
PLAZZMID: An evolutionary agent-based
architecture inspired by bacteria and bees

Susan Stepney, Tim Clarke, Peter Young

Department of Computer Science; Department of Electronics; Department of Biology
University of York, UK, YO10 5DD

Abstract. Classical evolutionary algorithms have been extremely suc-
cessful at solving certain problems. But they implement a very simple
model of evolutionary biology that misses out several aspects that might
be exploited by more sophisticated algorithms. We have previously cri-
tiqued the traditional näıve approach to bio-inspired algorithm design,
that moves straight from a simplistic description of the biology into some
algorithm. Here we present a process for developing richer evolutionary
algorithms abstracted from various processes of biological evolution, with
a corresponding richer analogical computational structure, and indicate
how that might be further abstracted.

Keywords: evolutionary algorithms, meta-evolution

1 Introduction

Classical evolutionary algorithms have been extremely successful at solving cer-
tain optimisation problems. Without too much caricaturing, these algorithms
can be said to implement the model of evolutionary biology shown in figure 1.
This simple model and simple analogy miss out, or obscure, several things that
might be exploited by more sophisticated algorithms, including: the full richness
of the genotypic structure, the corresponding richness of the evolutionary op-
erators acting on that structure, the richness of the mapping from genotype to
organism (phenotype), and the regulatory feedback from the phenotype to the
genotype’s expression.

In [25] we critique the traditional approach to bio-inspired algorithm design,
that moves straight from a simplistic description of the biology into some algo-
rithm. There we propose a “conceptual framework”, including mathematical and
computational modelling, abstraction of principles, and instantiation into rele-
vant application domains. Here we indicate in more detail what such a process
could look like, in the context of structures from various processes of bacte-
rial evolution, with a corresponding richer analogical computational structure,
and indicate how that might be further abstracted. We conclude by describing
plazzmid, a computational evolutionary system for dynamic problems that we
are developing under this process.

Base

Chromosome

Organism

1..*

Bit

Bitstring

Solution

1..*

analogy

Fig. 1. UML class diagram of the simple model of evolutionary biology on which clas-
sical evolutionary algorithms are based, and the corresponding computational analogy.

2 A model of a bacterial genome

Bacteria adapt to novel environments through rapid evolution, aided by a lean
and efficient genome organisation [14][29]. Typically, a bacterium has a single
circular chromosome that encodes the core functions that all members of the
species need. It also has an accessory genome, which confers specific adaptations
to the environment; each member of the species may have a different combination
of genes in this set. Examples of accessory functions are the ability to grow on
unusual food sources, to resist toxins, or to colonise the tissues of animals or
plants. Parts of the accessory genome may be inserted into the chromosome,
but much of it is carried on plasmids, which are mini-chromosomes with a high
propensity to transfer from one bacterium to another. Transposons are small
packages of genes that can jump from plasmid to plasmid, or to the chromosome.
Mating may result in the transfer of plasmids, and also in the replacement of
short stretches of the recipient’s chromosome by homologous genes from the
donor. This mating system allows major rearrangements of the genome without
the excessive cost that this incurs in higher organisms that have equal genetic
contributions from mates.

Figure 2 shows a UML class diagram that captures the main structures of the
bacterial genotype and the bacterial organism of interest in formulating a more
sophisticated evolutionary algorithm. The things to be noted in contrast to fig-
ure 1 are the rich structure of the genome, containing a hierarchy of components,
and a corresponding richer structure of the phenotype. The diagram shows the
presence, but not the significance, of the regulatory feedback loop (a protein ex-
pressed by one gene may regulate the expression of another, forming a complex
gene regulatory network). The diagram indicates the redundant encoding (many
codons to one amino acid) but not the highly non-linear genotype-phenotype
mapping (obtained through complex protein folding). For clarity and brevity,
the evolutionary operators have been omitted, but there are operators that work
at every level of the genomic structure, from mutations acting on single bases,
through gene duplications and transposons, to plasmid exchange.

