
Environment orientation: an architecture for
simulating complex systems

Tim Hoverd1 and Susan Stepney1

Department of Computer Science, University of York, UK, YO10 5DD
tim.hoverd@cs.york.ac.uk susan@cs.york.ac.uk

Abstract. A näıve implementation of a complex system simulation with
its plethora of interacting agents would be to represent those interactions
as direct communications between the agents themselves. Considerations
of the real world that a complex system inhabits shows that agent in-
teractions are actually mediated by the environment within which they
are embedded and which embodies facilities used by the agents. This
suggests an “environment oriented” simulation architecture.
Here we motivate and describe an abstract software architecture for
an environment oriented approach to complex systems simulation, and
sketch the implementation of this architecture in a number of different
ways.

1 Introduction

Complex systems comprise of a number of agents that interact in some particular
environment. The behaviour of any individual agent is relatively simple and local.
A complex global behaviour emerges as a consequence the interaction of a large
number of such agents in a particular environment.

A complex system can be simulated using computational devices to provide
an executable model of the real world situation. Like all such models it should
be constructed in manner that can feasibly be implemented, and may well avoid
many real world details. However, such a model must encapsulate the key inter-
actions between agents from which emerges the global behaviour.

2 Motivation

Complex systems get their emergent behaviour from interactions between the
agents that comprise the system. Näıve implementation models therefore de-
scribe direct interactions between those agents.

Such an approach, however, leads to many implementation difficulties. Firstly,
scaling the number of agents in a simulation to something representative of the
modelled world is infeasible, because the number of communication channels
required rapidly exceeds the capabilities of the simulation. Secondly, and of
particular importance here, if such a model were to be implemented without
detailed attention paid to concurrency issues, then it would doubtless deadlock



very quickly because of the loops apparent in the agent/channel graph. Conse-
quently, such näıve implementations are never seen.

These deadlock issues are resolved in simulations by the introduction of tech-
niques, such as the “client server” pattern for concurrent systems [12, 1] and
barrier synchronisation [2], which impose a processing pattern onto communica-
tions between the various components of the simulation. These patterns seek to
prevent the appearance of deadlocks.

In the case of the client server pattern components of the simulation are
coded so as to operate in a manner reminiscent of “client-server” enterprise
systems [21] or, more generally, multi-tier architectures [24]. In such systems the
clients and the servers are layers in an architecture where the servers provide
a pre-defined set of services to the clients. Each client is able to operate in a
manner largely independent of others because the implementation of the system
constrains the overall patterns of behaviour, for example by transactional access
to an underlying repository [26], in such a manner as to guarantee various overall
system properties.

Use of this convention introduces a pattern into the simulation that does
not at first sight appear to exist in the real world being modelled. For example,
the birds that flock above a city-centre park are not apparently working to some
standard global pattern lest they deadlock and fall out of the sky. It appears that
each bird is observing other birds and then doing what it wants, when it wants,
and in whatever order it wants doing so in the sure and certain knowledge that
its world really is deadlock free. That is, it appears as if the real world of these
birds is rather different from a set of agents communicating with each other in
a simulation of, for example, bird flocking behaviour.

The rest of this paper looks in more detail at what is really going on in a such
a complex system, leading to some alternatives for the software architecture of
complex systems implementations.

3 Real world agents and their environment

3.1 Action at a distance versus mediating fields

Let us think about how the real world agents actually interact. Although at
first sight it is convenient to think about flocking birds interacting directly some
thought shows that in fact this is a simplification of what is really going on.

A bird flying along reflects the ambient light into the space around it; as it
sings it pressurises the air about it. Another bird, assuming that it is awake,
is sensitive to the propagated light and air pressure, and in this way can both
see and hear the first bird. That is, these two birds are not directly commu-
nicating with each other. The first is placing information into its environment,
which information can be detected by the second bird when it observes its own
environment, if it is interested in that sort of information.

Such a view, which is essentially an alternative model of interaction between
the birds, relies upon a very detailed environment in which the agents, in this



case the birds, are embedded. One bird can always come along and look in the
environment and see what another bird is frequently placing in the environment.
A different bird might update the environment only seldomly, if it is just sitting
quietly on some perch.

