specifying explicitly which binding site it
shows (or hides), it instead specifies a template: uxuxu.
During folding, this template is ‘dereferenced’ to locate the
binding site: the closest binding site to the matching txtxt.
Indirect addressing makes the system more evolvable, be-
cause the templates can change independently of the pattern
of the target binding site.

Chemicals Once strings have been parsed and folded into
chemical graphs, the graphs can start to react. The physics
engine starts binding matching sites (here, we use exact
string matching, so two binding sites either match or they do
not; binding is a crisp process). When more than two sites
match, the choice of which to bind is made stochastically,
based on the graph distances between the sites.

When two binding sites bind, a bind edge is created be-
tween them, and an instruction pointer is created at each
binding site. These instruction pointers move along their
respective chemicals, executing any functions they reach.

As Graphmol runs, the graph states change because of two

processes: (1) instruction pointers move along the chemi-
cals, executing functions that show and hide binding sites;
(2) the physics engine makes binds happen between binding
sites that match and are close together, which creates new
instruction pointers.

Reactions There are two different concepts of ‘reaction’
in Graphmol: (1) a micro-scale interaction between two
binding sites; (2) a macro-scale interaction between two
chemicals, either designed into the chemicals, or an emer-
gent property of the system.

(1) In the micro-scale case, a ‘reaction’ is the same as a
bind between two binding sites. If two binding sites have
patterns that match, then they have a probability of bind-
ing that depends on their distance apart through the graph.
If the two binding sites are on different chemicals (that are
not bound), then their distance apart is not defined, and they
have a (pre-specified) low probability of binding.

When a bind happens, a bind edge is created between the
two binding site nodes. This changes the topology of the
chemical graphs, changing the probabilities of other binds
happening. This new edge remains in place until one of its
binding site nodes is hidden, at which point the edge is
removed. When the bind happens, two instruction point-
ers are created, one at each binding site node. They move
along their respective chemical’s program edges, executing
any function nodes they encounter, until they reach either
the end of the chemical, or a stop, (!), function, at which
point the instruction pointer is removed.

The immediate result of this type of reaction is a graph
topology change. The two chemicals are now connected
together, and so the distances between binding sites have
changed. A longer-term result of this reaction is that two
computer programs are now running, represented by the two
instruction pointers that are created. If another bind happens
before these programs finish running, then further programs
start executing in parallel.

This definition of ‘reaction’ views Graphmol as a simula-
tion of nodes in a graph. Graphmol simulates these nodes by
continually iterating the instruction pointers that exist (run-
ning the programs), and checking if any new binds happen
(starting new programs). As the programs run, new binding
sites become visible and so new binds can happen.

(2) In the macro-scale case, a ‘reaction’ is not defined ex-
plicitly as part of the Graphmol program: instead, it is a
property of a running system. This can be an emergent prop-
erty, produced by an evolutionary system. But in order to
bootstrap evolutionary systems, we can design macro-scale
reactions by hand-crafting Graphmol chemicals.

In traditional AChems, a reaction is a process whereby
two chemicals are chosen to enter a black box, something
happens, then one or more chemicals emerge from the box.
Viewing Graphmol as a simulation of graph nodes does not
fit this black box definition of a reaction. But we can use the

[start] junk
[lllll] ! junk [xxxxx] ! junk [rrrrr] ! junk
[lllll] ! junk [xxxxx] ! junk [rrrrr] ! junk
...
[lllll] ! junk [xxxxx] ! junk [rrrrr] ! junk
[lllll] ! junk [xxxxx] ! junk [rrrrr] ! junk
[stop]

Figure 3: The Graphmol DNA as a string of atoms (white-
space added for readability only). The xxxxx binding sites
are the bases that carry the information. The DNA chemical
can be of arbitrary length.

simulation to implement white box reactions instead.
We can design two chemicals that have binding sites with

matching patterns. We can set up the internal states of these
chemicals so that only the two matching binding sites are
shown (the rest being hidden). When we put these chem-
icals into the simulation, they will bind and start executing
their programs. The execution of their programs might cause
other binding sites to become shown and other binds to hap-
pen, but eventually all the programs will stop and no more
binds will be possible. The individual programs cannot go
into an infinite loop, since they execute along the program
edges of a linear graph. The whole simulation could go into
an infinite loop, but we assume not, for this argument.