Base

Region

Gene

Non
coding

Coding

DNAMol

Protein

GCluster

Co_evo

Operon

Trans-
poson

PlasmidChromo-
someBacterium

Amino
Acid

codes
 for

1..*
Codon

Reg-
ulatory

 regulates

3

 expressed
 by

 exchanges
 with

exchanges

Fig. 2. A UML class diagram of the structure of the bacterial genome and its relation-
ship to the bacterial phenotype.

3 An evolutionary architecture inspired by bacteria

We can preserve this rich biological structure with computational analogues of
these components and their dynamics. We define a computational architecture
with analogues of the complex multi-level structure of DNA (via an assembly
language syntax analogy), of the complex evolutionary processes, including repli-
cation and transposon exchange (via multi-level evolutionary operators tailored
to the syntactic structures), and of the complex dynamic behaviour of the phe-
notype (via execution of the relevant language as part of a subsumption archi-
tecture). See figure 3.

The analogy in more detail is: Gene: a piece of machine code defining a sim-
ple machine (or agent). Genome: a collection of machine code programs (static
code), arranged in chromosomes and plasmids. Reproductive and evolutionary
operators act on this genotypic program code, at a variety of levels (bits, bytes,

exchanges

Char

Code
Frag

Agent
Code

Comment

Coding

System
Code

Executing
Agent

Agent
Cluster

Co_evo

Operon

Trans-
poson

Sub
systemMainSystem

 expressed
 by

Executing
Instr

codes
for

1..*
Instr

Regulatory regulates

 exchanges
 with

Fig. 3. A UML class diagram of the corresponding structure of the computational
genome (assembly language program) and its relationship to the computational phe-
notype (agent architecture).

instructions, modules, etc), including mutation, crossover, gene duplication, and
exchange of transposons. Gene expression: the process of moving from static
code to corresponding executing agent. Gene regulation: the process of con-
trolling which genes get expressed (which agents get to execute). Proteins: the
executing agents.

Proteins have complex structure and behaviour. To capture this kind of com-
plexity, the agents can be arranged in a subsumption (layered) architecture (fig-
ure 4); each can provide i/o to other agents (or the environment), and can inter-
act to produce new agents at other subsumption layers (the interaction language
is part of the agent’s code, and is also evolvable). Some outputs from low level
agents feed back into the genome, regulating gene expression. Phenotype (or-
ganism): the entire collection of executing agents (which changes over time). The
organism’s fitness (reproduction probability) is a function of the behaviour of

gene expression gene regulation

agent interactions:
produce new agents

transducer transducer

multi-level
evolutionary

operators

Fig. 4. An agent-based subsumption architecture analogue of the bacterial phenotype
model.

this phenotype executing in an environment. Epigenetics: the part of an organ-
ism’s state that can be preserved on reproduction, for example, which genes are
currently being expressed, or the current internal state of the executing agents.

Again for brevity, the evolutionary operators have been omitted from these
diagrams. As with the bacterial model, the computational model can have a rich
set of evolutionary operators that manipulate the genome at all the levels of its
structure, from single characters, through instructions, to high level structures,
related to the various syntactic structures of the genome.

The architecture incorporates a regulatory feedback mechanism, controlling
the “expression” of the low level agents. It does not (here) incorporate any
developmental process. The transcription process goes directly from static code
to executing agent. This provides the desired non-linear mapping, and is close in
spirit to biological processes (of the protein as an “executing machine”, resulting
from a relatively simple transcription from codons to amino acids, followed by
a highly non-linear protein folding process). The mapping can also incorporate
redundancy, with textually distinct instructions having the same semantics, eg
ADD 1 and INC 1.

4 Abstracting, and meta-behaviour

Note that the rather direct computational analogy sketched here does not incor-
porate the abstraction task that is part of the development process we outline
in [25]. We should build a more abstract model, of which the biological specifics

SyntaxSemantics EvoOp
1..*

express

regulate

parent,
child

component component component

Fig. 5. An example abstract evolutionary model.