The real world is such a detailed environment; one where fields interact, pho-
tons pass each other and the rest of physics is implemented with ease. In this
view the agents are embodied in the environment [19], and it provides services
to those agents. Each agent just does what it wants without regard to direct
interactions with other agents. That is, even in the real world, the agents in a
complex system are interacting in a manner reminiscent of a client server archi-
tecture. The environment provides services to the agents, in a manner analogous
to a server. The agents are clients of those services.

The näıve model of a complex system, with agents directly interacting with
each other, is essentially “action at a distance”. One agent must know directly
what other agents exist that are interested in it and must directly interact with
those agents. As this is happening those distant agents are also potentially in-
teracting in the reverse direction.

Reflecting our observation of the real world, we instead take an “environ-
ment oriented” approach. Here agents do not interact directly, but communicate
through some mediating fields that exist in their environment. In this approach
there is no direct interaction at all; the lives of individual agents just affect each
other by existing within the same set of fields; within the same physics.

As a different example of this “environment orientation” consider an adap-
tive immune system. Here the agents are the various molecules and cells that
form the active components. The molecules are not directly signalling to each
other about the feasibility of particular interactions. In this case an environment
oriented model would represent these molecules by their concentrations in the
environment which would affect the probability of interactions occurring as a
consequence of the stochastic processes mediated by the environment.

3.2 State

The notion of “environment orientation” reflects the real world in a useful man-
ner. However, what is it that agents communicate with the environment?

In something like a collection of birds flocking in the real world each bird
has a large and complex internal state: it knows whether it is flying or not, how
hungry it is, whether it needs to drink or defecate. But, from the point of view of
flocking, other birds are interested only in the distances between the birds and
what the perceived relative velocities of the other birds are.

That is, each agent has an “internal state” that represents everything it needs
to know to behave appropriately. Further, each agent exposes an “external state”
to the environment, which is available to other agents in the same environment.
This external state could be simply a subset of the agent’s internal state. For
example, in the case of the bird it could just be that part of the internal state
that represents the position and velocity of the bird. However, there are cases
where the agent could deliberately mislead other agents with its external state.



For example, when one insect species mimics another it is deliberately creating
external state to mislead observers about its internal state.

Complex system agents are essentially egocentric. That is, the emergent be-
haviour appears as a consequence of each agent just doing what it wants to do in
its own environment. A flocking bird, then, does not know precisely where it is,
just merely where other birds are relative to it. In a complex system simulation,
something does need to know where the agents are, because those positions are
the overall context of execution of the complex system. This context is the envi-
ronment. That is, the environment must know where each agent, is and therefore
the environment will know what other agents are in the vicinity of each agent.
That is, the environment knows things about the agents that are not actually
part of the agent’s internal state. For example, a bird just thinks that it is flying
in the direction of an interesting looking food source, but the environment knows
that it is actually flying north-by-northwest.

A refinement to this notion is the observation that an agent generates some
external state just by virtue of the physics of its environment. For example,
photons just bounce off a bird, so other birds can see it, and are also able
to infer position and velocity from those photons. This “involuntary” external
state is contrasted with other state placed into the environment by an agent in
a “voluntary” manner. Voluntary state could be, in the example of birds, a song
that is sung in response to hearing the song of another bird of the same species
(which it hears through the mediating environment), sung maybe for territorial
enforcement or finding a mate.

3.3 Querying

In this environment oriented approach, each agent interacts with the environ-
ment to access information about the other agents’ (external) states. Simplisti-
cally, each agent “asks” the environment for information about other relevant
agents’ state (the agents it can see, or hear, for example); this state information
can then be used by the querying agent to update its internal state appropriately.

The reply to such a query is a set of values in some topology [7], which not
only represents the set of all possible values but also describes how the values
might change.

For example, in a bird flocking example, one of the items in a query result
could represent a bird that is close to the querier. As such, the environment can
accurately describe the (relative) position of the nearby bird and its velocity in
terms of a three-dimensional Cartesian space. Furthermore, the topology of the
particular space used might show that the nearby bird could move freely in the
two horizontal dimensions but it was constrained to move only upwards in the
vertical dimension because it is, at the moment, standing on the ground. That
is, the reply to a query about the position of the bird gives a precise position in
a space, but that space is further described by its extent and its shape.

