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Abstract— An evolutionary algorithm automatically discovers
suitable solutions to a problem, which may lie anywhere in a
large search space of candidate solutions. In the case of Genetic
Programming, this means performing an efficient search of all
possible computer programs represented as trees. Exploration
of the search space appears to be constrained by structural
mechanisms that exist in Genetic Programming as a consequence
of using trees to represent solutions. As a result, programs with
certain structures are more likely to be evolved, and others
extremely unlikely.

We investigate whether the graph representation used in
Cartesian Genetic Programming causes an analogous biasing
effect, imposing natural limitations on the class of solution
structures that are likely to be evolved. Representation bias
and structural bias are identified: the rarer “regular” structures
appear to be easier to evolve than more common “irregular”
ones.

I. INTRODUCTION

It has been found that exploration of the search space in GP

is constrained by structural mechanisms as a consequence of

using trees to represent solutions [5] [6]. This bias means that

GP is more likely to evolve certain programs (long skinny

trees), and unlikely to evolve others (shorter bushy trees),

purely as a result of their structure.

It seems plausible that the class of solutions evolved by

other evolutionary algorithms will be similarly limited accord-

ing to their structure. In general, what structures are easier or

harder to evolve?

Cartesian Genetic Programming (CGP) represents programs

as indexed graphs. Programs represented as trees in GP are di-

rectly manipulated, but genetic operators in CGP act on linear

integer genotypes that encode phenotype graphs representing

programs. We investigate what impact the graph structure in

CGP has on problem difficulty, and what natural limitations it

imposes on the class of solutions that are likely to be evolved.

Our evolutionary approach, including a representative set of

target graph structures, is described in Section II. Genotypes

representing the target graphs are enumerated in Section III to

reveal a representation bias. Experimental trials in Section IV

reveal a structural bias in terms of the relative evolvability of

graph structures. Conclusions are presented in Section V.

II. EVOLUTIONARY PARAMETERS

The null hypothesis for our investigation is that CGP has

no structural bias, so all graph shapes require the same effort

to evolve. Application specific sets of primitive functions can

be assigned to nodes, but phenotype structure is relevant to all

applications. We consider only the structure of the phenotype,

independent from any function.

In tree-based GP a tunably difficult problem based on tree

structure has been defined [6] to investigate the structural

mechanisms. Trees are described in terms of their depth and

their size (number of terminals). The evolvability of trees is

investigated as a function of these two parameters. The same

approach cannot easily be applied to phenotypes expressed by

CGP genotypes because the range of possible graphs cannot

be described by just two parameters. Rather than exhaustively

search a large parameter space, we examine a small number

of specific target graphs with suitably distinct properties.

We use the usual linear genotype representation [13],

adapted to our problem of nodes with no assigned function. We

assume all nodes have 2 inputs, so each node is represented by

2 genes encoding connectivity. We also assume that the inputs

are symmetric (interchangeable). A general CGP program can

have multiple program inputs and outputs. For simplicity, we

assume only 1 input and 1 output. This allows us to represent

the phenotype as a directed acyclic graph (DAG): each active

node is represented by a vertex, with additional vertices for the

input and output, and each feed-forward connection between

nodes is represented by a directed edge. Example genotypes

and their phenotypes are shown in figure 1.

A genotype of n nodes and 1 output is represented by 2n+1
integer-values genes. The genes representing the connectivity

of node 1 ≤ i ≤ n are initialised to integer values in the range

[0, i− 1], while the output gene is initially assigned the value

n to connect the output to the final node. When offspring

are mutated, each gene is mutated with equal independent

probability. The value of a gene always changes as a result

of mutation, except for genes encoding the node with index

1, which can only take the value 0. We use a standard (1+4)
Evolution Strategy algorithm [14].

Target graph phenotypes with diverse structural properties

are selected so that their relative evolvability using CGP can be

compared. We select several pairs of targets, with similar struc-

tures within each pair, and diverse structures between pairs.

