
Automatically Moving Between Levels in Artificial Chemistries

Adam Nellis and Susan Stepney

York Centre for Complex Systems Analysis, University of York, UK, Y010 5DD
adam@cs.york.ac.uk www.yccsa.org

Abstract

We introduce multi-level Artificial Chemistries as a way of
tackling difficult problems in the evolution of complexity. We
present two algorithms for moving between levels of abstrac-
tion in a multi-level Artificial Chemistry. (1) Moving up-
wards from a low-level description to a high-level description
involves making approximations. We discuss these, and pro-
vide an algorithm to perform the approximations. (2) Mov-
ing downwards is more problematic. We discuss the issues
involved in moving down, including conservation of mass.
We present an algorithm to generate constraints that any low-
level implementation of the system must satisfy. These con-
straints can be used to: obtain information about the system;
automatically generate a low-level implementation of the sys-
tem; guide a search for suitable low-level implementations of
the system.

Introduction
Artificial Chemistries (AChems) can be explored from a
computational viewpoint, for example, as tools for imple-
menting evolutionary algorithms [9] and controlling robots
[6]. They can also be used to model biological systems
[10] such as replication [12] and membrane formation [13].
These varied applications of AChems lead to varied ways of
defining them, and consequently to AChems defined on dif-
ferent levels of abstraction, with different properties. How-
ever, one common feature among AChems is that they are
defined on only one level. Some problems, relevant to both
computation and biology, span two or more levels of abstrac-
tion (for example, any of the ‘major transitions in evolution’
[14]). If AChems are to tackle these problems, they must
span multiple levels of abstraction.

Previous authors have observed that biological systems
contain components on different levels [3], but the purpose
of multi-level AChems is to produce two different models of
the same system, from two different levels. Work has been
done on Course-Grained Molecular Dynamics [1] and Dis-
sipative Particle Dynamics [11], which move from the very
low level simulations of Molecular Dynamics, upwards to a
slightly higher level that is more computationally tractable
for larger molecules and longer timescales. But these sys-
tems still only operate on one level. Currently there is no

well-defined way for the AChem itself to move between lev-
els of abstraction. We discuss the issues involved in moving
between levels of abstraction, and present two algorithms to
aid movement up and down levels of abstraction in AChems.

Traditionally, people use computers to do the ‘work’ of
running the AChem, and themselves do the ‘meta-work’ of
deciding at which level to run. But what if computers could
do this ‘meta-work’? A system that could automatically de-
cide which level to model at could attempt to tackle some of
the difficult modelling challenges that span multiple levels,
such as the ‘major transitions in evolution’. Here we discuss
both moving downwards from a higher level to a lower level
and moving upwards from a lower level to a higher level.

The higher level is an approximation of the lower level.
The lower level contains more information than the higher
level, and so moving downwards requires adding this in-
formation into the system. When moving downwards, we
do not know how the lower level is implemented. We only
know how it must behave when viewed from a high level.
So we cannot map directly from a high-level description to
‘the correct’ low-level description. In this paper, we map to
a set of constraints that any low-level implementation must
satisfy. These constraints describe how the low-level com-
ponents of the system combine to form high-level structures.

The constraints could then be used to guide an implemen-
tation of the lower level. For some low-level implemen-
tations, these constraints correspond almost directly to an
implementation (with possibly some arbitrary choices to be
made). For more involved low-level descriptions, these con-
straints can be used to search for low-level implementations.

When moving up from a low-level description to a high-
level description, an approximation must be made. The pur-
pose of having a high-level description of a system is that
there is too much information in the low-level description,
and a summary of this information is desired. The high-
level description approximates this information in a mean-
ingful way. We must decide precisely how to approximate
the system and how much to approximate it. An algorithm is
presented for performing this approximation, and the issues
surrounding approximation are discussed.



What is an Artificial Chemistry?
AChems are agent-based systems where the agents are ana-
logues of chemicals participating in reactions. There are dif-
ferent types of AChem [4] with varying levels of complex-
ity. The simplest are defined by finite lists of chemical types
and the reactions they can participate in. More sophisticated
AChems define chemicals containing some internal structure
or properties. This makes it possible to describe an infinite
number of different chemicals using a finite number of prop-
erties [10]. The reactions in these systems do not need to be
explicitly listed; they are defined implicitly by the structure
and properties of the chemicals, and specific reactions can
be computed as and when they are needed.