If the bird being described is distant then the position of the bird may not be
accurately described; for example, it might be clear in what direction the bird
lies but its distance from the querier could be only poorly known. Similarly, the



velocity of the bird might be only poorly described, if at all, as the velocity of
a distant agent which appears merely as a distant speck might be very hard to
determine. In this case the reply is again a position in a space. However, in this
case that space is two-dimensional being the surface of a portion of a sphere
centred on the querying agent. Because the distance to the observed bird cannot
be determined it cannot be moved inside or outside of that sphere.

Here the simulated environment is acting as the embodiment of sophisticated
functions performed in the real world by both the agent itself and the environ-
ment. The agent itself detects the photons impinging on its retinas from a distant
bird and attempts to calculate size, distance and velocity of the bird from those
photons and, probably, experience in these sorts of situations. The real world,
that is the environment, affects many aspects of the passage of those photons;
it understands the albedo of the distant bird and can calculate how photons
from the Sun are reflected by the bird, and how effectively those photons are
transferred to the observing bird.

The environment oriented approach provides a way to separate concerns be-
tween the agents and their environment. In a particular simulation, the choice
of what computation is performed by the environment, and what by agents, is
a modelling decision. Certain functions may be embodied in the environment
itself, and those calculations performed by the environment. Alternatively, re-
sponsibility for those those functions may be assigned to certain agents (either
existing ones, or new ones designed to support those functions).

The notion of the results of the query being embedded in a topology allows
the interaction between agents to follow a number of different patterns simul-
taneously. The example given above is a purely spatial one, the notion of space
clearly being of significance in complex systems implementation as in [1]. How-
ever, the exact same query/response model could be used for any interaction
between agents in a complex system. One extension of the simple spatial model
is to note that a human agent is physically “near” to a collection of other hu-
man agents but may nonetheless communicate simply with other human agents
whose telephone numbers are in the first agent’s address book. That is, there
are two sorts of “nearness” here: one is physical nearness, the other is “commu-
nicable” nearness. For some aspects of complex systems behaviour only the first
sort of nearness would be relevant, for others both sets of “near” agents might
be important. (This example is inspired by Milner’s bigraphical model designed
to model both a spatial and a connectivity configuration simultaneously [13].)

3.4 Environment orientation

In summary, the environment oriented approach to complex systems simulation
eschews all representations of direct interactions between agents. Rather, all
agent behaviour is seen as mediated through the environment within which all
the agents are embedded; the essential rationale for this being that this is the
way that the real world is structured.

Although the notion of the role of the environment is based on observations
of the real physical world, the particular agents and behaviours that exist in a



simulation is a modelling decision. Each simulation should be constructed with
the explicit knowledge of which aspects are to be embodied in the environment.

Regardless of its particular role, each agent has an internal state, representing
what the agent knows of itself. It publicises some aspects of its state, its “external
state” to the environment within which it is embedded. The agent may decide
when to publicise its external state. Agent behaviour is provided for by allowing
the agent to retrieve, from its environment, information about the external state
of the agents with which it is interacting. Consequently, the environment must
be aware of the agents with which each other agent can interact.

4 Software architectural styles

The “environment orientation” approach to complex systems must be readily
implementable to be of use as an implementation platform for complex systems
simulations. That is, we must define an abstract architecture that defines this
sort of systems implementation.

The model as described is essentially a client server one. As has been de-
scribed, real world complex systems are inherently “client server” in that the
agents function essentially as clients of the environment.

A client server architecture is an appealing approach, since there is consider-
able experience with this approach that forms the basis of most high performance
commercial computing. There are also several standardised abstract client server
architectures, such as the REST architecture [4] that is the core of the Internet
and the services it supports. These show the value of defining services in this
manner.

The server in an “environment orientation” complex systems implementation
must provide services that:

1. retain the external state of agents
2. provide that external state to other agents as and when required

The second of these services must reflect what aspects of each agents’ external
state is visible to a requesting agent. That is, the environment must know which
other agents are in the “neighbourhood” of a requesting agent and must also
know the topology of the result space in which to embed responses to requests.

In addition to providing such services to its clients, that is the agents, the
environment may embody many aspects of the world that is being simulated or
modelled. For example, if the complex system were modelling ant communication
via stigmergy [3] then the environment itself could modify the external state
of ant trails so that they decayed at the appropriate rate. This approach is
a particular modelling decision. Alternatively, the ant trail might be modelled
an agent; then it, and not the environment, would implement the process of
pheromone decay.

