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Abstract. We introduce the concept of neutral emergence (defined by
analogy to an information theoretic view of neutral evolution), and dis-
cuss how it might be used in the engineering of robust emergent systems.
We describe preliminary results from an application to coarse graining
of cellular automata.

1 Introduction

We introduce the concept of neutral emergence, defined by analogy to an in-
formation theoretic view of neutral evolution. Our particular interest in neutral
emergence is as a potential component of an engineering framework for emergent
systems. The key problems for engineering emergence are to be able to imple-
ment a system such that a specified property emerges, and to make the property
robust, at least to minor unforeseen perturbations. Our initial work is improving
our understanding of emergence, and of the “slack”, or potential for robustness,
between an emergent system and its implementation.

Section 2 summarises background material on neutral evolution, and its for-
mulation in information theoretic terms. Section 3 summarises background ma-
terial on emergence. In section 4 we cast emergence in information theoretic
terms, by analogy to information theoretic evolution. In section 5 we introduce
the concept of neutral emergence, and show how it is related to system robust-
ness. In section 6 we describe preliminary results from an application to coarse
graining of cellular automata, and outline our plans for future work.

2 Background: evolution

Neutral evolution. The mapping from genotype (DNA) to phenotype (organ-
ism) is complex, and there is significant redundancy in both. Different genotypes
can map to the same phenotype; for example, different codons (DNA nucleotide
triplets) can code for the same amino acid. Hence the genotype can change (a
nucleotide can mutate) without changing the phenotype. Similarly, the same
genotype can result in different phenotypes, due to different environmental con-
ditions during development.

Neutral evolution is a recognised phenomenon in evolutionary biology [15]. It
involves a change in the genotype without a significant change in the fitness of the
phenotype; that is, it involves a change that is selectively neutral. Such changes
allow the phenotypic population to explore their fitness landscape, by drifting



around close to contours of equal fitness, to regions where they may subsequently
find fitter solutions not directly accessible from their original position in the
landscape.

Information theoretic evolution. Adami [1–3] gives a description of evolu-
tion in information-theoretic terms, by considering the information in the genome
in the context of its environment.

Adami [1] classifies a (digital) genome into ‘hot’ and ‘cold’ bits. The cold
bits are ones strongly conserved in the population, whereas the hot bits vary
between population members, and are therefore (presumably) not significantly
contributing to the fitness. So, in general, mutations of hot bits are neutral,
but occasionally might be beneficial, at which point they become ‘frozen in’
to the population, and conserved. These fitter organisms are exploiting their
environment better, and so must contain more information about those parts of
the environment that they are exploiting [1, p115].

In information theoretic evolution, the genome is seen as some kind of rep-
resentation of the environment: the cold bits are strongly correlated with the
environment, whereas the hot bits are not. The more correlated bits there are,
the higher the mutual information between the organism’s genome and the envi-
ronment. The mutual information, or correlation, between the system S and its
environment E, I(S : E), is the entropy of the system, H(S), less the conditional
entropy of the system in the context of the environment, H(S|E):

I(S : E) = H(S) − H(S|E) (1)

The conditional entropy H(S|E) can be thought of as the amount of information
in the system that cannot be explained by (correlations with) its environment.
Similarly, the conditional entropy H(E|S) can be thought of as the amount of
information in the environment that cannot be explained by correlations with
the system.

Evolution (increasing fitness) is then increasing mutual information: increas-
ing the shared information, or correlations, between the genome and the envi-
ronment. So “natural selection can be viewed as a filter . . . that lets information
flow into the genome, but prevents it from flowing out” [2]. See figure 1. This
simple description captures the essence; in reality the biological process is much
more complicated. For example: bits are correlated within a genome [2], so when
some bits go cold it is necessary for other bits to become hot again. Also, the
environment co-evolves with the organisms. However, a fuller picture does not
undermine the principle of an information-theoretic approach, particularly when
the principle is transferred from the biological to an engineering domain.