These are shown in Figure 1, where they are all illustrated

with CGP genotypes of 10 nodes (21 genes), for uniformity.

Many other genotypes can express these phenotypes.

The Linear targets l7 and l8 are trivially similar. The Tree

t7 and Parity p9 (based on a textbook parity circuit) also

have structural similarity. The smaller Square s8 is formed

by removing one node from the larger Square s9. Similarly,

the smaller Adder a7 is formed by removing one node from

the larger Adder a8 (based on the textbook adder comprising

8 NAND gates). A number of CGP genotypes were randomly

generated, and those with between 7 and 9 active nodes were

collected. Target pairs were formed by identifying phenotypes



l7 : Linear : 7 vertices l8 : Linear : 8 vertices
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t7 : Tree : 7 vertices p9 : Parity : 9 vertices
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s8 : Square : 8 vertices s9 : Square : 9 vertices
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a7 : Adder : 7 vertices a8 : Adder : 8 vertices
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x7 : RandomX : 7 vertices x8 : RandomX : 8 vertices
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y8 : RandomY : 8 vertices y9 : RandomY : 9 vertices

0 0 1 0 0 2 0 0 3 3 0 4 0 4 5 4 4 6 6 4 7 5 5 8 4 7 9 8 9 10 10 0 0 1 0 0 2 0 2 3 3 3 4 3 4 5 0 3 6 3 5 7 6 6 8 7 8 9 6 9 10 10
8

10

9

5

3

4 6

7

2

3 4

7

5

6

8

9

10

Fig. 1. Genotypes and phenotypes of six target pairs, paired by structural similarity. There is one input (indexed 0), and the nodes in the genotype are indexed
from 1 to 10 (added as subscripts for illustration only). The connectivity of each node is represented by a pair of integers. Active (connected) nodes are shown
in bold, inactive nodes in italic, for illustration. A final gene encodes which node connects to the output node. Vertices of the phenotype are numbered with
the index of the corresponding node in the genotype, again for illustration.

with the smallest non-zero graph edit distances between them.

Two such pairs that have no apparent regular structure are used

as two additional pairs of targets: x7 and x8, and y8 and y9.

III. REPRESENTATION BIAS

Many different CGP genotypes encode structurally identical

phenotypes. There are several reasons for this. The values of

genes encoding the input connectivity of an active node can

be swapped without affecting the structure of the phenotype

because the inputs are considered interchangeable from a

structural perspective. Neutral mutation of an inactive gene

results in a different genotype, but the phenotype is unaffected.

Furthermore, the active nodes need not always appear in the

same order or absolute position in the genotype.

The genotype-phenotype mapping means that not all phe-

notypic structures are equally represented by the range of

possible genotypes, even if all genotypes are themselves

equally likely to occur. Under-represented phenotypes may

prove harder to evolve as a result, with evolution favouring

more frequently represented phenotypes. The representation

might therefore be a source of bias.

There are two main factors affecting the number of geno-

types representing a given phenotype. First is the number of

ways the partial order of the DAG nodes can be flattened into



active N -node log10(20-node genotypes)
target nodes (N ) genotypes fixed output mutating output

l7 7 1 29.94 31.09
l8 8 1 28.46 29.48
t7 7 80 31.84 33.00
p9 9 320 29.34 30.24
s8 8 1024 31.47 32.49
s9 9 5376 30.56 31.47
a7 7 64 31.75 32.90
a8 8 256 30.87 31.89
x7 7 32 31.45 32.60
x8 8 256 30.87 31.89
y8 8 320 30.96 31.98
y9 9 640 29.64 30.54

Fig. 2. Multiple genotypes can represent the same phenotype. Shown are
the number of N -node genotypes (where there are no redundant nodes), and
the logarithm of the number of 20-node genotypes (the length used in our
experiments), that can represent each target phenotype.

a total order on the genotype. This ranges from 1 for a linear

genotype like l7 and l8, to N ! for a fully parallel graph of N
nodes each connected only to the input and output (allowing

all nodes to be connected to the output). This factor depends

on the size of the target, and the topology of the target. Second

is the number of ways the remaining redundant (unexpressed)

genes can be arranged. There is a combinatoric part, as the

unexpressed genes are distributed through the expressed nodes,

and a further part due to the fact that genes with a higher

node number have more states due to the greater number of

connection possibilities. This factor depends only on the length

of the genotype and the size of the target, not on the topology

of the target. The numbers for the selected targets are shown

in figure 2.