Some aspects of this sort of architecture are seen in [1] where the implemen-
tation of various approaches to the representation of space in a complex system



while (true)

{

Neighbourhood n = env.query(queryText,

<parameters drawn from internal state>)

internalState.update(n)

env.update(generateExternalState(internalState))

}

Fig. 1. Pseudo-code for agents using query oriented server

...

env.registerInterest(topic, callback)

...

void callback(Neighbourhood n)

{

internalState.update(n)

env.update(generateExternalState(internalState))

}

Fig. 2. Pseudo-code for agents using subscription oriented server

are investigated. The related “boids” simulation (based on [17]) uses a notion of
“location” that is similar to the environment oriented server discussed here.

The first of these services listed above is susceptible to many different im-
plementations, although the precise form of the delivered state is not defined
here.

For the second service, there are two strategies, relating to a possible inversion
of control. One approach would be for an agent that wishes to see the external
state of a set of other agents, to make a query of the underlying “environment
orientation” server. The query would provide the server will all the information it
needed, along with its knowledge of the agents, to select the information required
and provide it to the agents. This strategy, referred to here as query oriented, is
summarised by the pseudo code in figure 1.

A complementary approach would be for agents to inform the server of the
sort of information they were interested in, and to have that information deliv-
ered as and when it was available. In the meantime the agent would carry on with
its normal behaviour. This strategy, referred to here as subscription oriented, is
summarised by the pseudo code in figure 2.

These two approaches have different characteristics. The query oriented is ap-
propriate for systems, perhaps like bird flocking simulation, where an individual
agent can always be sure that its environment will change rapidly and apparently
continuously. The subscription oriented approach would be useful for systems
where some information was available only occasionally and unpredictably, or
where it was needed to “interrupt” an agent from its normal activities. That



is, in situations where the particular environment was not changing apparently
continuously.

In this abstract architecture, the server is the entire locus of inter-agent con-
currency. That is, the agents execute without consideration for each other, simply
relying on the server to provide pertinent information. This is the approach used
in the world’s largest commercial systems.

There are, though, at least two other issues that must be addressed here.
The first concerns that of fairness. If an environment server is being queried

by a, potentially, very large number of clients then it must be the case that
requests from those clients are handled in a fair manner. This is already an
issue in multi-tier commercial systems and will not be further addressed here as
it seems likely that existing approaches will satisfy the demands of a complex
system simulation.

The second issue is that of time. Commercial systems are all “real time”
systems, in the sense that the clients are usually aware of what the real world
time is because that time is often pertinent to the processing that is being car-
ried out. For a complex systems simulation there are further considerations. The
simulation may run, as a whole, faster or slower than real time. In particular,
individual agents can run at different rates from other agents, depending on how
much processing they have to do (an active flying flocking bird will require more
processing time to simulate unit time of its life than will an inactive perching
sleeping bird). That is, the simulation as a whole, and the components of the
simulation, are running in simulated time. As such, the “simulated time” is prop-
erly part of the environment within which the simulation’s agents are embedded.
Hence, an environment server should also provide a time service, that defines the
current simulated time for each of the agents in the simulation. These agents can
then, when necessary, consult the current time and use that to influence their
activities.

5 Implementations

The architecture discussion so far has been devoid of implementation choices.
The principal implementation choice is that of an environment server that can

– support the agents’ external state where each item item of such state is
in essence a tuple that contains whatever information is necessary for the
particular application

– provide a means of accessing and distributing that state
– provide a mechanism for tracking the progress of simulated time

For example, in a bird flocking simulation each tuple retrieved by, or pre-
sented to, an agent would include another agent’s relative position and perceived
velocity. Additional entries in the tuple would allow the topology of the result
space to be determined. For example, if the agent in question was distant then
the perceived velocity might well be represented in a single-dimensional space



with very restricted possible changes instead of the three-dimensional space that
would be appropriate for the velocities of nearby agents.

Regardless of these decisions, the data provided to a requesting agent takes
the form of tuples. There are several possible implementation choices for how a
server could provide the supply of tuples, described below.

