NICTA

Mixed-Criticality Support
in a High-Assurance,
General-Purpose
Microkernel

Anna Lyons, Gernot Heiser

UNSW Australia & NICTA

NICTA

NICTA

-

Could be OS guests

NICTA

Single core (for now)
Has memory .
management unit 3

NICTA

selL4

gFunctionaI Correctness [SOSP'09]

[Integrity [ITP'11]

fZTimeIiness (known WCET) [RTSS'11,EuroSys’'12]
gTransIation Correctness [PLDI'13]
IZNon—interference [S&P'13]

gFast (258 cycle IPC roundtrip on 1GHz Cortex-A9)

[A Minimal TCB (~9000 SLoC)

[] Safety: specifically temporal properties.

Goals of this work il
NICTA

 Real-time scheduling support
- Temporal isolation (beyond total static partitions)
- Asymmetric temporal protection

- support for criticality mode changes

 Bounded resource sharing

across criticalities

Mechanisms

1.Scheduling contexts
2.Thread criticalities

3.Temporal exceptions

NICTA

This talk

1)sel4 concepts

2

)

)Time as a resource

3)Mode switch support
)

4)Resource sharing

NICTA

1)sel4 concepts

)
2)Time as a resource
3)Mode switch support
)

4)Resource sharing

10

seL4 design principles

- Minimality principle
- Fast

+ Possible to verify
— avoid concurrency
— avoid unnecessary complexity

— kernel should not require re-verification if
user-level changes

NICTA

11

What is a capability?

- unforgeable access token

- stored in the c—space of an app

- invoked by user-level to perform an
action

- can be copied, moved between c-spaces

selL4 basics: sync endpoints
selL4 Call

Synchronous endpoints: essentially message ports,
which senders/waiters queue on until both are
present to receive a message

selL4 basics: sync endpoints
selL4 Call

selL4 Call

Synchronous endpoints: essentially message ports,
which senders/waiters queue on until both are
present to receive a message

selL4 basics: sync endpoints
selL4 Call

selL4 Call

selL4 Wait

Synchronous endpoints: essentially message ports,
which senders/waiters queue on until both are
present to receive a message

selL4 basics: sync endpoints

— >

selL4 Call

Synchronous endpoints: essentially message ports,
which senders/waiters queue on until both are
present to receive a message

selL4 basics: sync endpoints

— >

selL4 Call
seL4 ReplyWait

Synchronous endpoints: essentially message ports,
which senders/waiters queue on until both are
present to receive a message

selL4 basics: sync endpoints

selL4 Call
seL4 ReplyWait

Synchronous endpoints: essentially message ports,
which senders/waiters queue on until both are
present to receive a message

seL4 basics: async endpoints

e selL4 Wait

Async endpoints (AE): essentially message ports,
which accumulate messages until a waiter is
present. Waiters queue until a message is present.

seL4 basics: async endpoints

interrupt
async message
kernel timer message

selL4 Wait

Async endpoints (AEP): essentially message
ports, which accumulate messages until a waiter is
present. Waiters queue until a message is present.

A bound async endpoint has a special 1:1
relationship with a thread — and only the bound
thread is allowed to wait a bound AEP

seL4 Memory Model o
NICTA

|
}!! 21

seL4 Memory Model o
NICTA

|
}!! 22

Meet selL4: Summary

- capability based

 communication via endpoints

- all resources managed at user-level

- initial task gets capabilities to everything in
the system

NICTA

1)sel4 concepts

)
2)Time as a resource
3)Mode switch support
)

4)Resource sharing

24

Resource kernels*

 Timeliness of resource access

 Efficient resource utilisation

- Enforcement & Protection

- Aeecesstomutiple reseoureebypes

* [Rajkumar et al. 2001]

Resource kernel mechanisms

- Admission
- Scheduling

Which mechanisms belong
- Enforcement in a microkernel?

- Accounting

Resource kernel mechanisms

- Admissten- (policy)
- Scheduling
- Enforcement

- Accounting

Scheduling Contexts
NICTA

+ Implements processor
“reservation”

) adaPtEd fFOm FIaSCO [Steinberg 2010]

- Upper bound

- No priority
- Rate=e/p
* Full or Partial

+ Only 1 per thread

28

Full reservations

253 | 254

255

NICTA

29

Partial reservations

253

255

Scheduling contexts
act as sporadic servers

NICTA

30

Partial reservations

N

e
p t1

i
=

&——— Release Queue

253

254

255

Scheduling contexts
act as sporadic servers

Admission O‘

NICTA

- New control capability,
seL4_SchedControl.