We can think of this whole process as one ‘reaction’, and
the system now looks like a traditional AChem, but with a
complicated reaction mechanism. The chemicals that now
exist in the simulation are the products of the ‘reaction’.
Macro-reactions of this type are white boxes, because they
are embodied in the simulation. This means that other chem-
icals can interfere with the process of the reaction.

Embodied copying in Graphmol
Binding and program execution change the topology of
chemical graphs. We use this to make one chemical graph
move, relative to another. We make a long linear chemi-
cal graph composed of binding sites separated by regions
of junk. This chemical contains no function atoms, so will
not change its own topology. We make a second, smaller,
chemical that ‘walks’ along the long chemical by alternately
showing and hiding its six binding site ‘feet’. We add a
special crisp char-copy instruction to the Graphmol lan-
guage, specifically for the purpose of the experiments re-
ported here.

The idea of a small chemical moving along a long, linear
chemical is analogous to the way in which DNA is copied in
biology. DNA is a long linear chemical. The chemical ‘DNA
polymerase’ moves along the DNA and copies it. The actual
process in biology is much more complicated than this, but
making a simplified abstraction of the process allows us to
implement an embodied copy operation in an AChem. Fur-
thermore, many chemicals in biology move along DNA or
RNA chemicals (not just to copy them). For example: (see

[t1t1t] [yyyyy] junk >[u4u4u] junk <[u2u2u] !
[t2t2t] [magic] junk >[u5u5u] junk <[u3u3u] !
[t3t3t] [eeeee] junk >[u6u6u] junk <[u4u4u] !
[t4t4t] [yyyyy] junk >[u1u1u] junk <[u5u5u] !
[t5t5t] [magic] junk >[u2u2u] junk <[u6u6u] !
[t6t6t] [eeeee] junk >[u3u3u] junk <[u1u1u] !

[tstst] [fgneg] junk <[u1u1u] junk >[ususu] !

[tetet] [fgbc] junk junk junk junk
junk >[u1u1u] junk >[u2u2u] junk >[u3u3u]
junk >[u4u4u] junk >[u5u5u] junk >[u6u6u]
junk <[ususu] junk >[ueueu] !

Figure 4: The Graphmol walker as a string of atoms. There
are six feet (t1t1t–t6t6t), a ‘start’ site (tstst) and a
‘stop’ site (tetet). The length of the junk sections is varied
in the experiment (see later).

any biology textbook for details, for example [1]) helicases
(that unwind the two strands of DNA), ligases (that glue
together sections of DNA) and ribosomes (that transcribe
RNA into protein).

So, if we are interested in simulating analogies of biology,
then movement of one chemical along another is a useful
type of process to have in general.

Graphmol DNA We design a Graphmol chemical analo-
gous to biological DNA. DNA stores information as a se-
quence of DNA bases attached to a common “backbone”
structure.

Graphmol DNA has a sequence of ‘base’ nodes contain-
ing different information, interspersed with backbone nodes
(figure 3). A ‘base’ node is a binding site, whose pat-
ter is five information-carrying atoms (shown generically as
xxxxx). Two backbone nodes [lllll] and [rrrrr]
give the DNA a direction. (The stop atoms, !, are for effi-
ciency, to remove the instruction pointer that is created on
the DNA when a bind occurs.)

The junk regions add distance between the binding sites,
which controls the probability of binding to different sites.
In the implementation reported here, the DNA’s junk regions
are each 40 atoms long.

The DNA chemical also has a start and a stop binding
site. These allow the walker chemical to begin copying from
the start of the DNA and to unbind when it reaches the end.
This allows us to program the copy operation as a ‘macro-
scale reaction’, as described above.

Graphmol Walker The walker chemical is shown in fig-
ure 4 as a sequence of atoms; its walking behaviour is shown
schematically in figure 5. The walker chemical moves along
the DNA chemical using six ‘feet’ (binding sites) alternat-
ing their visibility in a cycle. Feet 1 and 4 bind to [lllll]
on the DNA, feet 2 and 5 to [xxxxx], and feet 3 and 6 to
[rrrrr]. In this paper, binds happen if sites match exactly,
where alphabet atoms match their complements (rotated 13
characters through the alphabet), and digits do not match.

Figure 5: The walking process. Feet 1–3 are shown and
bound (triangles), foot 4 is shown and unbound (dark circle),
feet 5 and 6 are hidden (white circles). bind: The physics
engine binds foot 4 (which is now shown with a triangle).
show/hide: The bind starts a program running, which hides
foot 1 (which therefore unbinds), and shows foot 5 (which
is unbound). The cyclic process is ready to start anew.