5.1 Tuple spaces

The Linda programming language was first proposed in the mid 1980s [6] as
a new way of handling concurrency and coordination. A running Linda system
provides a “tuple space” which is populated, and examined, by a potentially large
collection of concurrently executing agents. Linda provides primitives allowing
the connected agents both to query the tuplespace for tuples that match some
expression and to block waiting for an appropriate tuple to appear. As such the
model supports both types of server architecture discussed in a straightforward
manner.

The Linda concepts have been implemented in a number of modern program-
ming languages. For example, JavaSpaces [11, 5] provides Linda-like facilities in
the Java programming language as part of the Jini infrastructure. Rinda [18]
provides tuplespaces for Ruby. TSpaces [8] is a simple implementation of the
Linda ideas within Java from IBM.

A refinement of tuple spaces which is also relevant to this subject is that of
tuple centres [16]. Tuple centres are essentially the notion of tuple spaces which
have some behaviour. As such, a tuple centre could be seen as the implementation
of a particular environment server.

5.2 Publish/Subscribe systems

The publish/subscribe pattern [25] is frequently supported by enterprise middle-
ware, in particular by message oriented middleware [23]. For example, the Java
Message Server [15] provides publish/subscribe facilities for users of the Java 2
Enterprise Edition. The publish/subscribe pattern provides for a server to dis-
tribute information on a number of topics to a number of connected clients. The
pattern is often used, for example, in trading systems where some clients might
require to be informed of changes in the prices of particular financial instruments
when they occur. This is a very similar situation to that described as here as
subscription oriented. A topic here could be, for example in the context of a bird
flocking system, “the state of agents in the vicinity”. Whenever one of those
agents does indeed move the agent that registered the topic could be informed
of a set of new tuples of information.

Publish/subscribe systems are used commercially in situations where there
is a very high data rate, such as the instrument/price situation described above.
As such they are also suitable for distributing information in a complex system
simulation.



5.3 RDBMS

The use of a relational database management system (RDBMS) is a further
possible implementation mechanism. Relational databases are essentially large
containers for tuples. Each table in the RDBMS is a set of tuples with the
same layout. Furthermore RDBMSs provide a highly expressive declarative query
language (SQL [9, 10]) and are commonly used in situations where very high
performance is required. As such they provide an attractive mechanism for the
query oriented approach to the abstract architecture.

It is less clear how an RDBMS could be used for the subscription oriented
architectural pattern. RDBMSs do support mechanisms that are capable of use
in this manner (typically, triggers). However, they are clumsy in use and probably
not suitable for the very flexible scenarios of complex systems.

5.4 Process oriented programming languages

Process oriented programming is at the heart of the CoSMoS1 project (of which
this work is part). The environment oriented architecture could be implemented
using a process oriented language such as occam-π [20]. This is the language used
for the models of space described in [1]. Using occam-π to implement simulations
with the environment oriented architecture would ideally require the definition
of a set of standard libraries that would hide many of the internal details, and
allow the programmer to operate at a higher level of abstraction, purely in terms
of things like tuples and queries.

6 Prototypes

We have implemented prototype complex systems simulations following the en-
vironment oriented architectural style. These prototypes have explored only the
query oriented approach to the server. In particular, two prototype systems have
been implemented, each of which is an implementation, in Java, of Reynolds’
Boids [17], a very simple set of rules to simulate flocking.

As yet neither of the prototypes has been subjected to significant perfor-
mance analysis and testing. In this first instance, we are simply establishing the
capabilities of the abstract architecture.

6.1 Tuplespace prototype

The first prototype is an implementation using TSpaces (chosen due to the
simplicity of configuring the server as compared with JavaSpaces).

The design of this system uses a single TSpaces server, running as a separate
heavyweight process (a process running under control of the operating system
and isolated from other such processes). A single boids heavyweight process
implements each boid with a separate thread (a lightweight process not isolated
1 http://www.cosmos-research.org



while (true)

{

Neighbourhood n = env.query("allBoids")

Vector acceleration = n.centreOfMassRule() +

n.matchVelocityRule() +

n.repelBoidsRule()

velocity = velocity + acceleration

env.updateTuple(boidId, velocity)

wait(short_delay)

}

Fig. 3. Pseudo-code for Reynolds’ boids using query oriented server

from other such threads by operating system mechanisms). Each such thread
executes an instance of the pseudo-code shown in figure 3, which is a simple
variant of that shown in figure 1.

