
Real-Time Scheduling of Mixed-Criticality

Systems: What are the “X” Factors?

Risat Pathan

Chalmers University of Technology, Sweden

Workshop on Mixed Criticality Systems, Rome, Italy

December 2, 2014

Mixed-Criticality (MC) Systems

• Tasks have different criticalities

• Criticality specifies “importance” of a task

� Higher criticality => higher importance

� Correctly executing higher criticality tasks is more important

• What is correct execution?

�The functional output is right, i.e., 1+2=3

� The functional output is timely, i.e., deadline is met

The “X” Factors

• Correct execution of high-critical tasks can be

threatened at runtime by events (“X” factors)

• Examples of “X” factors for MC systems:

�WCET overrun (Steve Vestal, RTSS 2007)

� Difficulty in estimating WCET

�Occurrences of errors and the need for recovery

� Hardware problems, environmental effects, software bugs

This research

• Scheduling constrained-deadline sporadic tasks with

three constraints:

�Meeting hard deadlines

�Error recovery using time-redundant execution (called,

backups)

�Respecting criticality to facilitate certification

• An instance of a task is called a job that must

�generate the correct output, and

�meet its deadline

Error Model

• Task (Job) Errors

– wrong path, wrong output, etc.

– Why do we have errors?

• Errors are caused by faults

– Hardware Transient Faults

» temporary malfunctioning of the computing unit

» happen for a short time and then disappear (not

permanent)

– Software Bugs

» Bugs may remain undetected after testing

Error Recovery

• Hardware Transient Faults
�By re-execution

• Software Bugs
�Re-execution may not be effective (permanent error)

�By executing a diverse implementation of the same task

• Time-redundant backup: re-execution or diverse-
implementation execution

time

Bubble

Sort

Bubble

Sort

time

Heap

Sort

Primary and backup

have same WCET

Bubble

Sort

Bubble

Sort

Primary and backup may

have different WCET

Error Recovery

Time-redundant Backups:
re-execution, or
diverse-implementation execution

Tolerating multiple errors are considered
• the same job may be erroneous multiple times

• different jobs of the same or different tasks may be erroneous

Each task has one primary and several backups
• Backups are executed until it is detected to be non-erroneous

primary backup1 backup2primary backup1
Time

How errors are detected?

• Based on existing error detection mechanisms
– Examples

� HW based: watchdog processor, illegal opcode detection, etc.

� SW based: assertions, duplication and comparison

• Undetected errors have to be tolerated using space

redundancy (Not covered in this work)

Certification and Mixed-Criticality

Certification of MC Systems

• Certification is about assurance

�higher criticality=>higher assurance in meeting deadlines

• Different WCETs of the same task [Vestal,RTSS07]

� Higher assurance => larger WCET

� CLO and CHI where CLO
≤ CHI

time
CLO CHI-CLO

CHI
• Different numbers of errors in each interval ≤ Dmax

� Higher assurance => higher number of error recovery

� f and F where f ≤ F

X Factor

X Factor

f=1 F=3 Dmax=4

What does it mean by particular number errors in each interval ≤≤≤≤ Dmax?

Different numbers of errors in each interval ≤ Dmax

� f and F where f ≤ F

f=1 F=3 Dmax=4

What does it mean by particular number errors in each interval ≤≤≤≤ Dmax?

Different numbers of errors in each interval ≤ Dmax

� f and F where f ≤ F

f=1 F=3 Dmax=4

What does it mean by particular number errors in each interval ≤≤≤≤ Dmax?

Different numbers of errors in each interval ≤ Dmax

� f and F where f ≤ F

f=1 F=3 Dmax=4

What does it mean by particular number errors in each interval ≤≤≤≤ Dmax?

Different numbers of errors in each interval ≤ Dmax

� f and F where f ≤ F

Task Model

• Total n sporadic tasks

– Task τi ≡ (Li, Ci, Bi, Di, Ti)

�dual-criticality Li ∈∈∈∈ {LO, HI}

�Different WCETs of primary and backups of a task

� Primary: Ci = <Ci
LO , Ci

HI> where Ci
LO ≤ Ci

HI

� Backups: Bi = <B1, B2, . . . Bf, . . . BF>

• where B1 = <B1
LO , B1

HI> where B1
LO ≤ B1

HI

• where B2 = <B2
LO , B2

HI> where B2
LO ≤ B2

HI

.