When defining reactions implicitly, the possibility exists
for open chemistries [7]. In an open chemistry, the possible
chemical species that can exist need not be pre-specified.
Although many different chemical species are possible, only
a small number of them exist at any one time. A particular
instance of the chemistry occupies a sub-space of the space
of all possible chemical species. As an open chemistry runs,
it changes the sub-space that it occupies.

If an AChem is to be used to evolve a network of chem-
icals and reactions, an open chemistry is required. Addi-
tionally, the chemistry should also be evolvable: the chemi-
cal species should change (via mutation) in a structured way
that evolution can use to move through the space of possible
chemical species. Most changes should have only a small ef-
fect (so a mutated chemical can perform the same reactions
as its parent, but maybe faster or slower), but some changes
should have a large effect (occasionally a mutated chemical
can perform a new reaction, or lose the ability to perform an
existing reaction).

One way of making evolvable chemistries is to use sub-
symbolic chemistries [5], where chemicals have two levels
of description. On the higher level, the system is an open
AChem with chemical species containing structure and rules
that define their reactions. On the lower level, a chemical is
composed of parts that interact to give rise to properties that
entail the rules on the higher level. The lower level could
be a complex system such as a random boolean network [5],
it could be another AChem (for example a simple, closed
chemistry), or it could be a computer programming language
[8]. AChems that work on two or more levels have the po-
tential to possess properties such as evolvability.

What are levels?
There is no ‘correct’ level at which to design AChems, as
it depends on the particular problem being solved. This in-
cludes whether the purpose of using the AChem is to sim-
ulate a system from actual chemistry (or biochemistry), or
to use the AChem as a computational tool, exploiting its
properties to create a computational system (or to study a
computational system). But there are some problems that
involve crossing levels. For example, actual chemistry has

gone through events crossing levels at different times dur-
ing the evolution of life (the ‘major transitions in evolution’
[14]), for example: naked replicating molecules becoming
encased in compartments and replicating as populations;
RNA acting as both genes and enzymes, changing to use
DNA as genes and proteins as enzymes; and the evolution
of multi-cellular organisms from single-celled organisms.
These kinds of problem may be interesting to systems bi-
ologists wanting to better understand what happened in real
chemistry/biology. They may also be interesting to people
wanting to use AChems for computational purposes, as they
are examples of natural systems increasing their own com-
plexity, something that current artificial systems find diffi-
cult to achieve.

All of these problems involve concepts at two (or more)
levels. Choosing the most appropriate level at which to
model is not easy. Addressing these problems (from the
point of view of either biology or computation) involves one
of two options: either modelling and simulating the whole
system from the lower level, and enduring the computational
burden that this entails; or modelling the system on both
levels simultaneously, switching between the two levels in
a multi-level chemistry. To automate the second option re-
quires a well defined way of moving between the levels.

Going downwards
The concept of multi-level chemistries can provide new
ways of thinking about high-level, symbolic, chemistries
(lists of chemicals as symbols, and their reactions). Any
symbolic chemistry describes a system at a certain level.

For systems that are models of the real world, there is al-
ways a lower level of description that the system could be
described on (until we reach the level of our understanding
of particle physics). Also, for real world systems, some in-
formation about this lower level is always known (we know
that organisms are composed of cells, which are composed
of molecules, and so on.)

For artificial systems, however, the implementation of any
level is arbitrary (and is often chosen to make the program
execute efficiently). So when describing an artificial system
in terms of a lower level, there are arbitrary implementation
choices to be made, some of which are constrained by the
higher level. Looking for these constraints can give insight
and information about the higher level, and resolve some of
the seemingly arbitrary design choices for the lower level.
These kinds of insight can also be gained about real systems
as well as computational ones.

The high-level entities are symbols. On the lower level,
each of these high level symbols is expressed as a collection
of lower-level components. For example, the decomposition
of hydrogen peroxide into water and oxygen can be written
as:

2 hydrogen-peroxide→ 2 water + oxygen (1)



But the same equation can be written in terms of the lower
level of atoms, instead of in terms of the higher level of
molecules:

2 H2O2 → 2 H2O + O2 (2)

Here, ‘hydrogen-peroxide’ is a symbol on the higher level,
that is expressed as two ‘H’ components and two ‘O’ com-
ponents on the lower level. Note also the constraint: ‘oxy-
gen’ and ‘hydrogen-peroxide’ are different symbols on the
higher level, but they share common components on the
lower level: ‘hydrogen-peroxide’ has the same components
as ‘oxygen’, along with some other components.