Target t7 is the most prevalent: there are 1033 mutating

output 20-node genotypes that represent this single phenotype.

Even so, t7 is represented by only a small proportion of

all possible genotypes, accounting for 1 genotype in 84973

(0.0012% of genotypes) with a fixed output and 1 genotype

in 119667 (0.00084% of genotypes) with a mutating output.

The vast majority of valid CGP genotypes (> 99.99%) do not

represent any of the 12 selected targets. Such a sparse solution

density justifies applying an evolutionary algorithm to the task

of finding solutions.

The Linear phenotypes are noticeably under-represented.

For every genotype representing an l8 phenotype, there are

1024 genotypes representing an s8 phenotype, even though

both phenotypes have the same number of vertices. This sug-

gests Linear targets may suffer from negative representation

bias.

The larger phenotype of a structurally similar pair is ex-

pressed by considerably fewer genotypes than its smaller

counterpart. This is primarily because there are fewer ways

of distributing the active nodes representing a larger graph in

the uniform 20-node genotype. Larger phenotypes are likely

to be harder to evolve because there are fewer solutions in

the search space of all possible genotypes. Yet even the most

uncommon genotype (l8) is represented by more than 1029

mutating output 20-node genotypes.

IV. STRUCTURAL BIAS

The evolutionary algorithm does not sample all genotypes

uniformly, but uses a series of point mutations to navigate

to positions of optimal fitness in the search landscape. The

evolutionary operators define the steps that can be taken

through the landscape; the fitness function affects the prob-

ability of taking those steps. The chosen genetic operators

and evolutionary algorithm may have inherent mechanisms

that affect the relative evolvability of graph shapes.

This section investigates the performance of the evolution-

ary algorithm over CGP structures by performing trials to

evolve each target, to establish whether some target phenotype

structures are in practice harder to evolve than others. Compar-

ison with the relative number of genotypes representing each

target identifies the net effect of any structural bias.

The motivating tree-based GP explorations [6] use a sin-

gle fitness function. However, the complexity of the fitness

landscape (as defined by the fitness function) is often taken

as an indicative model of problem difficulty [10]. So here we

investigate evolvability of structures using two different fitness

functions (graph edit distance, and feature distance), to help

distinguish effects due to the target structure rather than to

the fitness function itself. The fitness function measures the

fitness of the expressed phenotype only, so inactive nodes are

not involved in fitness assessment [12].

A. Graph Edit Distance Fitness Function

Our first fitness function is graph edit distance, which

describes similarity between graphs by counting the number

of edit operations required to transform one graph into an-

other [1]. Edit operations can include insertion, deletion or

substitution of an edge or a vertex. Each edit operation has a

cost, and the edit distance between two graphs is the sequence

of edit operations that transforms one graph to another with

minimum cost. This is equivalent to finding the maximum

common subgraph [1].

[15] presents a measure of similarity for use with maximum

common subgraphs that considers both vertices and edges.

This forms the basis for our edit distance cost function:

d(g, h) = 1− (|V (mcs(g, h))|+ |E(mcs(g, h))|)2
(|V (g)|+ |E(g)|)(|V (h)|+ |E(h)|) (1)

where |V (g)| is the number of vertices in graph g and |E(g)|
is the number of edges.

Standard maximum common subgraph algorithms are rel-

atively simple to implement, but have high computational

complexity, being NP-complete [4]. Hence our investigation

of small graphs. We use McGregor’s backtracking maximum

common subgraph algorithm [11], optimised to take into

account the feed-forward nature of the CGP DAGs.