Neutral evolution in information theoretic terms. The mutual informa-
tion, I, is independent of the hot bits in S; it depends only on the cold bits
correlated with the environment E. Hence, in this context, neutral evolution is a
change in the genome that does not affect the mutual information of the genome
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Fig. 1. Evolution increasing the mutual information between the genome S and the
environment E (adapted from [1, fig.5.7]). The area of an ellipse represents its infor-
mation content, and the area of overlap represents the mutual information between
an Sn and E. For simplicity, total information is shown as unchanging (the areas of
ellipses Sn and E are constant); this implies that conditional information decreases
as the mutual information increases. This is not necessarily the case: for example, a
neutral evolutionary step could change the amount of conditional information H(S|E)
by increasing the size of the uncorrelated part of the genome [2].

and (the fitness relevant part of) the environment, I(S : E). This means that S
is robust to this kind of genomic change. Similarly, parts of the environment E
that are not correlated with S can also change neutrally (from the point of view
of S), so S is robust to this kind of environmental change, too.

3 Background: Emergence

In [16] we provide a review of opinion on emergence. We start from Ronald et
al’s definition of emergence: “The language of design L1 and the language of
observation L2 are distinct, and the causal link between the elementary inter-
actions programmed in L1 and the behaviors observed in L2 is non-obvious to
the observer—who therefore experiences surprise.”[13]. We reject the use of ‘sur-
prise’ as a criterion for emergence: it is subjective, and wears out with repetition.
We do, however, follow Ronald et al’s use of two languages of description, which
we refer to as L for the ‘microscopic’ local level of implementation substrate,
and S for the ‘macroscopic’ global level of the model or specification (we are
interested in observing and modelling natural emergent systems, but more in
specifying and implementing engineered ones). We follow Shalizi [14] in defining
emergence in information-theoretic terms, as the greater ‘predictive efficiency’
of descriptions in S over those in L. Following Bar-Yam [4], we see emergence
as a consequence of global constraints on the system (the emergent level) rather
than of constraints on components (the implementation level).
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Fig. 2. Modelling, or incremental system development, as increasing the mutual infor-
mation between the system specification S and the implementation L.

In relation to levels, various research identifies ’natural’ scales. Israeli and
Goldenfeld [7] note that there is an emergent natural length scale for coarse grain-
ing (see section 6.1) cellular automata (CA). In the process of “reconstructing the
attractor” from time-lagged observations [17] (also a form of coarse-graining),
the correct time lag can be found using mutual information [12].

To summarise our view, in an emergent system, the whole is greater than, and
different from, the sum of its parts (in terms of behaviour and other qualities);
emergence can, in various senses, be equated to novelty; levels are essential:
emergence occurs at a higher level or longer time scale than that on which basic
processes occur; emergence is a characteristic that is expressed at the high level,
caused by the low level. Emergence is not an arbitrary feature; it is not dependent
merely on the chosen level of observation. Some levels are ‘better’ than others
(for example, coarse grainings that better describing the underlying dynamics),
and form natural levels for discovering, or for designing in, emergent properties.

4 Emergence in information theoretic terms

By direct analogy to the information theoretic description of evolution, we define
an information theoretic quantity of emergence.

Definition: The amount of emergence I(S : L) is the mutual information,
or correlation, between a specified system S and its implementation in substrate
level L.

I(S : L) = H(S) − H(S|L) (2)

The conditional entropy H(S|L) can be thought of as the amount of information
in the system specification that has not been captured by (correlations with) its
implementation.

Modelling, or incremental system development, can be viewed as increasing
mutual information: increasing the shared information, or correlations, between
the system specification and its implementation (figure 2).



If one were trying to explain (model) an observed system S in terms of L,
the conditional information H(S|L) might be the behaviours or properties of S
not explained by L. (It might just be noise.) If one were trying to implement a
specified system S in an implementation substrate L, this conditional informa-
tion is the part of the specification that has yet to be captured by the proposed
implementation L: more development work is required.

The conditional information H(L|S) (the information in the implementation
not correlated with the system specification) might be considered as properties
of L that are unnecessary for the realisation of S. Of course, these additional
properties might well be invisible if the system is subject only to high-level
observation [6] that reveals only system-level properties (multiple distinct mi-
crostates nevertheless resulting in the same observed macrostate). It is, however,
these extra properties that can be exploited to get robust implementations of S.

The information theoretic definition of emergence suggests an approach to
incremental development of emergent systems: use the mutual information I as
a fitness function in a search for good models (system descriptions) S of an
existing L (such as a given CA or agent system), or to search for good low level
implementations L (such as the required rules and states for a CA or agent
system) of a system specification S.