On the high level, information about the system is con-
tained in the reaction equations. On the low level, it is con-
tained in the structure of the chemicals (how their compo-
nents are arranged). So the task of describing a high-level
system on a lower level is about moving information from
reaction equations to chemical structures.

This movement can be performed by humans looking at
reaction equations and diagrams. But as the lists of equa-
tions become longer and the number of different symbols
increases, the problem becomes harder and more tedious to
solve. Also, if evolutionary algorithms are to evolve sym-
bolic systems, then this problem needs to be solved hundreds
of times for each generation of the evolutionary algorithm.
This is why it is useful to have an algorithm for automati-
cally performing this process.

Conservation of mass
The above reasoning relied on the assumption that ‘mass’ is
conserved in the high-level reaction equations: if α+β → γ,
then all the low-level components making up α and β are
present in γ, and γ contains no new components that have
not come from α or β.

This is not a difficult condition to fulfill on the high level,
as new symbols can be introduced to account for any mass
gained or lost in a reaction. For example, if α+ β → γ, but
mass is lost (γ does not contain all of the components of α
and β), then α+ β → γ can be replaced by α+ β → ξ+ γ,
where the symbol ξ does not appear anywhere else in the
system. ξ represents the mass that is lost in the reaction.
Likewise, if mass is gained in the reaction (γ contains a com-
ponent that does not come from α or β), then α+β+ζ → γ
can be used, where ζ represents the mass gained in the re-
action. These two patterns can be applied to any reaction.
If they are applied at the same time, they can represent re-
actions in which some components are lost and some are
gained.

Given a high-level system of reaction equations that con-
serve mass, we can deduce constraints on how the high-level
symbols are composed of low-level components. We can
also put constraints on the possible masses that the sym-
bols can have. Technically, we deduce a partial order on
the masses of the symbols, with constraints of the form: ‘χ

has more mass than ψ’. We can also use this to work out if a
system conserves mass or not, so we do not need to know be-
forehand. If we encounter a contradiction when building the
partial order, we have proved the system does not conserve
mass. If we can build the partial order with no contradic-
tions, then we have proved the system does conserve mass.

Multiple meanings
Some high-level reaction equations can have more than one
interpretation on the lower level. These can be disam-
biguated by modifying the reaction equations to include in-
termediate steps. Different disambiguations lead to different
low-level constraints for the same high-level system.

3 chemicals or fewer — unambiguous reactions
There are five kinds of reaction equation that have only
one interpretation on the lower level: they involve three
molecules or fewer.

1. nothing→ α (influx)

2. α→ nothing (outflux, or decay)

3. α→ β (isomerisation)

4. α+ β → γ (composition or association)

5. γ → α+ β (decomposition or dissociation)

Reaction types (1) and (2) give no information about the
lower level (other than saying “α is a symbol that exists”),
so are ignored in later analysis.

4 chemicals
Four chemicals participating in a reaction can have more
than one interpretation on the lower level.

3→ 1 reactions. Reactions of the form α+β+γ → δ im-
ply that chemical δ is a composite of chemicals α, β and γ.
The ambiguity lies in the order in which α, β and γ combine
to form δ. Because the probability of three molecules react-
ing with each other at the same instant is negligibly small,
two of α, β and γ must react first, the other one reacting with
the intermediate complex, ξ. There are three possibilities:

α+ β → ξ ; ξ + γ → δ (3)
α+ γ → ξ ; ξ + β → δ (4)
β + γ → ξ ; ξ + α→ δ (5)

If α+ β + γ → δ were the only reaction in the system, then
these three disambiguations would be equivalent. But if α, β
and γ participate in other reactions, then the order in which
they combine to form δ could have implications on the lower
level.



1 → 3 reactions. Similarly to the 3 → 1 reactions, reac-
tions of the form α→ β+γ+δ can also have multiple inter-
pretations. The chemical α must be composed of chemicals
β, γ and δ, and so it must be composed of their low-level
components, held together in a certain structure. It must re-
lease one of chemicals β, γ and δ first, which implies the
existence of an intermediate chemical, ξ, that is the combi-
nation of two of β, γ and δ. There are three possibilities:

α→ β + ξ ; ξ → γ + δ (6)
α→ γ + ξ ; ξ → β + δ (7)
α→ δ + ξ ; ξ → β + γ (8)

2→ 2 reactions. Reactions of the form α+β → γ+δ can
have multiple interpretations, but these interpretations are of
a different kind from those above. The earlier interpretations
are about the order in which three chemicals come together
to form a complex (or come apart from a complex). The
interpretations for α+β → γ+δ reactions concern symbols
being transformed into other symbols, which corresponds,
on the lower level, to chemicals undergoing isomerisations.
There are three possibilities for how this isomerisation can
occur:

1. α is an isomer of γ; and β is an isomer of δ.