B. Feature Distance Fitness Function

Our second fitness function considers the structural features

that two graphs have in common. The structural descrip-

tion of a graph comprising several principal features can be

represented as a feature vector. The distance between two



graphs is measured by the Euclidean distance between their

respective feature vectors [16]. A feature vector describing a

graph should contain sufficient elements to ensure that each

target is uniquely described. We use the following 16 feature

statistics.

1) Active vertices, #va : The number of active nodes.

2) External vertices : The number of active vertices that

receive both incoming edges from the input vertex.

3) Internal vertices : The number of active vertices that

receive both incoming edges from other active vertices.

4) Double-linked vertices : The number of active vertices

that receive both incoming edges from the same source

vertex.

5) Number of paths, p : The number of distinct paths from

the input vertex to the output vertex.

6) Minimum depth : The number of active vertices in the

shortest path from the input vertex to the output vertex.

7) Mean depth : The mean number of active vertices in all

paths from the input vertex to the output vertex.

8) Maximum depth : The number of active vertices in the

longest path from the input vertex to the output vertex.

9) Graph width : The number of active vertices divided

by the mean depth. (This derived statistic is included

because it describes an important structural property.)

10) External path length : The sum of the lengths of all

distinct paths from the input vertex to the output vertex.

11) Internal path length : The sum of the lengths of all

distinct paths from each active vertex to the output

vertex.

12) Visitation length : The sum of the internal path length,

external path length and number of active vertices.

(Originally proposed for trees [7], it is included here

for completeness.)

13) Vertex depth : The total depth dt of an active vertex is

the sum of its depth over every path through the graph.

The vertex depth is
√∑

va
d2

t /p.

14) Vertex reuse : The reuse r of an active vertex is the

number of paths from that active vertex to the output

vertex. The vertex reuse is
√∑

va
r2/p.

15) Vertex fan-in : The fan-in fi of an active vertex is the

number of paths from the input vertex that enter that

active vertex. The vertex fan-in is
√∑

va
f2

i /p.

16) Vertex out-degree : The out-degree fo of an active vertex

is the number of directed edges leaving that vertex. The

vertex out-degree is
∑

va
f2

o /#va.

There is correlation between several of the chosen feature

statistics, but each possible phenotypic structure should ideally

be described by a unique set of statistics. The likelihood of

this is increased by using a greater number of feature statistics

that describe a graph’s structural properties in different ways.

Derived statistics like graph width and visitation length are

included because they describe the graph in meaningful terms

in their own right.
This set of feature statistics to describe a phenotype graph

can be calculated in O(n) time, where n is the number of
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Fig. 3. Distribution of normalised feature statistics, for all targets (symbols:
see figure 11 for key), and randomly sampled genotypes (dots). For each
statistic, the left column of dots are random genotypes with mutating output,
the right-hand column are random with fixed output.

nodes in the CGP DAG genotype. A fitness function based on

feature statistics is therefore much more computationally effi-

cient than calculating graph edit distance using the maximum

common subgraph.

Some feature statistics vary over orders of magnitude, which

means they would dominate the calculated feature distance.

This applies to the number of paths through the graph, the

external and internal path lengths, and the visitation length. We

reduce these ranges by taking logs (base 2) of these statistics.

Finally, we normalise the feature statistics so that all com-

ponents make a similar contribution to the computed distance.

Some feature statistics have obvious bounds, such as the

number of active vertices expressed by a 20-node genotype,

which always occupies the range [1, 20]. Others do not have an

easily calculated upper bound, which limits scope for perfect

normalisation. Instead, we find minimum and maximum values

of each feature statistic stati of all targets, and of the graphs

expressed by 1000 randomly sampled genotypes, finding mini

and maxi. We apply a linear normalisation process to each

statistic stati according to equation (2), yielding normalised

statistics filling the range [0, 1] (with the possibility that some

evolved graphs may have values outside this range).

norm(stati) =
stati −mini

maxi
(2)

Figure 3 shows how the normalised feature statistics for each

target, and graphs expressed by randomly sampled genotypes,

are distributed.