.

• where BF = <BF
LO , BF

HI> where BF
LO ≤ BF

HI

� relative deadline ≤ period, i.e., Di ≤ Ti

Task Model

• Total n sporadic tasks

– Task τi ≡ (Li, Ci, Bi, Di, Ti)

�dual-criticality Li ∈∈∈∈ {LO, HI}

�Different WCETs of primary and backups of a task

� Primary: Ci = <Ci
LO , Ci

HI> where Ci
LO ≤ Ci

HI

� Backups: Bi = <B1, B2, . . . Bf, . . . BF>

• where B1 = <B1
LO , B1

HI> where B1
LO ≤ B1

HI

• where B2 = <B2
LO , B2

HI> where B2
LO ≤ B2

HI

.

.

• where BF = <BF
LO , BF

HI> where BF
LO ≤ BF

HI

� relative deadline ≤ period, i.e., Di ≤ Ti

• Tasks are given fixed priorities

– Primary and backups of a task have the same priority

– hp(i): the set of higher priority tasks of task τi

� Higher-priority and LO-Critical tasks

� Higher-priority and HI-Critical tasks

• Tasks are executed on uniprocessor

Scheduling Problem Statement

How to ensure that all the deadlines are met on

uniprocessors ?

�different freq. of errors for different assurance levels

�different WCETs of the primary and backups for different

assurance levels

Outline

• Task model

– Criticality Behaviors

• Scheduling Algorithm

– Schedulability analysis and test

• Evaluation

• Conclusion

Outline

• Task model

– Criticality Behaviors

• Scheduling Algorithm

– Schedulability analysis and test

• Evaluation

• Conclusion

Criticality behavior

• Different assumptions regarding the two X factors

� Assumptions that hold at runtime determines criticality behavior

• Exhibits LO-Crit behavior as long as

� LO-Crit assumptions regarding all X factors hold

• Switches to HI-Crit behavior when

� LO-Crit assumptions regarding at least one X factor does not hold

o Actual exec. time of some primary/backup exceeds CLO/ BLO , or

o The (f+1)th error is detected in an interval ≤ Dmax

• After criticality switches, the system exhibits HI-Crit

behavior
time

CLO CHI-CLO

CHI

Criticality behavior

• Different assumptions regarding the two X factors

� Assumptions that hold at runtime determines criticality behavior

• Exhibits LO-Crit behavior as long as

� LO-Crit assumptions regarding all X factors hold

• Switches to HI-Crit behavior when

� LO-Crit assumptions regarding at least one X factor does not hold

o Actual exec. time of some primary/backup exceeds CLO/ BLO , or

o The (f+1)th error is detected in an interval ≤ Dmax

• After criticality switches, the system exhibits HI-Crit

behavior

f=1 F=3 Dmax=4

Criticality behavior

• Different assumptions regarding the two X factors

� Assumptions that hold at runtime determines criticality behavior

• Exhibits LO-Crit behavior as long as

� LO-Crit assumptions regarding all X factors hold

• Switches to HI-Crit behavior when

� LO-Crit assumptions regarding at least one X factor does not hold

o Actual exec. time of some primary/backup exceeds CLO/ BLO , or

o The (f+1)th error is detected in an interval ≤ Dmax

• After criticality switches, the system exhibits HI-Crit

behavior

Both LO and HI-crit tasks executes

No task executes more than CLO/BLO

At most f=1 errors in an interval ≤≤≤≤ Dmax = 4

Only HI-crit tasks executes

Task executes at most CHI / BHI

At most F=3 errors in an

inteval ≤≤≤≤ Dmax = 4

LO-crit Behavior [0, 12) HI-crit Behavior [12, αααα)

Criticality behavior switches from LO to HI at t=12

f=1 F=3 Dmax=4

Criticality Behavior (X Factors = WCET, freq. of errors)