2. α is an isomer of δ; and β is an isomer of γ.

3. Both α and β contain some components of γ and δ.

Depending on precisely how the lower level will be imple-
mented, point (3) may or may not be possible.

For the purpose of reducing every ambiguous reaction to
unambiguous reactions, the reaction α+ β → γ + δ can be
replaced with the two reactions:

α+ β → ξ ; ξ → γ + δ (9)

This again introduces an intermediate complex, ξ. Replac-
ing the equation in this way does not remove the underlying
ambiguity. We must make another disambiguation by choos-
ing one of the three cases above.

More than 4 chemicals
In the same way that reactions involving four chemicals can
be reduced to unambiguous reactions involving three chem-
icals or fewer, reactions with more than 4 chemicals can be
reduced to unambiguous reactions by the repeated applica-
tion of the above reductions.

Disambiguation
The first step in the analysis of a high-level system is to
pre-process the reactions, reducing them to unambiguous
reactions. This involves making choices about how to de-
compose ambiguous reactions, as described above. If only
one ambiguous reaction needs to be decomposed, then the

choice made is somewhat arbitrary. But if multiple choices
need to be made, then there is the possibility that choices
can affect each other.

There is no way in which choices can be incompatible
with each other: any set of choices will always lead to a
valid disambiguation, and every disambiguation can always
be reversed (by removing the intermediates) to return to the
same set of ambiguous equations. However, different dis-
ambiguations of the same equations can differ in the num-
ber of intermediates introduced. If two reactions need to be
disambiguated, then this will introduce two new intermedi-
ate symbols (one for each reaction). These intermediates
are different symbols on the high level, but if there is extra
information in the system about the reactants and products
of the ambiguous reactions, then it may be possible to re-
late the intermediates on the lower level, seeing them as iso-
mers of each other (i.e. realising they are composed of the
same components). If, however, the equations were disam-
biguated using different choices, then it might not be possi-
ble to relate the intermediates on the lower level. This can
also carry over to some of the non-intermediate symbols as
well. One disambiguation may make it possible to infer that
two non-intermediate symbols are isomers of each other, but
a different disambiguation may not make it possible to infer
this.

Note that this is not a mistake in the disambiguation pro-
cess: it is a choice that must be made about how to interpret
the high-level equations. If an equation is ambiguous about
how one reaction happens, then this ambiguity can carry
over to other parts of the system. If application-specific
information is available about how ambiguous equations
should be disambiguated, then they can be disambiguated by
hand before running the analysis. Or if the equations are be-
ing generated by a computer program, then this program can
be instructed to produce unambiguous equations of the cor-
rect form. If it is not known which way the equations would
be best disambiguated, then any disambiguation will give a
valid representation of the equations. If there is reason to
believe that one representation will be better than the others,
but it is not known which, then all disambiguations can be
enumerated. The analysis can be run on all disambiguations
and the results compared to see if multiple representations
are possible. If the most compact representation is desired
(i.e. the representation that sees the greatest number of sym-
bols as isomers of each other), then this can be found by
comparing the different representations. The fact that mul-
tiple representations are possible via different disambigua-
tions, highlights the fact that the lower level contains more
information than the higher level. Thus we can not map di-
rectly to a low-level description from a high-level descrip-
tion; we can only obtain constraints on the lower level.



Algorithm
Once the high-level set of reaction equations has been dis-
ambiguated, they can be reasoned about to obtain constraints
on the low-level implementation of the system. This reason-
ing will give us:

• L : a list of low-level components.

• H : a list of the high-level symbols and how they are com-
posed of low-level components.

• I : a list which high-level symbols are isomers of each
other.

• P : a partial order on the masses of the components and
symbols.

The low-level components here represent constraints on how
the lower level must be implemented. These components are
no more than the high-level symbols that do not need to be
broken down into other symbols. (If a high-level symbol
does not need to be broken down on the lower-level, it does
not mean that it must not be broken down; it just means
there is no information in the high-level reaction equations
requiring it to be broken down.)