- Controls population of
scheduling context
parameters.

- Must take into account
priorities

32

Scheduling

Basic Rate Monotonic

253

254

255

25%

40%

t1

10%

NICTA

33

Scheduling
Low priority tasks in slack
0 1 2 3 253 | 254 | 255
ts ts t2 ta

° O /
° L4)
. . !
. .
.) !
. .
. .
. .
\-\.

NICTA

34

e

Time as a resource: summary ——

- scheduling contexts
— full or partial

— act as upper bounds
— disjoint from priority
- user—|level admission

— allows for mixed RT/RR scheduling

— not full flexibility of user-level scheduling

35

This talk

3)Mode switch support

()@
Task model

NICTA
while (1) { If job completion does
/* jOb release */ not occur before the
~ budget expires, send a
doJob(); ¥ temporal exception or

/* job completion */ £ rate-limit.

seL4_Wait(bep);

Bound async endpoint

% Where device interrupts,
async messages or kernel
timer trigger job release

37

Criticality

- New thread field

 Range set at compile time

- seL4_SetCriticality

- invokes sched_control cap
- HI => LO is lazy

- LO => HI is immediate, and O(n)

€— O

+ [

Criticality mode change

- Assumptions:
- infrequent (if they occur at all)

- short in duration

- Kernel provides ability to
- change params of excepting thread
- postpone all lower criticality threads

- alter priorities of threads

Asymmetric Protection

. Low Criticality - High Criticality

to

NICTA

O 1 2 3 252 | 253 | 254 | 255
ta ts t2 t1 ts

SchedControl| _Extend()

SchedControl SetCrltlcallty

g;ora

Exception

Asymmetric Protection

NICTA
. Low Criticality - High Criticality

0] 1 2 3 252 | 253 | 254 | 255
to ts t1 ts

~ “Restores criticality when
system isidle

41

Oe

Criticality: Summary el

- Temporal exceptions

— optional (not required for rate-based threads)

— handler must have own budget

- New thread field: criticality

- New kernel invocation: set criticality

— although temporal exception handler can take
other actions

42

This talk

NICTA

1)selL4 concepts

2)Time as a resource

3)Mode switch support
)

4)Resource sharing

43

Resource Sharing

selL4 Call selL4 Wait

__/

selL4 ReplyWait

Thread Resource
Server

Implementation Complexity

NCP vs. PIP vs HLP vs PCP

Priority Ceiling
Protocol

Priority Inheritance
Protocol

Highest Lockers
Protocol

Non-preemptive Critical Sections

Priority Inversion Bound

Resource Sharing

selL4 Call selL4 Wait

__/

selL4 ReplyWait

Thread Resource
Server

Resource Sharing

)

selL4_ReplyWait Resource
Server

Thread

esource Sharing

selL4 Call
% ‘sel.é/ReplywaitResource

Server

Thread

Implementation Complexity

NCP vs. PIP vs HLP vs PCP

m——

: ‘." J / : "N
\ ¢ l A
\ | '

§) N J L8

Priority Ceiling
Protocol

Priority Inheritance
Protocol

Highest Lockers ™

Protocol

Non-preemptive Critical Sections

Priority Inversion Bound

I
\ /

\ '
- ~
/ \

I

Active Servers (no temporal isolation)

selL4 Wait

Server

NICTA

Active Servers (no temporal isolation)

selL4 Call

I
\ /

\ '
- ~
/ \

I

Server

Active Servers (no temporal isolation)

NICTA
é selL4 ReplyWait

Server

Active Servers (no temporal isolation) .l

()

seLé_Call

Server

Oe

Scheduling context donation
NICTA

- selL4_Call

— where server is passive, donate scheduling context to server,
otherwise do nothing

— Must *trust* the server (use async for untrusted)
- seL4_ReplyWait
— donates it back

—reply cap represents a guarantee that the scheduling context will
be returned

54

|
\ J
\ '
- ~
/ \
|

Scheduling context donation

selL4 Wait

Server

(J®

NICTA

55

. . @
Scheduling context donation

NICTA
é selL4 Call

Server

Scheduling context donation

)

Server

NICTA

57

. . (1O
Scheduling context donation

NICTA
% selL4 ReplyWait

Server

o

Summary: Resource sharing (so far) ol

- Scheduling context donation

— only on Synchronous |IPC with atomic send/
recv operation

- Active and passive servers

— Passive servers must always be trusted

59

Budget Expiry

Server

60

Budget Expiry

Server

61

Alteratives for budget expiry el

+ Multithreaded servers
— COMPOSITE [Parmer 2010]

— possible with our impl.

