The Effect of Length on Key Fingerprint Verification Security \& Usability

Dan Turner, Siamak F. Shahandashti, Helen Petrie ePrint: arxiv.org/abs/2306.04574

Paper ePrint

The Context

Key Fingerprint Verification

Adversary in the Middle (AitM) Attacks

Detection of AitM Attacks

Key Fingerprint Comparison Task

- Ideally needs to be done in an automated way
- e.g. QR code scanning
- Only (fully) matching fingerprints will pass
- When not possible, needs to be done manually
- Nearly matching fingerprints may pass as well
- The focus of this work

Verify security code

$14827 \quad 72128 \quad 20960 \quad 73596$ $9687944651 \quad 77773 \quad 37576$

To verify that messages and calls with are end-to-end encrypted, scan this code on their device. You can also compare the number above instead. Learn more

Key Fingerprint Variations

- Format
- (Alpha)numeric, e.g. Signal / WhatsApp, Open PGP, SAS
- Words or sentences, e.g. Pretty Easy Privacy
- Graphical, e.g. ASCII art, snowflakes, unicorns
- Comparison mode, e.g. visual or auditory
- Length, e.g. 60 digits for Signal / WhatsApp, 2 words for SAS

The Study

Study Design

- Signal / WhatsApp numeric key fingerprints
- Conditions: 1, 2, 3 Line(s) corresponding to 20, 40, 60 digits
- Between participants: each does 1 length
- Types: Safe (matching), Adversarial (nearly matching, 1 chunk diff), Random
- Within participants: each does $12+4+4$ in random order

Tested Hypotheses

- $\mathbf{H (t \sim l})$: longer key \rightarrow longer comparison time
- 3 type-specific hypotheses for safe, adv., rand. fingerprints
- H(t~s): higher similarity \rightarrow longer comparison time
- 3 length-specific hypotheses for 1L, 2L, 3L fingerprints
- H(e~l): longer key \rightarrow more errors
- 2 hypotheses: false acceptance / rejection errors

The Results

Effect of Length on Comparison Time

- Longer key \rightarrow longer comparison time: broadly yes, except for Rand
- Kruskal-Wallis + Wilcoxon (Holm)
- Safe: significant diff 1L-2L-3L
- Adv: significant diff 1L-3L, 2L-3L
- Rand: no significant diff

Effect of Type on Comparison Time

- Higher similarity \rightarrow longer comparison time: emphatic yes
- Friedman + Nemenyi post hoc
- 1L, 2L, 3L: significant diff safe-adv-rand
- Strong evidence of 'short-circuit evaluation'

Effect of Length on False Rejection Rate

- Longer key \rightarrow more errors: Not really for FRE
- Kruskal-Wallis
- No significant diff b/w lengths
\rightarrow Users are quite efficient \& effective in recognising dissimilar fingerprints

\#errors	1L	2L	3L
0	92%	85%	80%
1	6%	9%	19%
$2-6$	$0-2 \%$	$0-2 \%$	$0-2 \%$
$7-12$	0%	0%	0%

Length	1L	2L	3L
Lower Limit	0.3%	1.6%	1.1%
Mean Rate	0.9%	2.7%	2.0%
Upper Limit	2.0%	4.3%	3.4%

Effect of Length on False Acceptance Rate

- Longer key \rightarrow more errors: broadly yes for FAE
- Kruskal-Wallis + Wilcoxon (Holm)
- Significant diff 1L-3L
\rightarrow Users are neither efficient nor effective in comparing highly similar long fingerprints

\#errors	1L	2L	3L
0	72%	55%	39%
1	15%	13%	15%
2	8%	9%	11%
3	0%	2%	4%
4	6%	22%	31%
Length	1L	2L	3L
Lower Limit	9\%	25 $\%$	37%
Mean Rate	$\mathbf{1 3 \%}$	31%	44%
Upper Limit	$\mathbf{1 9} \%$	38%	50%

The Security Implications

(Full) $2^{\text {nd }}$ Preimage Attack: Finding 2PI

(Full) $2^{\text {nd }}$ Preimage Attack: Overall Success

Near $2^{\text {nd }}$ Preimage Attack: Finding N2PI

Near $2^{\text {nd }}$ Preimage Attack: Overall Success

Implication of Results on Security

- For adversaries with lower computational budget, manual key fingerprint verification provides a lower security level than usually assumed

Thank you.

Siamak F. Shahandashti
cs.york.ac.uk/~siamak
UNIVERSITY
of York
© @ iamakFS