The normalised feature distance between two graphs is the

Euclidean distance between their respective feature vectors,

having taken log2 of the identified feature statistics and

normalised all statistics to fit the range [0, 1] as described

above.

C. Experimental Procedure

The relative evolvability of the targets is found experimen-

tally by performing a series of trials. Each trial consists of a

number of independent runs of the CGP algorithm, aiming to

evolve one particular target.
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Fig. 4. Correlation between fitness functions. Starting from target t7, a series
of 1–8 random point mutations is made, and the two fitness functions calcu-
lated. (Larger circles correspond to longer series of mutations.) Spearman’s
non-parametric rank correlation coefficient [8] ρ = 0.862; all other starting
targets have lower correlation coefficients.

A uniform genotype of 20 nodes (41 genes, including the

output) is used in all trials. The genetic operator is point

mutation. The following parameters are varied independently.

Mutation: Separate trials are carried out in which each gene

has an independent 5% or 10% probability of mutation. In a

genotype of 20 nodes (40 genes, not including the output) this

means an average of 2 or 4 genes are mutated in each genotype

offspring.

Output: Separate trials are carried out in which the output

is permanently connected to the final node, and ones in which

the output gene is mutated with the same probability as any

other gene.

Fitness function: Separate trials are carried out for each

fitness function. Because we have not proved that our feature

distance fitness function returns 0 only when the phenotype

graphs are identical, each such candidate solution is also

checked using the graph edit distance. Figure 4 demonstrates

that, although there is a correlation between the two fitness

functions, it is not strong.

This gives 2× 2× 2 = 8 trials per target.

Preliminary trials of 20 runs of up to 5000 generations were

performed for each target. 58% of the runs achieved success

within 5000 generations, but 53% of runs had achieved success

within just 2000 generations, accounting for over 90% of the

successful runs. In those runs that failed to achieve success

within 2000 generations, the best fitness improved rapidly at

the start of a run before reaching a plateau of no further

improvement. In the main experiments, each trial consists of

500 runs, each of up to 2000 generations.

D. Results

The success rates achieved in each trial are shown in

Figures 5 and 6. It is immediately clear that not all targets

are equally evolvable.

Mutating genes with the higher 10% probability mostly

improves the success rate. Using genotypes with a mutating

output improves the success rate for most targets when using

edit distance, but has essentially no effect when using feature

distance. The biggest effect on success rate is the fitness func-

tion, with the feature distance greatly improving the success
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Fig. 5. Success rate in trials of 500 runs using edit distance. Bars for each
target represent Fixed output 5% mutation, Fixed 10%, Mutating 5%, and
Mutating 10%. (The same convention is used in the following graphs.)
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Fig. 6. Success rate in trials of 500 runs using normalised feature distance.

rate for the most “regular” structures, and greatly reducing it

for the most “random” structures.

Relative evolvability is also measured by the computational

effort, which indicates the minimum number of genotypes that

would need to be processed in order to find a solution with

99% probability [9]. Computational effort finds the optimal

length of an evolutionary run, the number of such runs required

to achieve a 99% success rate and hence the number of

genotypes that would be processed during those runs. (The

Computational Effort statistic has been subject to criticism,

for example [2], since its biases make it difficult to compare

across different experiments. However, here we are using

it to compare results obtained under the same experimental

conditions.) The computational effort calculated for each trial

is shown in Figures 7 and 8.

E. Comparison with Random Sampling

The experimental success rate can be compared with the

probability of finding a solution by random sampling of

genotypes. This compensates for the effect of representation
bias: we expect search to be better than random sampling;

if there is no further structural bias, we would expect the

improvement to be independent of target structure.