5 Neutral Emergence

Definition: An emergent property exhibits neutral emergence when a change in
the microstate L does not change the macrostate S, or vice versa. It is a change
that does not significantly change the mutual information I(S : L).

Robustness. A system S is robust to changes in either itself, or in L, if the
changes do not significantly change the mutual information. In particular, S
can be robust to many changes in its implementation, including, possibly, the
effect of errors. It is often stated that emergent systems (modelled on natural
processes) exhibit robustness: here we see why (and where) this may be the case.
The excess information in L (a large H(L|S)) is necessary for emergent systems
to be robust in this manner.

As argued earlier, an engineering development process can be seen as imple-
menting specification S by finding an L with a high mutual information I(S : L).
Here we see that, at the same time, the process can seek to maximise robust-
ness, by searching for a system that is insensitive to (uncorrelated with) certain
failure modes or other possible changes in L. If a system were stressed during
development (exposed to a range of stresses and implementation errors), its im-
plementation could be encouraged towards regions that are insensitive (robust)
to such events. (Compare this to the development of formally proven systems:
they do not guarantee any level of performance with even the smallest change.)
By analogy to evolutionary fitness landscapes, we want to find systems that lie
in gently sloping plains and plateaux, rather than on narrow peaks or steep cliffs.
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Fig. 3. Exact coarse graining. The fine grained state F evolves under the given CA
rule fF . The coarse graining M maps fine grained state F to coarse grained state C.
The coarse grained state C evolves under another CA rule fC . The task is to find a
mapping M and rule fC such that the square commutes: M ◦ fF = fC ◦ M .

Speculation on ‘the edge of emergence’. Experiments with CAs [10] and
Random Boolean Networks [8, 9] indicate that a phase transition takes place
between a ‘solid’ ordered regime and a ‘gaseous’ chaotic state, and that a narrow
‘liquid’ region on the boundary between these regimes is capable of supporting
the most complex behaviour, including universal computation. (Note: the detail
of Langton’s ‘edge-of-chaos’ results [10] have been questioned [11].)

Compare this with our mutual information measure of emergence: a system
exhibits minimal emergence when everything is a surprise (zero mutual informa-
tion). Clearly such a model, that knows nothing about what it is modelling, is
useless, but equally (as argued above) useful emergence does not require max-
imal mutual information in the system. There should be a level of emergence
with the maximum utility: a position at which the model has useful freedom to
explore, whilst being held within a constrained region of the search space (main-
taining the quantity of mutual information; analogous to the ‘fitness contouring’
of neutral evolution). While it is tempting to label this the ‘emergence liquid
region’, substantive experimental data is needed to support such a claim.

That said, consideration of the ‘edge-of-chaos’ analogy raises some interesting
questions. Does a phase transition occur between the ‘solid’ (system specifica-
tion or model effectively duplicating the implementation) and ‘gaseous’ (little in
common) regimes? Is the region a narrow one? If so, is this why creating effective
emergent systems manually has proved difficult?

6 Application

Thus far, our discussion has been conceptual. Now we present preliminary work
applying our ideas to CAs.

6.1 Coarse graining cellular automata

Israeli and Goldenfeld [7] coarse grain CAs. Their exact coarse graining captures
the dynamics of a CA rule with another rule, expressed over a coarser grain of
space and time. (See figure 3.) Exact coarse graining preserves the underlying
dynamics but loses ‘irrelevant’ detail.
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Fig. 4. Search setup for exact coarse graining.

In terms of emergence, the two languages L and S are different CA rules
(except in a few cases), and information is lost in the coarse graining (in that
low-level fine-grained detail is washed out). Interestingly, the figures illustrating
coarse grainings in [7] seem to highlight some of the underlying L structure (for
example, various propagating ‘signals’), maybe because they have smoothed out
other, irrelevant, structure.

The higher level rule S may be a CA rule of lower complexity than the rule at
level L: because “the system (the update rule, not the cell lattice) does not contain
enough information to be complex at large scales” [7]. This complexity-reducing
kind of coarse graining (of ‘relevant degrees of freedom’) removes information
that is relevant to the dynamics at L, but is redundant under the coarse graining
at S: it does not capture all of the microscopic dynamics.