SyntaxSemantics EvoOp
1..*

express

regulate

parent,
child

component component component

MetaSyntax MetaEvoOp

<<instantiates>>

Fig. 6. An example abstract meta-evolutionary model.

are one instantiation, for example (figure 5) in terms of syntax (structure of the
genotype), the corresponding semantics (mapping to the phenotype, cf protein
expression and regulation), evolutionary operators acting at the different lev-
els of the syntactical structure (for example, via an attribute grammar [1][10])
that change instances conforming to the syntax (cf single letter mutation, gene
duplication, transposon exchange).

We could then define a computational architecture as an alternative instan-
tiation of this abstract model, in terms of particular architecture components.
Treating the example in section 3 in this way, its instantiation would be of
a syntax covering characters, assembly language instructions, and programs, a
semantics of the agents executing their code, and suitable evolutionary opera-
tors acting at the various syntactic levels. However, the abstraction allows other
instantiations to be made, corresponding to possibly less direct analogies, but
potentially better fitting some application domain.

At first sight, the abstract model of figure 5 might look little more sophis-
ticated than the simple model of figure 1. However, that is misleading. The
structure of the abstract genome that comes from treating it as a syntax points
to similar structures in the semantics and the evolutionary operators, and the
regulatory feedback from the semantics to the syntax indicates a much more
dynamic system. Additionally, the idea that the evolutionary operators change
instances of syntax leads to a further abstraction at the meta-level: that of
meta-evolutionary operators that evolve the classes of the syntax, introducing
and removing syntactic structures, and their corresponding attributes of opera-
tional semantics and evolutionary operators, via operations on the meta-syntax
that defines a particular instance of the syntax (figure 6).

Generic
Biology

Bacteria

Bees Abstract
Model

PLAZZMID

development process
logical flow (iterative

in practice)

Fig. 7. The modelling, abstraction, and instantiation process.

5 Next steps

We are now developing this process and architecture to build a fully flexible
computational evolutionary system. Our final system will be an abstraction of
both bacterial genomes (described here) and bee genomes, and for this reason is
called plazzmid. The computational system will be based around the parallel
programming language occam-π [28], defined using a parallel language graph-
based syntax, rather than the usual “parallel fixup” applied to a tree-based
syntax.

The UML class diagrams given above are merely preliminary, partial mod-
els, illustrating only some parts of the inspiring biological systems. They are
also only static class models. Full dynamic models need to be developed for
plazzmid, to include the processes of expression, regulation and evolution, and
their abstractions. The tasks needed to achieve this are (figure 7): • Model the
biological systems, in terms of DNA, genes, protein expression and regulation,
genetic operators, etc, and including interaction with an environment of poten-
tially co-evolving organisms. (The purpose of this is not to build models of full
biological rigour: it is to build models sufficient for defining the analogous com-
putational architecture. Nevertheless, it is expected that the biological models
will be of potential interest to biologists.) • Build a generic biological evolu-
tionary model, which captures both the bacterial and bee biological specifics
of DNA-based evolution. • Build a more abstract model, of which the biolog-
ical specifics are one instantiation. • Define an alternative instantiation of the
abstract model, in terms of computational architecture components.

6 Related Work

The individual components in the plazzmid architecture have been tried and
tested in isolation (see below). However, this brings them all together for the first
time, to form a biologically plausible evolutionary system, in particular, incor-
porating evolvable feedback processes regulating gene expression. This biological
plausibility will allow the system to be used to model and analyse questions of

real biological evolutionary processes. The architecture will also produce a rich,
dynamic phenotype that can respond to its environment in a naturally adaptive
manner, thereby producing robust computational artefacts.

Evolving programming languages. There is a long history of evolving
structured genomes. Evolutionary Programming, developed by L Fogel in the
1960s [8], was devised to discover Finite State Machine descriptions. In Genetic
Programming [11], the genome is (usually) a tree structure representing a pro-
gram in a HLL, and the program is evolved; Linear GP [2] is used to evolve
assembly language programs. Spector’s “Push” is a stack-based language de-
signed for evolutionary computation [24]. Quantum circuit descriptions, a low
level language of quantum programming, can be evolved [16][17]. Ray’s Tierra
[22] is a virtual machine and environment specially designed to support evolution
of digital organisms.