Some task does not signal

completion after executing

for CLO/BLO time units

CLO/BLO

Both LO and HI-crit tasks executes

No task executes more than CLO/BLO

At most f=1 errors in an interval ≤≤≤≤ Dmax = 4

Only HI-crit tasks executes

Task executes at most CHI / BHI

At most F=3 errors in an

inteval ≤≤≤≤ Dmax = 4

LO-crit Behavior [0, 12) HI-crit Behavior [12, αααα)

Criticality behavior switches from LO to HI at t=12

f=1 F=3 Dmax=4

Criticality Behavior (X Factors = WCET, freq. of errors)

At time t=12, the (f+1)th=2nd error

is detected in an interval ≤≤≤≤ Dmax=4

Outline

• Task model

– Criticality Behaviors

• Scheduling Algorithm

– Schedulability analysis and test

• Evaluation

• Conclusion

FTMC: Fault-Tolerant Mixed-Criticality Scheduling

FTMC scheduling is same as FP scheduling on uniprocessor

+ execute a backup if an error is detected

+ criticality-switch detection

� if the (f+1)th error is detected in an interval ≤ Dmax

� if some primary/backup executes ≥ CLO/BLO

+ drop all LO-crit tasks after switching

Outline

• Task model

– Criticality Behaviors

• Scheduling Algorithm

– Schedulability analysis and test

• Evaluation

• Conclusion

FTMC: Schedulability Analysis

• Correctness: The system is schedulable in all LO-

and HI-criticality behaviors.

� LO criticality: All (HI- and LO-critical) tasks meet their

deadlines in all LO-crit behaviors

� HI criticality: All HI-critical tasks meet their deadlines in

all HI-crit behaviors

FTMC: Schedulability Analysis

Response-time analysis for LO- and HI-crit

behaviors to find

Ri
LO : Response-time at LO-crit behavior

Ri
HI : Response-time at HI-crit behavior

Non-MC and Non-FT

Response-time analysis of task 	��:
� ← �� � � 	 �
��
�∈�����

��

Set of jobs of �� ∪ ����� during the busy period are

JobSet�t� � 	 !�,#, !�,$, … !�,	 &'��
�∈
(∪�� �

Non-MC and Non-FT

Response-time analysis of task 	��:
� ← �� � � 	 �
��
�∈�����

��

Set of jobs of �� ∪ ����� during the busy period are

JobSet�t� � 	 !�,#, !�,$, … !�,	 &'��
�∈
(∪�� �

If these jobs recover E errors, then what is the total
workload in the busy period?

Work(JobSet(t), E) =?

Li Ci
LO B1

LO B2
LO Ci

HI B1
HI B2

HI Di Ti

Example Task Set (F=2)

Primary

Li Ci
LO B1

LO B2
LO Ci

HI B1
HI B2

HI Di Ti

Example Task Set (F=2)

First

Backup

Li Ci
LO B1

LO B2
LO Ci

HI B1
HI B2

HI Di Ti

Example Task Set (F=2)

Second

Backup

Li Ci
LO B1

LO B2
LO Ci

HI B1
HI B2

HI Di Ti

Example Task Set (F=2)

Work({J}, E) = total exec. by job J to recover E errors

If J is a job of task �) and E=2, then

Work({JLO}, 2) = 3+3+3 = 9

Work({JHI}, 2) = 4+3+3 = 10

Work(JobSet(t), E)=?

Steps to Compute Ri
LO and Ri

HI

• Find Jobset(t): the jobs that are eligible to

execute in the busy period are determined.

• Characterize each job J as JLO or JHI.

• Workload is computed considering maximum

number of errors in the busy period.

• A recurrence is formulated to find the

response time.

Finding Ri
LO

Ri
LO: Schedulability Analysis

We compute the workload in the level-i busy period

Critical instant (Audsley et al. 1991) for sporadic tasks applies:

• when all tasks arrive simultaneously, and

• when jobs of the tasks arrive strictly periodically.