6.2 Applying neutral emergence to coarse graining

In investigating neutral emergence, we start by recasting Israeli and Goldenfeld’s
[7] coarse-graining results in the information theoretic emergent framework de-
scribed above. We then consider an extension of coarse graining that has greater
robustness.

Robustness. The exact coarse graining of [7] exhibits robustness in the way
described earlier. In particular (i) different low-level CA rules coarse grain to
the same high-level rule, so the high level is robust to certain changes in the
low-level rule; (ii) even for a fixed low-level rule, different low-level CA states
coarse grain to the same high-level state, so the high level is robust to certain
changes in the low-level state.

Exact coarse graining. Israeli and Goldenfeld [7] use a brute force approach to
discover their coarse grainings. For exact coarse graining, the diagram in figure 3
must commute for all fine states F .

As a control, we implemented this brute force search for 1D CA coarse grain-
ings with N = 2 (that is, one high level cell corresponds to 2 low level cells)
as follows (figure 4). For N = 2, there are 16 candidate mappings M , with fine
states states 00, 01, 10, 11 mapping to 0 or 1. 14 of these are non-trivial (target
state contains both a 0 and a 1). In figure 4, we start from a specially constructed



F1 = 00 00 00 00 00 01 . . . 11 11 11 that ensures all coarse neighbourhoods oc-
cur for non-trivial candidate mappings. We apply the fine rule twice, generating
state F3 = fF fF F1. A candidate mapping M is then used to construct coarse
states C1 = M F1 and C2 = M F3. Because C1 is a mapping on the specially-
constructed F1, it contains all possible coarse neighbourhoods.

To determine whether candidate mapping M is a valid coarse graining, we
must ensure that whenever a neighbourhood occurs more than once in C1 it
maps consistently to the same central state in C2. Since C1 contains all coarse
neighbourhoods, the coarse rule fC can be deduced from the constructed C1 and
C2 states.

Mutual information as a fitness function. As an alternative to brute-force
search, a genetic algorithm (GA) was used to search for 1D CA coarse grain-
ings with N = 2. Each member of the GA population has a random candidate
mapping M . The coarse graining process described above is followed to generate
states C1 and C2. We use an approximation to mutual information as the fitness
function of the map M : the fitness maximises the number of consistent states
between C1 and C2.

This GA successfully finds 1D exact coarse grainings (although not on every
run), supporting our assertion (section 4) that mutual information would be
an appropriate fitness function. The trial on exact coarse graining is used to
validate the GA search, but in this case the GA is much less efficient brute force
search. However, as the coarse-graining size increases (for example, N = 5),
brute force search becomes computationally intractable (the number of states to
search increases exponentially), and GA search becomes attractive.

Approximate coarse graining. Israeli and Goldenfeld’s [7] coarse grainings
provide an exact fit over all possible states: they lose information, but the systems
never differ in their predictions. Exact coarse graining is a form of information
compression. The mutual information is the same as the entropy of the high level
system.

We can search for approximate coarse grainings, requiring an exact fit over
only some CA states, thereby allowing the information content of those states to
be exploited, in addition to the information content of the CA rules themselves.
(Compare the case in physical emergent systems, where the emergent properties
occur only over some restricted set of all possible states, such as a restricted
temperature range.)

In approximate coarse graining, we start with a much smaller state F1 that
need not ensure all coarse neighbourhoods occur (figure 5). We build up C1 and
C2 as before, but because we start from a partial state, C1 may not cover all
possible coarse neighbourhoods.

When we check for consistency of the candidate mapping M , we derive all the
neighbourhoods contained in C1, including the overlapping ones (excluded from
the exact coarse graining). Thus, in figure 5, C1 = 1 0 1 1 1 1 yields neighbour-
hoods 1 0 1, 0 1 1, 1 1 1, etc. This fully exploits the partial information. If the
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Fig. 5. Search setup for approximate coarse graining.

mapping is consistent for this partial information, we generate the appropriate
set of coarse rules.

The brute force approach was used to search for 1D approximate coarse
grainings. Even when starting from very small F1, we discover good approximate
coarse graining rules. Each solution set contains the exact rule discovered by [7].
In many cases, additional rules are found that, superficially at least, look like
the exact rule. We are now investigating how the additional rules depend on the
chosen F1.

