
Scheduling Mixed-Criticality Real-Time Tasks with Fault Tolerance

Jian (Denny) Lin1, Albert M. K. Cheng2, Douglas Steel1, Michael Yu-Chi Wu1

1Department of Management Information Systems, University of Houston - Clear Lake, Houston, TX 77058 USA
2Department of Computer Science, University of Houston, Houston, TX 77024 USA

Abstract - Enabling computer tasks with different levels of
criticality running on a common hardware platform has been
an increasingly important trend in the design of real-time and
embedded systems. On such systems, a real-time task may exhibit
different WCETs (Worst Case Execution Times) in different
criticality modes. It has been well-known that traditional real-
time scheduling methods are not applicable to ensure the timely
requirement of the mixed-criticality tasks. In this paper, we study
a problem of scheduling real-time, mixed-criticality tasks with
fault tolerance. An off-line algorithm is proposed to enhance
the performance of the system when it runs into a high-
criticality mode from a low-criticality mode. A novel on-line
slack-reclaiming algorithm is also proposed to recover from as
many faults as possible before the jobs’ deadline. Our simulations
show that an improvement of about 30% in performance can
be seen between our algorithm and a regular slack-reclaiming
method.

I. INTRODUCTION

THE integration of multiple functionalities on a single

hardware platform is an increasing trend in the design

of embedded systems with the consideration of reducing cost.

While the tasks running on these systems share resources they

do not share the same importance (criticality). Therefore, the

concept of mixed-criticality has risen. Some widely-discussed

cases about mixed-criticality are the application domains that

need to be certified correct by Certification Authorities (CA’s)

[1]. In these cases, different computer tasks performed on

the same system require different levels of assurance. This

difference probably produces different WCETs of the the

critical tasks estimated by the CA’s and the system designers.

The CA’s may be more concerned about some tasks’ assurance

than the system designers do. As a result, it brings issues to the

scheduling of real-time tasks with different levels of criticality

in a timely manner. It has been well-known that conventional

scheduling methods cannot satisfactorily address these issues.

Mixed-criticality systems recently become one of the re-

search focuses in the community of real-time and embedded

systems. For examples, Sanjoy Baruah et al. demonstrate the

intractability of determining whether a mixed-criticality sys-

tem can be scheduled to meet all its certification requirements,

and then two scheduling techniques are proposed to scheduling

such mixed-criticality systems [1]. De Niz et al. study the

criticality inversion problem and propose a new scheduling

scheme called zero-slack scheduling which can be used with

priority-based preemptive schedulers (e.g., RMS) [2]. Later,

2Supported by the National Science Foundation under Awards No. 0720856
and No. 1219082.

the work is extended to work with solutions for a distributed

system [3]. For solving the problems under a dynamic pri-

ority scheduler EDF (Earliest Deadline First), Baruah et al.
[4] propose an effective and efficient scheduling algorithm,

namely EDF-VD (virtual deadline), in which two different

deadlines are used for some tasks if they may exhibit two

different WCETs during the run-time. In order to guarantee the

timeliness of high-criticality tasks most of existing algorithms

completely sacrifice the executions of low-criticality tasks [1-

6]. This strategy is too conservative and not necessary in most

cases. Also, too many jobs abandoned can seriously degrade

the system’s performance or even cause service abrupt.

Real-time systems not only have temporal constraints to

meet, computation quality constraints are also clearly impor-

tant for a system with critical tasks. In a mixed-criticality

system, faults or errors may happen during tasks’ execution

which can either produce incorrect results or cause critical

tasks to miss deadlines, both of which may be catastrophic. It

has been shown that in a computer system transient faults

occur much more frequently than permanent faults do [7,

8]. Transient faults can be tolerated by adding redundancy

where a task will be re-executed if it completes with errors.

There is little work to study both fault-tolerance and mixed

criticality systems. In [14], the author studies the fixed-priority

schedulablity test condition for a mixed-criticality system. In

[15], Huang et al describes a method to convert the fault-

tolerant problem into a standard scheduling problem in a

mixed-criticality system.

In this work, we consider a problem that schedules a set

of real-time, fault-tolerant tasks in a mixed-criticality system

using EDF. Each task in the system is periodic and character-

ized by a 4-tuple of parameters: τi = (pi,Xi, ci(LO), ci(HI)).
Without loss of generality, all tasks are assumed to be active

at time 0. The pi is a period which is the length of the

interval between any two τi’s consecutive job releases and

also the relative deadline of the task. The Xi ∈ {LO,HI}
denotes the criticality of τi. A HI-criticality task τi may exhibit

two WCETs ci(LO) and ci(HI) during the run-time where

ci(HI) ≥ ci(LO). A LO-criticality task τi has only the

ci(LO) defined and its ci(HI) is defined as none. After a

system starts to run, all tasks have an infinite sequence of

jobs to execute. The jth job of τi is released at (j − 1)pi.

Initially, all HI-criticality and LO-criticality tasks in the system

are scheduled using their ci(LO)s and in this stage the system

is said to be in the LO-criticality mode. During the execution,

a HI-criticality task may signal that its execution time exceeds

its ci(LO). At this point, all HI-criticality tasks will assume

39

their ci(HI)s and the system will go into the HI-criticality

mode. In order to enhance the system’s reliability, the primary

and re-execution approach [9, 10] is used and a re-execution

may be performed after errors are detected at the completion

of the primary execution.