Gene Expression architectures. Gene expression involves a non-linear
distancing of the genome (DNA, or search space) from the phenotype (proteins,
or solution space). Many approaches have been used in artificial evolution, usu-
ally involving interpreting the genome as a recipe, or instructions for building the
phenotype. For example, L-systems distance the genome (an L-systems descrip-
tion) from the phenotype (typically a picture) by a turtle graphics “transcrip-
tion” process, and have been used in an evolutionary setting [18]. Grammatical
Evolution (GE) [23] evolves a numerical genotype, which is interpreted as a se-
quence of instructions for constructing a (syntactically correct) program from a
(fixed) grammar. See also [19], which lists several potential advantages of such
an approach.

Gene Regulation architectures. Gene regulation controls which genes get
expressed, allowing dynamic feedback and control. In particular, environmental
inputs can affect the regulation, allowing the phenotype to adapt to environ-
mental conditions. These biological ideas have been abstracted into a variety of
evolvable computational control architectures [3][5][6][13].

Subsumption architectures. Brooks invented his subsumption architec-
ture [4] as a way of incrementally designing “intelligent” behaviour in a series
of relatively simple behavioural layers. Each layer in the architecture provides
a simple additional behaviour. This layering, suggested by biological evolution,
provides a general flexible architecture in which more complex computational
behaviours can be incrementally evolved [12][15][26].

Modelling language: UML. The de facto standard Unified Modelling Lan-
guage (UML) [20], designed initially for modelling computational systems, is well
suited to agent-based modeling [21], and has been successfully applied to mod-
elling a range of (parts of) biological systems [7][9][27]. Class diagrams model
types and relationships (eg, as shown earlier, a bacterium contains a chromo-
some and several plasmids, each of which contain several transposons; plasmids
are associated with the chromosome via transposon exchange). Sequence di-
agrams model the interaction between objects over time (eg, gene regulatory
operation; the evolutionary lifecycle of a population), and interactions with the
environment. State charts model the lifecycle of individual objects, or classes

of objects (eg, a gene, a chromosome, an organism). Additionally, MDA/MDD
(Model Driven Architecture / Model Driven Development) techniques (which
often use UML) provide robust approaches to transforming models, including
the kinds of abstractions, analogies, and instantiations used in plazzmid.

7 Conclusions

Whilst classic evolutionary algorithms based on a simple model of evolutionary
biology have been successful as optimisers, they have not exploited the full rich-
ness and variety of the biological processes. We have sketched here a process
that highlights that richness, and moreover points the way to introducing (pos-
sibly non-biological) meta-operators. We have outlined our plans for plazzmid,
a system that we are designing based on these principles. plazzmid will be ca-
pable of exploring questions from theoretical evolutionary biology, and of solving
dynamic computational problems, such as evolving for homeostasis in a variable
environment.

Acknowledgments

We thank Richard Paige for helpful comments on an earlier draft.

References

1. H. Abramson, V. Dahl. Logic Grammars. Springer, 1989
2. W. Banzhaf et al. Genetic Programming. Morgan Kauffmann, 1998
3. P.J. Bentley. Evolving fractal gene regulatory networks for graceful degra-

dation of software. In Self-star Properties in Complex Information Systems.
LNCS 3460:21-35, Springer 2005

4. R.A. Brooks. Cambrian Intelligence. MIT Press, 1999
5. K. Clegg, S. Stepney, T. Clarke. Using feedback to regulate gene expression

in a developmental control architecture. GECCO 2007, London, UK. ACM
Press, 2007

6. K. Clegg, S. Stepney, T. Clarke. A reconfigurable FPAA architecture based
on genetic regulation. FPL 2007, Amsterdam, Netherlands. IEEE 2007