The probability pg that any one randomly sampled genotype

represents a particular target is easily calculated from the

number of 20-node genotypes that represent that target, shown



l7 l8 t7 p9 s8 s9 a7 a8 x7 x8 y8 y9
103

104

105
ComDistance

Target

C
om

pu
ta

tio
na

l E
ffo

rt

Fig. 7. Computational effort in trials of 500 runs using edit distance. (Note
the log scale.)
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Fig. 8. Computational effort in trials of 500 runs using normalised feature
distance.

in figure 2. Running the CGP algorithm for up to 2000

generations using (1 + 4) Evolution Strategy involves up to

8001 genotype evaluations. The probability ps of finding a

solution by randomly sampling 8001 genotypes is given by:

ps = 1− (1− pg)8001 (3)

A similar approach is adopted to evaluate the effectiveness of

CGP on a Boolean parity problem [3].

The minimum computational effort required to find a solu-

tion by random sampling of genotypes can be calculated in

a similar manner. Computational effort calculations require

the cumulative probability of success P (M, k) attained by

generation k with population size M . The probability of

success by random sampling of genotypes at the equivalent

of generation k is:

P (M,k) = 1− (1− pg)kM+1 (4)

where M = 4 for CGP using (1 + 4) Evolution Strategy. The

standard calculation of minimum computational effort can be

used once the values of P (M,k) have been found.

Figures 9 and 10 show the improvement in success rate and

computational effort using CGP over the calculated figures

using random genotype sampling. Unsurprisingly, CGP con-

sistently out-performs random sampling of genotypes for all

targets. However, the degree of improvement varies markedly

(from many orders of magnitude, to a factor of a few),

indicating a strong structural bias.

success rate improvement computational effort reduction
Target 5% 10% 5% 10%

l7 537 581 0.04% 0.03%
l8 10850 11900 0.00% 0.00%
t7 7 8 1.36% 1.13%
p9 993 793 0.03% 0.05%
s8 13 16 1.18% 1.00%
s9 75 91 0.39% 0.29%
a7 4 5 4.62% 2.95%
a8 25 28 1.05% 1.12%
x7 16 18 0.97% 0.73%
x8 28 37 0.87% 0.62%
y8 44 49 0.57% 0.42%
y9 607 844 0.07% 0.06%

Fig. 9. Success rate improvement (success rate of CGP / success rate of
random sampling) and computational effort reduction (CE of CGP / CE
of random sampling), for 5% and 10% mutation, fixed output, graph edit
distance.

success rate improvement computational effort reduction
Target 5% 10% 5% 10%

l7 847 847 0.01% 0.01%
l8 25000 25000 0.00% 0.00%
t7 11 11 0.97% 0.58%
p9 2707 2973 0.01% 0.01%
s8 25 25 0.73% 0.56%
s9 166 187 0.19% 0.14%
a7 4 7 6.95% 4.48%
a8 14 21 2.10% 2.12%
x7 15 19 2.19% 1.17%
x8 8 12 1.37% 3.26%
y8 4 5 2.90% 2.56%
y9 47 61 1.15% 0.99%

Fig. 10. Success rate improvement (success rate of CGP / success rate of
random sampling) and computational effort reduction (CE of CGP / CE of
random sampling), for 5% and 10% mutation, fixed output, feature distance.

The correlation between the computational effort for the edit

distance and random sampling cases is shown in Figure 11,

to help expose correlations. Vertical separation between a ho-

mogeneous pair of data points at the same horizontal position

represents the difference between mutating genes with a 5%

and 10% probability. The effect this has on evolvability is

generally insignificant compared with the relative difficulty of

evolving different targets.

The Linear targets (l7 and l8, represented by circle markers)

are the greatest outliers. Their position indicates that CGP is

able to evolve these targets relatively more easily than one

might expect from their solution density in all valid genotypes.

Conversely, the position of the Adder targets (a7 and a8,

represented by diamond markers) indicates that they present

a greater challenge to CGP than might be expected. These

observations also hold in the feature distance case.

F. Observations on Edit Distance

The Tree target (t7) requires the least computational effort.