So each boid gets the tuples about boids in its neighbourhood, delegating the
notion of what “its neighbourhood” means to the environment itself. As far as
the boid is concerned it is querying for “all the boids”. The environment knows
where each boid is in the entire world and answers a relative neighbourhood
of the querier: the positions on the boids in the returned neighbourhood are
expressed relative to that of the querier. Furthermore, only the boids that are
in what the environment deems to be “the neighbourhood” of the querier are
supplied in the neighbourhood.

The boid uses the returned neighbourhood information to implement the
three rules of Reynolds’ algorithm, using the relative positions provided in the
neighbourhood, to calculate its acceleration, which is applied to its internal state,
here just the boid’s velocity. The environment is then updated with its external
state which in this simple example is the same velocity. There is no “position” in
this state, because the boid is just where the boid is. It is up to the environment
to know where the boid actually is in world, which it can calculate from the
boid’s velocity.

Nowhere in this pseudo-code, or in the Java code actually written, is there
anything about directly coordinating the activities of separate boids. All of these
details are delegated to the environment, which embodies both a knowledge of
the world as a whole, for example it knows that it is a toroidal space, and of the
perception of the boids, that is it knows how far away a boid has to be to be
deemed “not in the neighbourhood”. In this simple example, it is not necessary
for the environment to support a time server, as each boid agent performs the
same amount of processing to update its state.

A consequence of this lack of interaction between boids is that other versions
of the same code, ones where multiple boid agents are supported by each thread,
can been written. Each thread sequentially executes the same code for each of
the boids in its control. The behaviour of this variant is essentially identical to
the thread per boid version, although requiring fewer threads.



The implementation of the environment is carried out by using a façade
object [22], in the boids process, that provides a layer above the TSpaces server
itself. This façade, in the TSpaces code, retrieves all of the boids from the server
and filters them for locality before presentation to the querier as the querier’s
neighbourhood. It must be done this way because the TSpaces query mechanisms
are limited to essentially pattern matching between a template tuple and the
tuples in the server’s tuplespace.

There are TSpaces mechanisms that could be used to implement an “inter-
rupt oriented” server but these have, as yet, not been investigated.

6.2 RDBMS prototype

A second prototype has also been constructed that uses an RDBMS, specifically
MySQL [14]. This prototype also functions well.

The code executed by the RDBMS version is much the same as for the
TSpaces variant. The difference, though, is in the environment façade. The
RDBMS version can be much simpler, as the process of filtering for local boids
may be done using SQL in the database query itself.

7 Future work

The architecture as described is the essential core of the environment oriented
approach to complex systems simulation. Future work will concentrate on two
main issues.

The first issue is that of the appropriateness, or otherwise, of the two ar-
chitectural patterns, query orientation and subscription orientation. This will
be investigated by producing further prototype implementations that use each
style, and combinations of the two.

The other issue is of more theoretical interest. When an agent makes a query
(which is logically the same as describing a topic on which it will receive tuples in
the subscription oriented architecture) then, as has been described, the response
essentially carries with it the topology of the space in which the response is
embedded. Realistic complex systems are likely to either:

1. make multiple queries each of which generates a response in a different space
or

2. receive responses to a single query with varying topologies (such as near and
distant birds in a bird flocking example)

Future work will look at the issues relating to how the responses in different
topologies are combined, if that is feasible, and what that implies for more
complicated complex systems which more closely represent the details of the
real world.



8 Conclusions

The agents in real world complex systems do not directly interact via some “ac-
tion at a distance”; they interact through the mechanisms mediated by a compli-
cated environment in which they are all embedded. Producing complex systems
simulations in an environment oriented manner uses environment implementa-
tions in which many complicated functions of the agents are embedded. The use
of the environment oriented approach to complex systems simulation promises
to raise the level of abstraction in simulation development. This approach allows
design to avoid many details related to deadlock and communication. Other is-
sues become apparent, such as how to handle the varying resolution and accuracy
inherent in a typical complex real world situation. These issues can potentially
be represented as a set of topologies in which real work values are embedded.

8.1 Acknowledgements

The work described here is part of the CoSMoS2 project, funded by EPSRC
grant EP/E053505/1 and a Microsoft Research Europe PhD studentship.