A set of high-level reaction equations can be thought of as
an implicit description of how some symbols in the system
are composed of other symbols. The purpose of this algo-
rithm is to make this implicit description explicit. This uses
a form of unification [2]. The word ‘unification’ has a spe-
cific meaning in Computer Science (that applies here), but
it can be thought of more generally as a way of taking in-
formation that is implicit and spread out; making it explicit
and bringing it into one place. In this situation, the informa-
tion is implicitly spread throughout the high-level reaction
equations. We are bringing it into an explicit description of
how the high-level symbols are composed of low-level com-
ponents. Off-the-shelf unification algorithms are not suited
to this particular situation, as here there is only one function
(composition), and it is commutative. So we have designed
a special-purpose unification algorithm (algorithms 1 and 2)
to exploit the structure of this problem.

Algorithm 1 — set-up
Before we can perform the unification, we need some equa-
tions to unify. These will be of the form α = β + γ,
representing the fact that the high-level symbol α is com-
posed of the same low-level components as a β symbol com-
bined with a γ symbol. These equations are stored in the
data structure D. After the pre-processing steps of disam-
biguation and removal of influx and outflux reactions, we
have isomerisation, composition and decomposition reac-
tions. Algorithm 1 processes these reactions, putting their
information into the data structures D, I and P. The decom-
position reactions are added as-is into D; the composition
reactions are reversed, and added to D. The isomerisation

Algorithm 1 The first half of the ‘downwards’ algorithm:
Setting up the decompositions of symbols.

P := ∅ {partial order on the masses}
I := ∅ {high-level symbols that are isomers}
D := ∅ {decompositions being unified}
for all reaction in high-level-reactions do

if reaction is α→ β {isomerisation} then
add isomer ‘α = β’ to I
add order relation ‘α = β’ to P

else if reaction is α+ β → γ {composition}
or γ → α+ β {decomposition} then

add decomposition ‘γ = α+ β’ to D
add order relations ‘α < γ’ and ‘β < γ’ to P

if there is a contradiction in P then
return failure: the system does not conserve mass

reactions do not need to be put into D, instead their informa-
tion can be put directly into I. As each equation is added, its
information about the partial order on the masses is added to
P. When every equation has been processed, the unification
can begin. We check the partial order to see if the system
conserves mass, and stop now if it does not (because the uni-
fication would fail). If there is a contradiction in the partial
order, then the high-level system does not conserve mass.
If there is not a contradiction then this does not necessarily
mean that the system does conserve mass; there is another
conservation of mass check during the unification.

Algorithm 2 — unification
After set-up stage, the data structure D is filled with the
equations to unify. Algorithm 2 performs this unification
and completes the ‘downwards’ algorithm. D contains a list
of equations of the form ω = χ + ψ, where ω, χ and ψ are
symbols from the high-level system (or intermediates gener-
ated by disambiguation). The equation ω = χ + ψ means
that the symbol ω is composed of the same low-level compo-
nents as the symbols χ and ψ. But D could contain another
equation: ω = τ + υ. These two equations both describe
how ω is composed, and need to be considered together dur-
ing this step of the algorithm. During this step we iterate
through the equations in D, grouping together all equations
describing the same symbol (e.g. ω). So in a typical itera-
tion we might consider the decompositions d = d1 = d2,
where d is ω, d1 is χ + ψ and d2 is τ + υ. So the nota-
tion d = d1 = d2 means that we are considering the two
equations, ω = χ+ ψ and ω = τ + υ.

For each of these sets of decompositions, we apply one
of five operations (in order) to simplify the equations. This
process is iterated until no equations remain. Then the equa-
tions have been unified and the process is complete. WHen
simplifying the equations, we may find a way to partially
decompose a symbol but not know its full decomposition
yet. This information is stored in the temporary variable PA,



which is like H but stores partial information about decom-
positions. The operations that we perform are:

1. If a symbol has only one decomposition (d = d1) then this
symbol has been fully decomposed. We add this decom-
position to H, including any partial decomposition already
done to d.

2. If there are common symbols in the decompositions of a
symbol (d = χ + ψ = τ + ψ) then we cancel these and
add them to the partial decomposition of d.

3. If any decompositions of a symbol contain only one sym-
bol themselves, then we can cancel them. We remove all
but one of these decompositions from D, and add into I
the fact that these symbols are all isomers of each other.
We also update the partial order, P , with the fact that these
symbols all have the same mass (and we check the partial
order for contradictions).

