The Effect of Length on Key Fingerprint Verification Security & Usability

Dan Turner, Siamak F. Shahandashti, Helen Petrie ePrint: arxiv.org/abs/2306.04574

Paper ePrint

The Context

Key Fingerprint Verification

Adversary in the Middle (AitM) Attacks

Detection of AitM Attacks

Key Fingerprint Comparison Task

- Ideally needs to be done in an *automated* way
 - e.g. QR code scanning
 - Only *(fully) matching* fingerprints will pass
- When not possible, needs to be done *manually*
 - Nearly matching fingerprints may pass as well
 - The focus of this work

Key Fingerprint Variations

- Format
 - (*Alpha*)numeric, e.g. Signal / WhatsApp, Open PGP, SAS
 - *Words* or *sentences*, e.g. Pretty Easy Privacy
 - *Graphical*, e.g. ASCII art, snowflakes, unicorns
- Comparison mode, e.g. visual or auditory
- Length, e.g. 60 digits for Signal / WhatsApp, 2 words for SAS

The Study

Study Design

- Signal / WhatsApp numeric key fingerprints
- *Conditions*: 1, 2, 3 Line(s) corresponding to 20, 40, 60 digits
 - Between participants: each does 1 length
- *Types*: Safe (matching), Adversarial (nearly matching, 1 chunk diff), Random
 - Within participants: each does 12+4+4 in random order

Tested Hypotheses

- **H(t~l)**: longer key → longer comparison time
 - 3 type-specific hypotheses for safe, adv., rand. fingerprints
- **H(t~s)**: higher similarity → longer comparison time
 - 3 length-specific hypotheses for 1L, 2L, 3L fingerprints
- **H(e~l)**: longer key \rightarrow more errors
 - 2 hypotheses: false acceptance / rejection errors

The Results

Effect of Length on Comparison Time

- Longer key → longer comparison time: broadly yes, except for Rand
- Kruskal–Wallis + Wilcoxon (Holm)
 - Safe: significant diff 1L–2L–3L
 - Adv: significant diff 1L–3L, 2L–3L
 - Rand: no significant diff

Effect of Type on Comparison Time

- Higher similarity → longer comparison time: emphatic yes
- Friedman + Nemenyi post hoc
 - 1L, 2L, 3L: significant diff safeadv-rand
- Strong evidence of 'short-circuit evaluation'

Effect of Length on False Rejection Rate

- Longer key → more errors: Not really for FRE
- Kruskal–Wallis
 - No significant diff b/w lengths

 Users are quite efficient & effective in recognising dissimilar fingerprints

#errors	1L	2L	3L
0	92%	85%	80%
1	6%	9%	19%
2–6	0–2%	0–2%	0–2%
7–12	0%	0%	0%

Length	1L	2L	3L
Lower Limit	0.3%	1.6%	1.1%
<mark>Mean Rate</mark>	<mark>0.9%</mark>	<mark>2.7%</mark>	<mark>2.0%</mark>
Upper Limit	2.0%	4.3%	3.4%

Effect of Length on False Acceptance Rate

- Longer key → more errors: broadly yes for FAE
- Kruskal–Wallis + Wilcoxon (Holm)
 - Significant diff 1L–3L
- Users are neither efficient nor effective in comparing highly similar long fingerprints

#errors	1L		2L		3L
0	72%		55%		39%
1	15%		13%		15%
2	8%			9%	11%
3	0%			2%	4%
4	6%		22%		31%
Length		1L		2L	3L
Lower Limit		9%		25%	37%
<mark>Mean Rate</mark>		<mark>13%</mark>		<mark>31%</mark>	<mark>44%</mark>
Upper Limit		19%		38%	50%

The Security Implications

(Full) 2nd Preimage Attack: Finding 2PI

(Full) 2nd Preimage Attack: Overall Success

19/23

Near 2nd Preimage Attack: Finding N2PI

Near 2nd Preimage Attack: Overall Success

Implication of Results on Security

 For adversaries with lower computational budget, manual key fingerprint verification provides a lower security level than usually assumed

Thank you.

Siamak F. Shahandashti
cs.york.ac.uk/~siamak

