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selL4

gFunctionaI Correctness [SOSP'09]

[ Integrity [ITP'11]

fZTimeIiness (known WCET) [RTSS'11,EuroSys’'12]
gTransIation Correctness [PLDI'13]
IZNon—interference [S&P'13]

gFast (258 cycle IPC roundtrip on 1GHz Cortex-A9)

[A Minimal TCB (~9000 SLoC)

[] Safety: specifically temporal properties.



Goals of this work il
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 Real-time scheduling support
- Temporal isolation (beyond total static partitions)
- Asymmetric temporal protection

- support for criticality mode changes

 Bounded resource sharing

across criticalities



Mechanisms

1.Scheduling contexts
2.Thread criticalities

3.Temporal exceptions
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seL4 design principles

- Minimality principle
- Fast

+ Possible to verify
— avoid concurrency
— avoid unnecessary complexity

— kernel should not require re-verification if
user-level changes

NICTA
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What is a capability?

- unforgeable access token

- stored in the c—space of an app

- invoked by user-level to perform an
action

- can be copied, moved between c-spaces



selL4 basics: sync endpoints
selL4 Call

Synchronous endpoints: essentially message ports,
which senders/waiters queue on until both are
present to receive a message
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seL4 basics: async endpoints

e selL4 Wait

Async endpoints (AE): essentially message ports,
which accumulate messages until a waiter is
present. Waiters queue until a message is present.



seL4 basics: async endpoints

interrupt
async message
kernel timer message

selL4 Wait

Async endpoints (AEP): essentially message
ports, which accumulate messages until a waiter is
present. Waiters queue until a message is present.

A bound async endpoint has a special 1:1
relationship with a thread — and only the bound
thread is allowed to wait a bound AEP
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Meet selL4: Summary

- capability based

 communication via endpoints

- all resources managed at user-level

- initial task gets capabilities to everything in
the system
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Resource kernels*

 Timeliness of resource access

 Efficient resource utilisation

- Enforcement & Protection

- Aeecesstomutiple reseoureebypes

* [Rajkumar et al. 2001]



Resource kernel mechanisms

- Admission
- Scheduling

Which mechanisms belong
- Enforcement in a microkernel?

- Accounting
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Scheduling Contexts
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+ Implements processor
“reservation”

) adaPtEd fFOm FIaSCO [Steinberg 2010]

- Upper bound

- No priority
- Rate=e/p
* Full or Partial

+ Only 1 per thread
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Full reservations

253 | 254

255
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Partial reservations

253

255

Scheduling contexts
act as sporadic servers
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Partial reservations
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Scheduling contexts
act as sporadic servers



Admission O‘
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- New control capability,
seL4_SchedControl.

- Controls population of
scheduling context
parameters.

- Must take into account
priorities
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Scheduling

Basic Rate Monotonic
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Scheduling
Low priority tasks in slack
0 1 2 3 253 | 254 | 255
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Time as a resource: summary ——

- scheduling contexts
— full or partial

— act as upper bounds
— disjoint from priority
- user—|level admission

— allows for mixed RT/RR scheduling

— not full flexibility of user-level scheduling
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This talk

3)Mode switch support



( )@
Task model

NICTA
while (1) { If job completion does
/* jOb release */ not occur before the
~ budget expires, send a
doJob(); ¥ temporal exception or

/* job completion */ £ rate-limit.

seL4_Wait(bep);

Bound async endpoint

% Where device interrupts,
async messages or kernel
timer trigger job release
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Criticality

- New thread field

 Range set at compile time

- seL4_SetCriticality

- invokes sched_control cap
- HI => LO is lazy

- LO => HI is immediate, and O(n)

€— O
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Criticality mode change

- Assumptions:
- infrequent (if they occur at all)

- short in duration

- Kernel provides ability to
- change params of excepting thread
- postpone all lower criticality threads

- alter priorities of threads



Asymmetric Protection

. Low Criticality - High Criticality

to

NICTA

O 1 2 3 252 | 253 | 254 | 255
ta ts t2 t1 ts

SchedControl| _Extend()

SchedControl SetCrltlcallty

g;ora

Exception



Asymmetric Protection

NICTA
. Low Criticality - High Criticality

0] 1 2 3 252 | 253 | 254 | 255
to ts t1 ts

~ “Restores criticality when
system isidle
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Criticality: Summary el

- Temporal exceptions

— optional (not required for rate-based threads)

— handler must have own budget

- New thread field: criticality

- New kernel invocation: set criticality

— although temporal exception handler can take
other actions
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Resource Sharing

selL4 Call selL4 Wait

\__/

selL4 ReplyWait

Thread Resource
Server



Implementation Complexity

NCP vs. PIP vs HLP vs PCP

Priority Ceiling
Protocol

Priority Inheritance
Protocol

Highest Lockers
Protocol

Non-preemptive Critical Sections

Priority Inversion Bound
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Resource Sharing

)

selL4_ReplyWait Resource
Server

Thread



esource Sharing

selL4 Call
% ‘sel.é/ReplywaitResource

Server

Thread



Implementation Complexity

NCP vs. PIP vs HLP vs PCP
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Priority Ceiling
Protocol

Priority Inheritance
Protocol

# Highest Lockers ™

Protocol

Non-preemptive Critical Sections

Priority Inversion Bound
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Active Servers (no temporal isolation)

selL4 Wait

Server
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Active Servers (no temporal isolation)
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é selL4 ReplyWait
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Active Servers (no temporal isolation) .l

()

seLé_Call

Server
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Scheduling context donation
NICTA

- selL4_Call

— where server is passive, donate scheduling context to server,
otherwise do nothing

— Must *trust* the server (use async for untrusted)
- seL4_ReplyWait
— donates it back

—reply cap represents a guarantee that the scheduling context will
be returned
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Scheduling context donation

selL4 Wait

Server
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Scheduling context donation

NICTA
é selL4 Call

Server




Scheduling context donation

)

Server
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Scheduling context donation

NICTA
% selL4 ReplyWait

Server




o

Summary: Resource sharing (so far) ol

- Scheduling context donation

— only on Synchronous |IPC with atomic send/
recv operation

- Active and passive servers

— Passive servers must always be trusted
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Budget Expiry

Server
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Budget Expiry

Server
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Alteratives for budget expiry el

+ Multithreaded servers
— COMPOSITE [Parmer 2010]

— possible with our impl.

- Bandwidth Inheritance + helping
— Fiasco [Steinberg et.al. 2010]

— we avoid this to avoid dependency trees/chains

- Temporal exceptions!
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Exception + Rollback

Server

Temporal fault
handler &
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Exception + Rollback
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Server

Temporal fault
A handler o



Criticality change

()

B (LO criticality) Server (HI criticality)

Temporal fault
A (Hl CrltlcahtY) handler
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Criticality change —

B (LO criticality) Server (HI criticality)

selL4_ SetCriticality

Temporal fault
A (HI criticality) handler 66



Exception + rollback
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Other actions possible on exception

— like emergency reservation
Rollback propagates to handle chains:

If a reply transfers an empty scheduling
context, another temporal exception is
raised

User must implement rollback

— middleware layer can do this

67



Summary: Resource sharing il

+ Multithreaded servers possible

- Budget expiry triggers temporal exceptions

— which can be used to rollback or help a server

- So does criticality change

— if lower criticality thread using server
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Endgame
NICTA

z

Temporal isolation, asymmetric protection,
safe bounded resource sharing achieved
through scheduling contexts, criticality,

temporal exceptions.
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