4. Because different symbols can be isomers of each other,
we replace all instances of these isomers with a common
identifier so they can be cancelled from the equations by
operation 2.

5. If none of the above operations can be performed, then
we search the decompositions for the first symbol that we
know how to decompose (it has an entry in H). We replace
this symbol in its equation by its decomposition. So if
ω = ψ + χ = τ + υ and τ = ρ+ σ then we end up with
ω = ψ + χ = ρ+ σ + υ.

After all the equations have been unified, the set of low-level
components, L, can be read off as those high-level symbols
that can not be decomposed (are not in H) and are not iso-
mers of a different high-level symbol (are not in I).

Going upwards
Moving up from a low-level system to a high-level system is
more straightforward than moving down.

The precise implementation details of the lower level sys-
tem do not matter for the process of moving up to the higher
level. However the low-level system is implemented, it
will consist of components that interact with each other and
join together to form structures. (For example, two hydro-
gen atoms and one oxygen atom may join to form a water
molecule structure.) These structures are symbols on the
higher level. The reactions on the higher level summarise
the low-level mechanisms by which these structures interact.
To produce a high-level description of a low-level system,
two things are needed: (1) a list of high-level symbols; and
(2) a list of reactions involving these symbols. The symbols
represent the structures formed by the low-level components
and the reactions represent the dynamics happening on the
lower level. Algorithm 3 gives the pseudocode of an algo-
rithm to do this.

Algorithm 2 The second half of the ‘downwards’ algorithm:
Unifying the decompositions

L := ∅ {low-level components}
H := ∅ {high-level symbols to be broken down}
PA := ∅ {partial decompositions}
while D is not empty do

for all d = d1 = d2 = · · · = dn in D do
if n = 1 then

add decomposition ‘d = PA(d) ∪ d1’ to H
remove decomposition ‘d = d1’ from D

else if common symbols in d1 = d2 = · · · = dn
then

cancel the common symbols
add the common symbols to PA(d)

else if more than one of d1 = d2 = · · · = dn are
length 1 then
s1 = s2 = · · · = sm are these decompositions
for all unique pairs si, sj do

add isomer ‘si = sj’ to I
add order relation ‘si = sj’ to P
if there is a contradiction in P then

return failure: system not conserve mass
remove all but one of s1 = · · · = sm from D

else if at least one of d1 = d2 = · · · = dn contains a
chemical in S then

for all matching chemicals c do
replace c with its common identifier from I

else
find the first di in d1 = d2 = · · · = dn with a
match in H
replace ‘d = di’ in D with ‘d = H(di)’

L := {all high-level symbols} \ (H ∪ I)
return success: L, H, I, P

To produce a list of symbols, it is necessary to simulate
the low-level system and observe the structures that form.
The length of time the system is observed for has an im-
pact on the structures observed. If very involved structures
could form within the system but they take longer to form
than the system is simulated for, then they will not be ob-
served. Likewise if some structures form quickly but rarely,
they may not be observed if the system is not simulated for
long enough. This highlights the fact that the high-level sys-
tem is an approximation of the low-level system, capturing
those structures that form within a certain timescale.

There is another timescale associated with the observa-
tion of the low-level system. When observing structures
within the system, a short timescale must also be chosen.
Because the low-level components are constantly interacting
with each other, a complicated structure goes through inter-
mediate stages in its formation. These intermediate stages
may not be appropriate to represent in the high-level system:
the only thing required may be the resulting structure. The



Algorithm 3 Going upwards from a low-level description to
a high-level description of a system.

S := ∅ {set of high-level symbols}
R := ∅ {set of high-level reactions}
while long timescale has not expired do

while short timescale has not expired do
simulate low-level system

observe low-level system
for all new structures not seen before do

create a new symbol for this structure
add this new symbol to S

for all structures, S, at the start of this timescale do
if S was in a reaction during this timescale then

A := { structures that S reacted with }
B := { products remaining after these reactions }
create a new symbolic reaction: A→ B
add this reaction to R

separate, simple operations happening on the low level are
combined into one complicated operation on the high level.
This again highlights the fact that the high-level system is
an approximation of the low-level system. A complicated
structure that forms through intermediate stages on the lower
level springs into being in one step on the higher level.