Figure 6: Low probability mis-stepping: (a) stepping over a
site; (b) stepping backwards.

For the purposes of this paper, the Graphmol language is
extended with magic binding sites that match and bind to
any of the DNA’s [xxxxx] information-carrying binding
sites. It performs a crisp copy of the bound node (a crisp
char-copy function, from algorithm 1).

The walker has a ‘start’ [fgneg] region and a ‘stop’
[fgbc] region. The start region sets up the walker’s feet
ready to begin moving along the DNA. The end region un-
binds the walker from the DNA and sets the walker up ready
to start another copy. This is a crisp start and at-end
function, from algorithm 1.

Each foot has a short program associated with it. These
programs show and hide the walker’s six feet in a cyclic
pattern, making it walk along the DNA (figure 5).

Each of the walker’s feet has a pattern that matches mul-
tiple binding sites on the DNA. Because the probability
of binding depends stochastically on graph distance, the
walker’s feet will always be more likely to bind to sites
on the DNA that are close to where the walker is currently
bound. As three of the walker’s feet are always bound at the
same time, the next matching binding site along the DNA
will always be closer to the walker’s shown foot than earlier
or later DNA sites. The walker usually steps to the correct
next binding site, but can sometimes (with a low probabil-
ity controlled by the amount of junk) jump forwards or step
backwards (figure 6). Thus the walker implements an em-
bodied next function (from algorithm 1).

Because the walker is copying the chemical it walks over.
These jumps forwards and backwards correspond to inser-
tions and deletions in the copied chemical.

Through the same binding process, the walker can also
occasionally get its feet tangled, and fall off, resulting in a
truncated copy. So the walker also implements an embodied
at-end function. It has two at-end functions: a crisp
one (‘stop’ region) and an embodied one (fall off early).

Experiment
The Graphmol walker chemical, described in the previous
section, can copy a DNA chemical, making insertion, dele-
tion and truncation errors. But the way in which it makes
these errors is not a collection of arbitrary choices written
into an equation or a piece of stochastic code. It is a collec-
tion of arbitrary choices written into a machine (chemical)
implemented in a lower-level stochastic programming lan-
guage (Graphmol). If this machine/language combination is
evolvable, then these arbitrary choices can be changed by
evolution, and adapted to the problem being solved.

This paper is a feasibility study, testing that the embod-
ied copying process implemented by the walker is evolvable.
We show that, due to the design of the walker and of Graph-
mol, there is evolutionary pressure for the walker to evolve.
It can trade off its accuracy against its speed of copying, by
altering its level of junk. With more junk, the walker copies
more accurately but also more slowly. With less junk, the
walker copies less accurately but also more quickly.

Experiment design
We want to test the hypothesis that changing the walker’s
junk level changes its speed and accuracy of copying.

To test this hypothesis, we run multiple simulations of the
walker copying the DNA chemical. The length of the DNA
chemical (number of bases) is the same as the length of the
walker (number of atoms). This simulates the fact that if
the walker was evolving, then changing its junk level would
change the length of its encoding on the DNA.

We set up the DNA chemical by showing all of its bind-
ing sites. We set up the walker chemical by hiding all of
its binding sites except the ‘start’ site [fgneg]. We then
bind the walker’s ‘start’ site to the DNA’s ‘start’ site and
simulate the (macro-scale) reaction until the walker unbinds
from the DNA, thus finishing its copy. When the walker un-
binds from the DNA, we compare its copy to the original
DNA. The pattern of bases on the original DNA is randomly
generated each time.

We repeat this copying process for walker chemicals con-
taining different levels of junk. The junk regions in the
walker chemical (see figure 4) are varied in length from one
atom to 20 atoms. In this experiment, all of the junk regions
within the walker are the same length as each other, for sim-
plicity. If the walker was evolving, it would not need to
enforce this. Indeed, unless there was evolutionary pressure

for it, evolution would probably not maintain 26 different re-
gions at the same length. So this experiment shows a coarse
view of the evolutionary options the walker has. In reality,
the walker has a much finer level of control over its junk
regions than this experiment shows.