This is closely followed by the smallest Random target (x7),

which is evolved with a comparable rate of success. A much

lower success rate is achieved with the larger Adder target (a8)

and the Parity target (p9), which both require considerably

more effort.



105 106 107 108 109 1010
103

104

105

Random Genotype Sampling (Calculated)

C
G

P
 u

si
ng

 E
di

t D
is

ta
nc

e 
(E

xp
er

im
en

ta
l)

l7
l8
t7
p9
s8
s9
a7
a8
x7
x8
y8
y9

Fig. 11. Correlation between computational effort for edit distance and
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A series of Wilcoxon rank sum tests [17] compares the

distribution of generations required to evolve the t7 target

against the generations required to evolve all other targets.

This yields p-values that are well below 0.01, revealing a

statistically significant difference at the 99% significance level.

A similar series of tests for the x7 target also reveals a

statistically significant difference at the 99% significance level,

in trials where the output gene can be mutated.

The smallest Random target (x7) appears to be one of

the easier targets to evolve, whereas targets x8 and y9 are

among the hardest. The experimental trials reveal no separation

in terms of evolvability between the targets derived from

randomly generated genotypes and those with more regular

structures. This provides no evidence to suggest that irregular

structures are harder to evolve than regular structures on

account of their randomness.

Visual inspection of the experimental results suggests that

the larger target of a structurally similar pair requires more

computational effort than its smaller counterpart. Further

Wilcoxon rank sum tests compare the distributions of gen-

erations required to evolve the larger and smaller targets. A

statistically significant difference at the 99% significance level

is found between the larger and smaller target of all pairs

except for the Adders (a7 and a8) when a 5% mutation rate

and a fixed output is used.

The Linear targets (l7 and l8) are evolved relatively more

easily than one might expect from the representational bias,

while the Adder targets (a7 and a8) exceed their expected

difficulty. This indicates a bias in the evolutionary process

that does not merely follow the representation bias imposed

by the genotype-phenotype mapping. The fact that one set

of outliers represents both Linear targets, and the other both

Adder targets, suggests phenotypic structure is a likely factor.

G. Observations on Feature Distance

The difference in evolvability between targets is more

pronounced when using feature distance than when using edit

distance. A 100% success rate is achieved when evolving

the Linear targets l7 and l8 using feature distance. In fact,

the smaller Linear target l7 is always evolved within 1000

generations. Significantly lower success rates are achieved

with the larger Random targets. Indeed, the Random y9 target

is not evolved in any of the 500 runs using a fixed output and

a 10% mutation rate.

There is greater consistency in success rate and required

computational effort between pairs of structurally similar

targets, although the larger target of a pair is still the harder

to evolve. In particular, the paired Tree target t7 and Par-

ity target p9 achieve much more similar success rates than

those achieved using graph edit distance. Wilcoxon rank sum

tests [17] compare the distributions of generations required

to evolve the larger and smaller targets in each pair. The

generations required to evolve paired targets have significantly

different distributions at the 99% significance level, but larger

p-values generally occur between paired targets than between

non-paired targets, indicating that structurally similar paired

targets are more similarly evolvable. The largest p-values occur

between the Linear targets l7 and l8 and between the Square

targets s8 and s9. There is greater distinction between the

evolvability of paired targets that have less regular structures.

The Linear targets l7 and l8 benefit the most from the

change in fitness function, but evolvability of the Tree target t7
is almost unchanged. It is somewhat surprising that the Tree

target is no longer easier to evolve than the Square targets

s8 and s9 despite being smaller, more frequently occurring

in randomly sampled genotypes, and having more extreme

feature statistics (figure 3). Structural similarity has a greater

effect on evolvability under feature distance than the size of

the target or the frequency with which it is represented by

randomly sampled genotypes.

Evolving targets with more irregular structures requires

greater effort with the feature difference fitness. This can

be explained by the distributions of feature statistics, as the

statistics describing many of the targets are relatively tightly

clustered in areas also occupied by statistics describing the

graphs expressed by randomly sampled genotypes (figure 3).