Both LO- and HI-Crit jobs are executed in LO-

criticality behavior and at most f errors can occur

Ri
LO: Schedulability Analysis

We compute the workload in the level-i busy period

Critical instant (Audsley et al. 1991) for sporadic tasks applies:

• when all tasks arrive simultaneously, and

• when jobs of the tasks arrive strictly periodically.

Both LO- and HI-Crit jobs are executed in LO-

criticality behavior and at most f errors can occur
*+,-./�/� � 	 !�,#, !�,$, … !�,	 &'��
�∈	
(∪�� �

Each of these jobs is characterized as JLOt ← Work(JobSet(t), f)

Finding Ri
HI

LO-crit tasks executes ONLY during LO-criticality behavior

HI-crit tasks executes during LO- and HI-criticality behavior

Ri
HI: Schedulability Analysis

X = set of LO-Crit jobs that execute in LO-Crit behavior

Y = set of HI-Crit jobs that execute in HI-Crit behavior

Sanjoy Baruah, Alan Burns, and Robert Davis. Response-time analysis for mixed criticality

systems. Proceedings of the IEEE Real-Time Systems Symposium (RTSS), 2011.

Z = set of HI-Crit jobs that execute in LO-Crit behavior

LO-crit tasks executes ONLY during LO-criticality behavior

HI-crit tasks executes during LO- and HI-criticality behavior

Ri
HI: Schedulability Analysis

X = set of LO-Crit jobs that execute in LO-Crit behavior

Y = set of HI-Crit jobs that execute in HI-Crit behavior

Sanjoy Baruah, Alan Burns, and Robert Davis. Response-time analysis for mixed criticality

systems. Proceedings of the IEEE Real-Time Systems Symposium (RTSS), 2011.

Z = set of HI-Crit jobs that execute in LO-Crit behavior

JobSet(t,s) = X Y Z

Ri
HI: Schedulability Analysis

Jobs in “JobSet(t,s)”” are executed in the busy period

where at most F errors can occur

Ri,s
HI is the solution of

Ri
HI= max { Ri,s

HI }

t ← Work(JobSet(t,s), F)

Audsley’s Optimal Priority Assignment

(OPA)

• Deadline-monotonic is not optimal for uniprocessor MC

system [Vestal, RTSS07]

How to assign the fixed-priorities for MC scheduling on

uniprocessor?

Priority Assignment

Audsley’ OPA algorithm

for each priority level k, lowest first

for each priority unassigned task τi

If Ri
HI ≤ Di and Ri

LO ≤ Di assuming higher priorities

for the other priority unassigned task, then

assign τi to priority k

break (continue outer loop)

return “unschedulable”

return “schedulable”

Evaluation

Schedulability Tests

Three tests are evaluated

• DM-FTMC: Response time tests with deadline-
monotonic priority assignment

• OPA-FTMC: Response time tests with OPA

• UBound test: Necessary Test
– This is an upper bound on the schedulable task sets by FTMC

algorithm.

Simulation Parameters

• Random mixed-criticality task sets are generated

� U : total utilization of a task set �∑�12/
�
� n : number of tasks in a task set

� f, F : Frequency of errors

� CF : CHI = CLO x CF

• Backups are same as the primary (i.e., re-excution)

Results

(n = 20, f = 0, F = 1, CF = 1) (n = 20, f = 1, F = 2, CF = 2)

No pessimism regarding WCET Pessimism regarding WCET and freq.

of errors

Conclusion

• FP scheduling of sporadic tasks on uniprocessor

� Real time, fault tolerance, and mixed criticality

• Priority assignment with Audsley’s OPA

• Applicable to more than two criticality levels
– Reference: Risat Mahmud Pathan, ''Fault-Tolerant and Real-Time Scheduling for

Mixed-Criticality Systems'', Real-Time Systems Journal, Vol. 50, Issue. 4, July 2014.

Future work: Apply it for multiprocessors, probabilistic analysis

What are the other X factors?

Thank You

Email: risat@chalmers.se

Risat Mahmud Pathan, ''Fault-Tolerant and Real-Time Scheduling for Mixed-
Criticality Systems'', Real-Time Systems Journal, Vol. 50, Issue. 4, July 2014.