7. S. Efroni, D. Harel, I.R. Cohen. Toward rigorous comprehension of biological
complexity: modeling, execution, and visualization of thymic T-cell matura-
tion. Genome Res 13(11):2485-97, 2003

8. L.J. Fogel, A.J. Owens, M.J. Walsh. Artificial Intelligence through Simulated
Evolution. Wiley, 1966

9. N. Kam, I.R. Cohen, D. Harel. The immune system as a reactive system:
modeling T cell activation with Statecharts. Proc Visual Languages and For-
mal Methods, IEEE 2001

10. D.E. Knuth. Semantics of context-free languages. Math. Systems Theory
2(2):127-145, 1968

11. J.R. Koza. Genetic Programming: on the programming of computers by means
of natural selection. MIT Press, 1992

12. J.R. Koza. Evolution of subsumption using genetic programming. ECAL
1991, Paris, France. MIT Press, 1992

13. S. Kumar. A developmental genetics-inspired approach to robot control.
GECCO 2005 SOEA workshop, pp 304-309, 2005

14. R.T. Lan, P.R. Reeves. Intraspecies variation in bacterial genomes: the need
for a species genome concept. Trends in Microbiology 8:396-401, 2000

15. H. Liu, H. Iba. Multi-agent Learning of Heterogeneous Robots by Evolu-
tionary Subsumption. GECCO 2003, Chicago, USA. LNCS 2724:1715-1718,
Springer, 2003

16. P. Massey, J.A. Clark, S. Stepney. Evolving quantum circuits and programs
through genetic programming. GECCO 2004, Seattle, USA. LNCS 3103:569-
580, Springer, 2004

17. P. Massey, J.A. Clark, S. Stepney. Human-competitive evolution of quan-
tum computing artefacts by genetic programming. Evolutionary Computa-
tion Journal. 14(1):22-40, 2006

18. J. McCormack. Interactive evolution of L-system grammars for computer
graphics modelling. In D.G. Green, T. Bossomaier, eds, Complex Systems:
from Biology to Computation, pp 118-130. IOS Press, 1993

19. M. O’Neill, C. Ryan. Incorporating gene expression models into evolutionary
algorithms. GECCO 2000 Workshops. AAAI, 2000

20. Object Management Group. UML 2.0. http://www.uml.org/
21. J. Odell, H. Parunak, B. Bauer. Extending UML for Agents. AOIS Worshop

at AAAI. 2000
22. T.S. Ray. Artificial Life. In R. Dulbecco et al (eds) Frontiers of Life, Volume

One The Origins of Life. Academic Press, 2001
23. C. Ryan, J.J. Collins, M. O’Neill. Grammatical Evolution: evolving programs

for an arbitrary language. EuroGP 1998, Paris, France. LNCS 1391:83-95.
Springer, 1998

24. L. Spector, J. Klein, M. Keijzer. The Push3 Execution Stack and the Evolu-
tion of Control. GECCO 2005, Washington DC, USA, pp 1689-1696. ACM,
2005

25. S. Stepney, R.E. Smith, J. Timmis, A.M. Tyrrell, M.J. Neal, A.N.W. Hone.
Conceptual Frameworks for Artificial Immune Systems. Int. J. Unconven-
tional Comp. 1(3):315-338, 2005

26. J. Togelius. Evolution of a Subsumption Architecture Neurocontroller. J.
Intelligent and Fuzzy Systems, 15(1) 2004

27. K. Webb, T. White. UML as a cell and biochemistry modeling language.
BioSystems 80:283-302 2005

28. P.H. Welch, F.R.M. Barnes. Communicating mobile processes: introducing
occam-pi. In A.E. Abdallah, C.B. Jones, J.W. Sanders, eds. 25 Years of CSP,
LNCS 3525:175-210. Springer, 2005

29. J.P.W. Young, et al. The genome of Rhizobium leguminosarum has recog-
nizable core and accessory components. Genome Biology 7:R34, 2006