6.3 Next Steps

To continue our exploration, we propose to use the information theoretic ap-
proach to guide our choice of search over interesting states: low complexity pat-
terns in the low level CA (for example, gliders in Conway’s Game of Life CA
[5]). Thus our coarse grainings will be optimised for such patterns, rather than
for ‘random’ behaviour.

This approach of using patterns to guide the coarse graining rule search re-
quires a way of finding such patterns. We will use a coarse graining approach
here, too: coarse graining states over space and time to detect repeating be-
haviour, and hence stationary and moving patterns. The size of these coarse
grained cells limits the size of patterns detectable by this approach.

This combination of object detection and CA prediction [7], when combined,
should permit object prediction – an important aspect for reliable engineering.

Our next step is to test our proposals by combine object detection and CA
prediction on the Game of Life CA, to investigate how the quality of prediction
is related to the quality of rule coarse graining, as a function of the patterns
used to guide the GA coarse graining search.

Eventually, we want to examine emergence in the context of an environment
(combining our ideas of evolution and emergence), both for defining emergent
properties, and for achieving robustness of that emergence.

7 Conclusions

We have cast emergence in information theoretic terms, by direct analogy to evo-
lutionary processes, and have shown how this can be used to derive a fitness func-
tion for developing models of emergent systems, or emergent implementations



of system specifications. We have introduced the concept of neutral emergence,
and shown its relationship to robust emergence. As an initial demonstration, we
have applied these concepts to coarse graining CAs.

Our eventual aim is to incorporate neutral emergence as a component in a
robust emergent engineering process.

Acknowledgements

We thank the anonymous reviewers for their helpful comments. Andrew Weeks
is funded by a Microsoft Research European PhD Scholarship.

References

1. Christoph Adami. Introduction to Artificial Life. Springer, 1998.
2. Christoph Adami. What is complexity? BioEssays, 24:1085–1094, 2002.
3. Christoph Adami and N. J. Cerf. Physical complexity of symbolic sequences.

Physica D, 137:62–69, 2000.
4. Yaneer Bar-Yam. A mathematical theory of strong emergence using multiscale

variety. Complexity, 9(6):15–24, 2004.
5. E. R. Berlekamp, J. H. Conway, and R. K. Guy. Winning Ways for your Mathe-

matical Plays. Academic Press, 1982.
6. J. A. Clark, S. Stepney, and H. Chivers. Breaking the model: finalisation and a

taxonomy of security attacks. ENTCS, 137(2):225–242, 2005.
7. Navot Israeli and Nigel Goldenfeld. Coarse-graining of cellular automata, emer-

gence, and the predictability of complex systems. Phys. Rev. E, 73:026203, 2006.
8. Stuart A. Kauffman. The Origins of Order: self-organization and selection in

evolution. Oxford University Press, 1993.
9. Stuart A. Kauffman. At Home in the Universe. Oxford University Press, 1995.

10. C. G. Langton. Computation at the Edge of Chaos: Phase-Transitions and Emer-
gent Computation. PhD thesis, University of Michigan, 1991.

11. M. Mitchell, J. P. Crutchfield, and P. T. Hraber. Dynamics, computation, and
the ‘edge of chaos’: a re-examination. In G. A. Cowan et al., editors, Complexity:
Metaphors, Models, and Reality, pages 497–513. Addison Wesley, 1994.

12. Asok Ray. Symbolic dynamic analysis of complex systems for anomoly detection.
Signal Processing, 84:1115–1130, 2004.

13. E. M. A. Ronald, M. Sipper, and M. S. Capcarrère. Testing for emergence in
artificial life. In D. Floreano et al., editors, Advances in Artificial Life: 5th European
Conference, volume 1674 of LNCS, pages 13–20. Springer, 1999.

14. C. R. Shalizi. Causal architecture, complexity and self-organization in time series
and cellular automata. PhD thesis, University of Wisconsin at Madison, 2001.

15. S. C. Stearns and R. F. Hoekstra. Evolution: an introduction. OUP, 2000.
16. Susan Stepney, Fiona Polack, and Heather Turner. Engineering emergence. In

ICECCS 2006. IEEE, 2006.
17. F. Takens. Detecting strange attractors in turbulence. In D. A. Rand and L.-S.

Young, editors, Dynamical Systems and Turbulence, pages 230–242. Springer, 1981.