Observation of the low-level system gives a list of re-
action equations as well as a list of symbols. The short
timescale is used to approximate a series of intermediate
structures by one symbol: the end product of the series. This
approximation gives a reaction equation. Whatever struc-
tures were present in the area of interest at the start of the
short timescale are the reactants in the reaction equation, and
whatever structures were left over after the short timescale
are the products of the reaction equation. Thus the observa-
tion of symbols also gives a list of reaction equations. For a
new symbol to be observed, there must have been a process
taking place by which the symbol was formed. This process
is observed and approximated by the short timescale. This
gives a new symbol (or symbols), and a reaction creating the
symbol(s). Repeating this observation of the low-level sys-
tem for the whole duration of the long timescale gives a list
of high-level symbols and a list of reaction equations. This
is a high-level description of the system.

Conclusions and future work
Building AChems on multiple levels provides more flexi-
bility than using just one level. It may provide a way of
approaching difficult problems in the evolution of complex-
ity, such as the ‘major transitions in evolution’ [14]. This
paper presents some initial thoughts about moving between
levels, and some algorithms that allow systems to automati-
cally move between levels.

An algorithm is presented for moving down from a high-
level description of a system to a lower level of description.

Conservation of mass is needed in the high-level system in
order to infer information about the low-level system. The
algorithm can be used to determine if a system conserves
mass or not. If the system does conserve mass, then the
analysis can be performed. If it does not, then the algorithm
can be used to determine precisely which parts of the system
do not conserve mass. Since a high-level description is an
approximation of a low-level system, this algorithm gener-
ates a set of constraints that any low-level implementation
of the system must satisfy. Depending on the precise way in
which the low-level system is implemented, this either pro-
vides a way of generating an implementation, or it provides
a criterion that can be used to search for an implementation.

We will use this algorithm to investigate different low-
level implementations of AChems. We have developed
some implementations where the constraints generated by
this algorithm map directly into low-level descriptions. We
also have some sub-symbolic representations [5] where
these constraints can be used to search for sub-symbolic
chemistries that fulfil the high-level description.

Some high-level systems are ambiguous as to how they
operate on the low-level. This algorithm can be used on dif-
ferent disambiguations of the high-level system to give in-
formation about the system. We will build a tool to show
which parts of the system are most ambiguous, and which
are most constrained on the lower level. This information
may be helpful, particularly in guiding algorithms that are
searching for low-level implementations.

The algorithm introduces intermediate chemicals into the
system to disambiguate reactions. A consequence is that re-
actions happening in one step in the high-level system can
take multiple steps to happen in the low-level system. Inter-
mediates can interact with other parts of the system, disrupt-
ing the reaction. Things not possible in the high-level system
become possible by moving to a lower level of description.
So some richness is added into the system by a low-level
description, which may be useful to other processes that are
exploiting the AChem. For example, the extra richness can
provide more ways in which to evolve the reactions.

There is a further part to the ‘downwards’ algorithm,
which we will develop. As well as knowing how high-level
symbols are composed of low-level components, it would be
useful to know precisely how these low-level components
are connected together. If we consider the low-level com-
ponents connected to each other by ‘binding sites’, then we
can work this out. Each binding site has an affinity to each
other binding site, and each component can have many bind-
ing sites. Components binding to each other can cause new
binding sites on the components to become available, and
existing ones to become unavailable. After running the pre-
sented ‘downwards’ algorithm, we have enough information
to work out how many binding sites each low-level compo-
nent needs to have, and which sites must be able to bind with
which others. If the high-level reaction equations come with



reaction rates, then in principle we could carry these rates
through the algorithm and work out values for the affinities
on the binding sites (although this would require knowing
how the kinetics will be simulated on the lower level). The
concept of binding sites shows further richness gained by us-
ing a low-level description of a system. Rather than listing
which components must come together to form which high-
level symbols, we just list which binding sites each compo-
nent must possess. The high-level symbols come out from
the low-level system as a consequence of the binding sites
possessed by each component in the system. Creating a new
component only involves creating an arrangement of binding
sites (with affinities to sites already in the system). Adding a
new component to an existing system changes the high-level
structures the system can form.

An algorithm is also presented for moving up from a low-
level description to a high-level description. A high-level
description is described as an approximation of the low-
level description, and this approximation is made precise
by the description of two different timescales that consti-
tute this approximation. A short timescale is used to ap-
proximate the interactions and intermediate structures on the
lower level into symbols and reactions on the higher level.
A long timescale is chosen to give a period over which the
low-level system will be observed, and only those events oc-
curring within this time period will be approximated.