- Bandwidth Inheritance + helping
— Fiasco [Steinberg et.al. 2010]

— we avoid this to avoid dependency trees/chains

- Temporal exceptions!

62

Exception + Rollback

Server

Temporal fault
handler &

(J®

Exception + Rollback
NICTA

Server

Temporal fault
A handler o

Criticality change

()

B (LO criticality) Server (HI criticality)

Temporal fault
A (Hl CrltlcahtY) handler

f'-\\
- .
\]
-

Criticality change —

B (LO criticality) Server (HI criticality)

selL4_ SetCriticality

Temporal fault
A (HI criticality) handler 66

Exception + rollback
NICTA

Other actions possible on exception

— like emergency reservation
Rollback propagates to handle chains:

If a reply transfers an empty scheduling
context, another temporal exception is
raised

User must implement rollback

— middleware layer can do this

67

Summary: Resource sharing il

+ Multithreaded servers possible

- Budget expiry triggers temporal exceptions

— which can be used to rollback or help a server

- So does criticality change

— if lower criticality thread using server

68

Endgame
NICTA

z

Temporal isolation, asymmetric protection,
safe bounded resource sharing achieved
through scheduling contexts, criticality,

temporal exceptions.

69

References + Credits

References b <l

- B. Blackham, Y. Shi, S. Chattopadhyay, A. Roychoudhury and G. Heiser. Timing analysis of a
protected operating system kernel. In 32nd RTSS, pp. 339-348, Vienna, Austria, November,

2009.

- DO178B Standard. http://en.wikipedia.org/wiki/DO-178B.

- G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4: Formal verification of an OS
kernel. In 22nd SOSP, pages 207-220, Big Sky, MT, USA, Oct. 2009.

- A. K. Mok. Fundamental Design Problems of Distributed Systems for the Hard Real-Time
Environment. PhD thesis, 1983.

T .Murray, .D Matichuk, M. Brassil, P. Gammie, T. Bourke, S. Seefried, C. Lewis, X. Gao and G.
Klein. seL4: From general purpose to a proof of information flow enforcement. IEEE Symposium
on Security and Privacy, pp. 415-429, San Francisco, CA, May, 2013.

http://en.wikipedia.org/wiki/DO-178B
http://www.ssrg.nicta.com.au/people/?cn=Daniel+Matichuk
http://www.ssrg.nicta.com.au/people/?cn=Matthew+Brassil
http://www.ssrg.nicta.com.au/people/?cn=Peter+Gammie
http://www.ssrg.nicta.com.au/people/?cn=Timothy+Bourke
http://www.nicta.com.au/people/seefrieds
http://www.ssrg.nicta.com.au/people/?cn=Corey+Lewis
http://www.ssrg.nicta.com.au/people/?cn=Xin+Gao
http://www.ssrg.nicta.com.au/people/?cn=Gerwin+Klein

o
References

- Raj Rajkumar, Kanaka Juvva, Anastasio Molano, and Shuichi Oikawa. Resource kernels:
a resource- centric approach to real-time and multimedia systems. In Readings in
multimedia computing and networking, pages 476—490. Morgan Kaufmann Publishers
Inc., 2001. ISBN 1-55860-651-3. URL http://
portal.acm.org.viviena.library.unsw.edu.au/citation.cfm?id=383915.

- Udo Steinberg, Alexander Bottcher, and Bernhard Kauer. Timeslice donation in

component-based sys- tems. In Workshop on Operating System Platforms for
Embedded Real-Time Applications (OSPERT), Brussels, Belgium, 2010.

- Fiasco. http://os.inf.tu-dresden.de/fiasco/overview.html

- Gabriel Parmer. The case for thread migration: Predictable IPCin a customizable and
reliable OS. In Workshop on Operating System Platforms for Embedded Real-Time
Applications (OSPERT), Brussels, Belgium, July 2010.

http://os.inf.tu-dresden.de/fiasco/overview.html

Image + Font Credits

- o —— n
\ ¢ N
\l | { A

3 3 J 4

' 9 - ’ \

Fonts sourced from Font squirrel

All other images are in the public domain (mostly from openclipart)

http://www.fontsquirrel.com/