References

1. P. Andrews, A. Sampson, J. Bjørndalen, S. Stepney, J. Timmis, D. Warren, and
P. Welch. Investigating patterns for the process-oriented modelling and simulation
of space in complex systems. In Artificial Life XI, pages 17–24. MIT Press, 2008.

2. Fred R. M. Barnes, Peter H. Welch, and Adam T. Sampson. Barrier synchronisa-
tion for occam-pi. In Hamid R. Arabnia, editor, PDPTA, pages 173–179. CSREA
Press, 2005.

3. J. L. Deneubourg and S. Goss. Collective patterns and decision-making. Ethology,
Ecology & Evolution, 1:295–311, 1989.

4. Roy T. Fielding and Richard N. Taylor. Principled design of the modern web
architecture. ACM Trans. Inter. Tech., 2(2):115–150, May 2002.

5. Eric Freeman, Susanne Hupfer, and Ken Arnold. JavaSpaces Principles, Patterns
and Practice. Addison-Wesley, 1999.

6. David Gelernter. Generative communication in Linda. ACM Trans. Program.
Lang. Syst., 7(1):80–112, January 1985.

7. Jean-Louis Giavitto and Olivier Michel. Data structure as topological spaces.
In Proceedings of the 3rd International Conference on Unconventional Models of
Computation, pages 137–150, 2002.

8. IBM. The TSpaces vision. http://www.almaden.ibm.com/cs/TSpaces/html/Vision.html,
accessed on 6th May, 2009.

9. ISO. ISO/IEC 9075-1:1999: Information technology — Database languages — SQL
— Part 1: Framework (SQL/Framework). 1999.

10. ISO. ISO/IEC 9075-2:1999: Information technology — Database languages — SQL
— Part 2: Foundation (SQL/Foundation). 1999.

11. Jini. The community resource for Jini technology. http://www.jini.org, accessed
on 6th May, 2009.

2 http://www.cosmos-research.org



12. J. M. R. Martin and P. H. Welch. A design strategy for deadlock-free concurrent
systems. Transputer Communications, 3(4), 1997.

13. Robin Milner. The Space and Motion of Communicating Agents. CUP, 2009.
14. MySQL. Open source database. http://www.mysql.com, accessed on 6th May,

2009.
15. Sun Developer Network. Java Message Service (JMS).

http://java.sun.com/products/jms/, accessed on 6th May, 2009.
16. Andrea Omicini and Enrico Denti. From tuple spaces to tuple centres. Sci. Comput.

Program., 41(3):277–294, 2001.
17. Craig W. Reynolds. Flocks, herds, and schools: A distributed behavioral model.

Computer Graphics, 21(4):25–34, 1987.
18. Masatoshi Seki. dRuby and Rinda: Implementation and Application of Distributed

Ruby and its Parallel Coordination Mechanism. International Journal of Parallel
Programming, 37(1):37–57, 2009.

19. Susan Stepney. Embodiment. In Darren Flower and Jon Timmis, editors, In Silico
Immunology, chapter 12, pages 265–288. Springer, 2007.

20. Peter H. Welch and Fred R. M. Barnes. Communicating mobile processes. In Ali E.
Abdallah, Cliff B. Jones, and Jeff W. Sanders, editors, 25 Years Communicating
Sequential Processes, volume 3525 of LNCS, pages 175–210. Springer, 2004.

21. Wikipedia. Client server architecture. http://en.wikipedia.org/wiki/Client-server,
accessed on 18th June, 2009.

22. Wikipedia. Facade pattern. http://en.wikipedia.org/wiki/Facade pattern, accessed
on 6th May, 2009.

23. Wikipedia. Message oriented middleware. http://en.wikipedia.org/wiki/Message
Oriented Middleware, accessed on 6th May, 2009.

24. Wikipedia. Multitier architecture. http://en.wikipedia.org/wiki/Multitier archi-
tecture, accessed on 18th June, 2009.

25. Wikipedia. Publish/subscribe. http://en.wikipedia.org/wiki/Publish/subscribe,
accessed on 6th May, 2009.

26. Wikipedia. Transaction processing. http://en.wikipedia.org/wiki/Transaction pro-
cessing, accessed on 18th June, 2009.