For each different level of junk, we measure the time
taken for the walker to make a copy (figure 7(a)) and the
accuracy of its copying (figure 7(b)). Since the walker can
make insertions, deletions and truncations of the DNA it is
copying, there are many ways to define accuracy. We use
the following. We care about the walker copying the DNA
almost perfectly: we want perfect copies most of the time,
but occasionally we want small mutations for evolution to
exploit. So we define an ‘almost perfect copy’ as a copy
that differs from the original by at most three bases, i.e. any
combination of three insertions or deletions. To determine if
a copy is almost perfect, we use Smith-Waterman alignment
[5]. The Smith-Waterman algorithm measures the length of
the longest common subsequence between two strings, tak-
ing into account (and penalising) short insertions and dele-
tions. We set the penalty for an insertion or deletion to be
1, to measure the number of errors in the copy (subtract-
ing the length of the original DNA, and taking the absolute
value). If the number of errors is three or less, the copy is
‘almost perfect’. Values other than three give qualitatively
similar results, but larger values are more noisy so more ex-
periments would need to be run to obtain the same error bars.

We run 80 copies per junk level, counting the number of
nearly perfect copies to measure accuracy. We then repeat
this process 20 times, to determine the error in these mea-
surements (shown as notched boxplots in figure 7).

Results
As the junk level increases, the walker takes longer to copy
its DNA (figure 7(a)). This is for two reasons: (1) more
junk makes the graph distance between binding sites longer,
so the probability of the walker binding (and hence taking a
step) is reduced; (2) more junk means the walker’s encoding
on the DNA is longer, so takes more steps to copy.

As the junk level increases, the walker becomes more ac-
curate at copying its DNA (figure 7(b)). This is in spite of
there being more DNA to copy at higher junk levels. As junk
increases, the probability of binding is reduced in such a way
that the probability of an erroneous bind (either jumping for-
wards or stepping backwards, figure 6) is reduced more than
the probability of it making a correct bind (the probability
is a non-linear function of distance, p(d) = (20/d)77, cho-
sen to give good behaviours over a range of chemical sizes).
This makes the walker more accurate with more junk.

A walker with a low junk level is fast but error-prone; a
walker with a high junk level is slow but reliable. So, the
walker can trade off accuracy against speed. We can see this
tradeoff by graphing the rate of copying for each junk level
(figure 7(c)). This is the number of nearly perfect copies

made, divided by the time taken to make them. The graph
is noisy at low junk levels because few nearly perfect copies
are made here (as can be seen from the accuracy graph, fig-
ure 7(b)). The tradeoff can be seen in this graph as a peak at
a moderate amount of junk. Too much junk and the walker
copies too slowly, making its rate of accurate copying low.
Too little junk and the walker makes too many errors, mak-
ing its rate of accurate copying low.

Discussion
When the walker is put into a simulation where it can evolve,
it will be able to control its own junk level through mutations
that add or remove junk. These results show that changing
the walker’s junk level changes its speed/accuracy tradeoff
for copying. Thus the walker will be able to find, for itself,
the tradeoff between speed and accuracy that optimises its
survivability in its environment.

Because it finds this tradeoff for itself, it will be able to
re-optimise if its environment changes. We have taken a
quantity that is normally a parameter in ALife simulations,
the mutation rate, and embodied the process that requires
this parameter. This means that the ALife organisms can
change this parameter, by manipulating the underlying pro-
cesses that give rise to the parameter. The mutation rate has
changed from being an external parameter, to an observed
property of the system.

Future work
This experiment has demonstrated that it is possible to build
an AChem with an embodied copying process that can be
exploited by the system to adapt its mutation rate. But be-
cause the whole process of mutation is embodied (not just
the rate), the system should be able to change the copying
process, generating novel types of mutation. When we run
the embodied copying process in a evolutionary system, we
will be looking for such changes.

To make systems that can change their mutation process
in different ways, different parts of the copying process can
be embodied:

Copying a character
The walker chemical takes the process ‘iterate over a string’
and implements this as an embodied process in Graph-
mol. Here we have used a crisp char-copy function to
copy each character of the string (so the only copying er-
rors are insertions and deletions). The char-copy func-
tion could instead be made stochastic, to explore the effect
of point mutations on the walker. More interestingly, the
char-copy process could be embodied, by implementing
a char-copy mechanism in Graphmol. Just as we broke
the string copy process into components (algorithm 1), we
can break the character copy process into components to be
embodied (algorithm 2):

(a) Copying time increases with junk level (so speed decreases).

(b) Accuracy of copying increases with junk level.

(c) Rate of copying has an optimum junk level, trading off speed
against accuracy.

Figure 7: How the walker’s junk length affects its copying.
A “nearly perfect copy” is a copy that differs from the orig-
inal by at most three bases (three insertions or deletions).
The notches show the 95% confidence intervals.