The normalised feature distance imposes a structural bias

in favour of regular structures described by extreme feature

statistics. Phenotype size is also a factor in the relative

evolvability of irregular targets, as evolving the larger target

of a structurally similar pair requires more effort.

H. Fitness Function Dominance

The chosen fitness function appears to be responsible for

many of the observed differences between separate experimen-

tal trials. (Note that [5] [6] used a single fitness function in

their trials.) One observation that is common across all trials is

that less computational effort is required to evolve the smaller

target of a structurally similar pair than its larger counterpart.

This is only partly explained by the relative numbers of



genotypes representing smaller and larger targets, resulting

from the genotype-phenotype mapping (figure 2). In other

respects, the chosen fitness function has an influence on the

relative evolvability of targets that may mask any underlying

mechanisms of CGP.

Evolvability using CGP is partly influenced by the distri-

bution of genotypes representing a particular target, but this

is not the only factor. The Linear targets l7 and l8 are under-

represented in the genotype distribution, but are among the

easiest targets to evolve. This might be partly explained by

the range of likely structural changes resulting from CGP

point mutations, analogous to structural mechanisms in GP.

However, the chosen fitness function has a significant effect

on the relative evolvability of targets.

V. CONCLUSIONS

Some phenotypes are significantly more difficult to evolve

than others, based purely on their structure. This has been

demonstrated only under the particular algorithm parameters

used in the experimental trials. Parameters such as mutation

probability and whether the output gene can be mutated were

varied, generally without a statistically significant effect. The

fitness function had a significant effect. Other parameters such

as the choice of (1+4) Evolution Strategy remained fixed, as

this is representative of many existing CGP implementations.

1) Not all structures are equally evolvable: Lower success

rates are achieved, and greater computational effort is required,

when evolving certain target shapes. This demonstrates that

some phenotypes are more difficult to evolve than others,

purely as a result of their structure, not of their function. This

has implications for all applications of CGP, because it can not

be assumed that all valid solutions to a problem are equally

likely to be found.

2) Genotype-phenotype mapping imposes a representation
bias: A bias occurs as a result of using a fixed-length linear

genotype to represent phenotype graph structures with limited

feed-forward connectivity. Genotype length imposes a limit

on the represented phenotype size. A larger phenotype is

represented by considerably fewer genotypes than a smaller

structurally similar phenotype. As a result, evolvability of

structurally similar phenotypes gets harder as phenotype size

increases.

Phenotype size is not the only factor affecting the propor-

tion of genotypes representing a particular phenotype. Feed-

forward connectivity restricts the order in which active nodes

may appear in genotypes representing a phenotype structure.

CGP consistently out-performs random sampling of genotypes,

but there is (a weak) correlation between the proportion of

genotypes representing a particular phenotype and the compu-

tational effort required to evolve it.

3) Structural mechanisms impose an additional structural
bias: There is not always direct correlation between evolv-

ability and the distribution of genotypes. Phenotypes with a

simple linear structure are under-represented in the genotype

distribution, but are found to be among the easiest to evolve.

This might be partly explained by the range of likely structural

changes resulting from CGP point mutations, analogous to

structural mechanisms in GP.

Experimental trials reveal that simple linear and tree struc-

tures benefit most from this bias. These structures share the

properties of self-similarity and simple connectivity, and can

be extended incrementally by a series of point mutations. More

complex or dense structures with greater degrees of intercon-

nectivity prove a greater challenge, perhaps because many

vertex connections are involved in the process of inserting

a subgraph. Further analysis is required to characterise the

structures that benefit and suffer in terms of evolvability.

Representation and structural biases have been uncovered.

The fact that biases exist is not surprising: what has been

demonstrated here is the size and direction of these biases.

In particular, the representation bias is outweighed by the

structural bias, and the rarer “regular” structures appear to be

easier to evolve than the more common and seemingly more

“irregular” ones. A bias towards more regular solutions might

be viewed as a good thing, unless your particular problem

requires an irregularly-structured solution.
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