We will link the two algorithms presented here. One way
to do this is with a heuristic search algorithm operating on
two different levels. A search algorithm (such as an evolu-
tionary algorithm) is used to search for an AChem to solve a
particular problem. A common issue encountered when de-
signing heuristic search algorithms is which problem repre-
sentation to choose. This issue can be somewhat avoided by
representing solutions to the problem as two-level AChems.
The search algorithm can search through different high-level
representations of the AChem until it becomes stuck in a lo-
cal optimum. It can then switch to the low-level represen-
tation and search in this representation for a time (perhaps
until it becomes stuck in another local optimum). Now, it
can move back to the high-level representation. When it
does this it will not only find itself in a different part of
the high-level search space, but it may find itself in a dif-
ferent high-level search space altogether. Because the low-
level representation can easily create new high-level sym-
bols, moving down to the low-level description and running
the search will change the symbols that exist on the high-
level, and change the relationships of existing symbols to
each other. Likewise, running a search on the high level
and moving back down to the low level has the potential to
change the type of low-level representation that will be gen-
erated by the ‘downwards’ algorithm. This searching on two
levels effectively co-evolves two different problem represen-
tations. It is just one way in which the two tools provided by
this paper can be used.

Acknowledgements
The authors would like to thank the other members of the
Plazzmid project at the University of York for valuable com-
ments and ideas throughout the work: Ed Clark, Simon
Hickinbotham, Peter Young, Tim Clarke and Mungo Pay.

This work is part of the Plazzmid project, funded by EP-
SRC grant EP/F031033/1

References
[1] Anton Arkhipov, Peter L. Freddolino, and Klaus Schulten.

Stability and dynamics of virus capsids described by coarse-
grained modeling. Structure, 14(12):1767–1777, 2006.

[2] F. Baader and W. Snyder. Unification theory. In J. A. Robin-
son and A. Voronkov, editors, Handbook of Automated Rea-
soning, volume 1, pages 447–533. Elsevier Science, 2001.

[3] M. Conrad. Cross-scale interactions in biomolecular infor-
mation processing. Biosystems, 35(2-3):157–160, 1995.

[4] P. Dittrich, J. Ziegler, and W. Banzhaf. Artificial chemistries–
a review. Artificial Life, 7(3):225–275, 2001.

[5] Adam Faulconbridge, Susan Stepney, Julian Miller, and Leo
Caves. RBNWorld: Sub-symbolic artificial chemistry. In
ECAL 2009, Budapest, Hungary, September 2009. LNCS.
Springer, September 2009.

[6] Verena Fischer and Simon Hickinbotham. A metabolic
subsumption architecture for cooperative control of the e-
puck. In To appear in: International Workshop on Nature
Inspired Cooperative Strategies for Optimization (NICSO
2010). Springer, 2010.

[7] W. Fontana. Algorithmic chemistry. Artificial Life II, pages
159–210, 1992.

[8] Simon Hickinbotham, Edward Clark, Susan Stepney, Tim
Clarke, Adam Nellis, Mungo Pay, and Peter Young. Molec-
ular microprograms. In ECAL 2009, Budapest, Hungary,
September 2009. LNCS. Springer, September 2009.

[9] Simon Hickinbotham, Edward Clark, Susan Stepney, Tim
Clarke, and Peter Young. Gene regulation in a particle
metabolome. In CEC 2009, Trondheim, Norway, May 2009.
IEEE Press, May 2009.

[10] W. S. Hlavacek, J. R. Faeder, M. L. Blinov, R. G. Posner,
M. Hucka, and W. Fontana. Rules for modeling signal-
transduction systems. Science’s STKE : signal transduction
knowledge environment, 2006(344), 2006.

[11] P. J. Hoogerbrugge and J. M. V. A. Koelman. Simulating mi-
croscopic hydrodynamic phenomena with dissipative particle
dynamics. EPL (Europhysics Letters), 19(3):155–160, 1992.

[12] Tim J. Hutton. Evolvable self-replicating molecules in an arti-
ficial chemistry. Artificial Life, 8(4):341–356, October 2002.

[13] Duraid Madina, Naoaki Ono, and Takashi Ikegami. Cellular
evolution in a 3D lattice artificial chemistry. In Advances in
Artificial Life, pages 59–68. 2003.

[14] John Maynard Smith and Eörs Szathmáry. The major transi-
tions in evolution. Perseus Books, 1999.