Algorithm 2 Deconstructing the character copy operation,
as a prerequisite to embodying it

result char A := char B

x := read(char B)
y := repn(x)
char A := write(y)

1. Read the character read This could be implemented as
a set of binding sites with patterns that match each of the
DNA bases. When one of these sites binds to a DNA base,
a program on the walker changes the walker’s state.

2. Represent the character repn The walker needs to
know which site has been bound, so needs a change of
state to signify this. For example, it could show a binding
site corresponding to the base that it is currently copying.

3. Write the character write The walker needs to main-
tain a chemical representing the copy it is making of the
DNA chemical. The binding site it shows in the step
above, could bind to a free-floating chemical base, at
which point the walker would attach this base to the copy.

After attaching the copied character to the result string,
the walker needs to move on to the next character on the
string being copied. The walker already does this to walk
along a DNA chemical, but it will also need to do this with
the copy it is producing.

Making binding evolvable
In this paper, binding requires an exact (complementary)
match between binding sites. We need to allow ‘soft’ bind-
ing, so that evolution can modulate binding affinities to give
complex behaviours [3]. This will make the start and
at-end functions embodied (and char-copy, if used
with the previous section).

In this paper, the folding sites [uxuxu] and [txtxt]
(figure 2a) were chosen arbitrarily. In future, the folding pro-
cess will be implemented by a folding chemical, with bind-
ing sites matching [uxuxu] and [txtxt]. This makes
the folding process embodied, rather than hardcoding fold-
ing in the definition of Graphmol. Thus evolution will be
able to exploit the folding process and potentially change it.

Conclusions
We have discussed how ALife simulations can be made
more evolvable by making their copying process embodied
rather than stochastic. An existing example of where an em-
bodied copying operation has led to interesting behaviour is
the Stringmol AChem [3].

We have embodied copying in a new way, by making an
embodied next function (increment operation). This in-
volved designing the Graphmol AChem and implementing

an embodied next function in Graphmol. We attached a
crisp char-copy function to this embodied next func-
tion, creating an embodied string copy operation. This em-
bodied string copy operation can make insertion and dele-
tion mutations on the copied string.

We have run a feasibility experiment (figure 7) to show
that the embodied copy operation is evolvable, and has the
potential to adapt its own mutation rate to its environment.
But more experiments are needed to find the environments
in which it will show this. The copying process adapts by
changing the level of junk in its embodiment, which changes
its probability of incrementing correctly versus increment-
ing erroneously. In this way, the embodied copy operation
can adapt its own mutation rate without there being an ex-
plicit mutation rate parameter in the system.

This is the crucial difference between embodied systems
and stochastic systems. Stochastic systems are crisp sys-
tems with parametrised variation added in. Embodied sys-
tems are evolvable machines that can evolve their own pa-
rameters and processes, because they are implemented in a
lower-level language.

Acknowledgements
This work is part of the Plazzmid project, EPSRC grant
EP/F031033/1. We thank the other members of the Plazzmid
project for valuable comments and ideas: Ed Clark, Simon
Hickinbotham, Peter Young, Tim Clarke and Mungo Pay.
And the anonymous referees for their helpful comments.

References
[1] T. Brown. Genomes 3. Garland Science, 2006.

[2] S. Hickinbotham, E. Clark, S. Stepney, T. Clarke, A. Nellis,
M. Pay, and P. Young. Molecular microprograms. In ECAL
2009, Budapest, Hungary, September 2009. LNCS. Springer,
Sept. 2009.

[3] S. Hickinbotham, E. Clark, S. Stepney, T. Clarke, A. Nellis,
M. Pay, and P. Young. Diversity from a monoculture: Effects
of mutation-on-copy in a string-based artificial chemistry. In
ALife XII, pages 24–31. MIT Press, 2010.

[4] S. Hickinbotham, E. Clark, S. Stepney, T. Clarke, A. Nellis,
M. Pay, and P. Young. Specification of the stringmol chemical
programming language version 0.1. Technical Report YCS-
2010-457, Dept Computer Science, University of York, 2010.

[5] T. F. Smith and M. S. Waterman. Identification of com-
mon molecular subsequences. Journal of molecular biology,
147(1):195–197, 1981.

[6] S. Stepney. Embodiment. In D. Flower and J. Timmis, editors,
In Silico Immunology, chapter 12, pages 265–288. Springer,
2007.