II. AN OFF-LINE ALGORITHM

In our work, we adopt similar notations as used in [4] for

utilization parameters for tasks. A general format is defined

as follows:

Uy
x (a) =

∑

a∈{pri,re}∧Xi=x

ci(y)

pi
(1)

The superscript and the subscript next to the U denote the

system mode and type of task, respectively. If with a, it

indicates that it is for primary execution or re-execution.

In [4], without a consideration of primary or re-execution,

a virtual deadline used for each HI-criticality task in the LO-

criticality mode is obtained off-line with a scaling factor x,

where the virtual relative deadline of the HI-criticality τi is

equal to x× pi. The x is a value defined as:

x ∈ [
ULO
HI

1− ULO
LO

,
1− UHI

HI

ULO
LO

] (2)

Any value in the range can be used for x. When a system

is signaled with the HI-criticality mode, all HI-criticality

tasks τi use their ci(HI) and all LO-criticality tasks are

abandoned immediately. If such a range is not found, for

example,
ULO

HI

1−ULO
LO

>
1−UHI

HI

ULO
LO

, the HI-criticality tasks cannot be

guaranteed to meet their deadline during the mode conversion.

The aspect of our work is different. We assume that the low-

criticality tasks are not trivial but the reliability of them can be

traded for schedulability. In our method, we not only assure the

primary execution and re-execution for all HI-criticality tasks,

but also maximize the executions of LO-criticality tasks. If

the resource is sufficient, the re-executions for LO-criticality

tasks are scheduled as well in order to enhance the overall

reliability.

In this section, we introduce an off-line algorithm to calcu-

late (maximize) the number of tasks, including HI- and LO-

criticality tasks, with the primary and re-executions reserved.

The system starts with every task having both primary and re-

executions reserved in the LO-criticality mode. HI-criticality

tasks are required to reserve their primary execution and re-

execution in HI-criticality modes to maintain high reliability.

Next, we try to reserve the primary executions then the re-

executions of LO-criticality tasks. During the HI-criticality

mode, the primary and re-executions of the HI-criticality tasks

have the equal importance and they must be reserved, but for

LO-criticality tasks the primary executions are reserved before

the re-executions. The re-executions of LO-criticality tasks are

reserved only after all other primary executions are reserved.

The order to reserve the executions is as follows: primary

and re-executions of HI-criticality tasks, primary execution

of LO-criticality tasks and then re-execution of LO criticality

tasks. For the problem to be non-trivial, we assume that the

re-executions cannot be guaranteed for all LO-criticality tasks

in the HI-criticality mode.

According to the schedulability test of EDF, for the system

schedulable in the LO-criticality mode with every task’s pri-

mary and re-execution reserved, the total utilization is at most

1:

ULO
HI (pri) + ULO

HI (re) + ULO
LO (pri) + ULO

LO (re) ≤ 1 (3)

During the execution, the system goes into the HI-criticality

mode if there is any HI-criticality task exceeding its c(LO).
We call the event as mode conversion. In a mode conversion,

all HI-criticality tasks must maintain their fault-tolerance and

both of their primary and re-execution will use their c(HI)
for the WCET. In order to walk through the mode conversion,

the x is calculated as in (2), where x × di is used for the

HI-criticality task’s relative deadline in LO-criticality mode. It

switches back to the original relative deadline while the system

goes into the HI-criticality mode. The following conditions

calculate the two boundaries in (2) for the scaling factor to

ensure that all HI-criticality tasks’ primary and re-execution

are reserved in the HI-criticality mode without missing their

deadlines:

x ≥ ULO
HI (pri) + ULO

HI (re)

1− ULO
LO (pri)− ULO

LO (re)
(4)

x ≤ 1− (UHI
HI (pri) + UHI

HI (re))

ULO
LO (pri) + ULO

LO (re)
(5)

An important observations in above inequalities is that there

is a room between these two boundaries so that it can be used

to keep some LO-criticality tasks’ executions in the system’s

HI-criticality mode. The significance of utilizing this room is

two-fold. First, having more executions of LO-criticality tasks

performed increases a system’s overall value and improves

the system’s performance. Second, when more tasks have a

re-execution reserved it makes the system more reliable and

predictable. With doing a small modification, the inequalities 4

and 5 can be re-written for including the reserved re-executions

for some LO-criticality tasks in the HI-criticality mode:

x ≥ ULO
HI (pri) + ULO

HI (re) + ULO
LO (pri)

′

1− ULO
LO (pri)′′ − ULO

LO (re)
(6)

x ≤ 1− (UHI
HI (pri) + UHI

HI (re) + ULO
LO (pri)

′
)

ULO
LO (pri)′′ + ULO

LO (re)
(7)

The ULO
LO (pri)

′
in inequality 6 and the ULO

LO (pri)
′′

in inequal-

ity 7 denote, of the LO-criticality tasks, the utilization for the

reserved primary execution and the utilization of the primary

execution not reserved, respectively. If the resource sufficiently

allows all LO-criticality tasks to have their primary executions

reserved, we can try to reserve more re-executions for LO-

criticality tasks.

x ≥ ULO
HI (pri) + ULO

HI (re) + ULO
LO (pri) + ULO

LO (re)
′

1− ULO
LO (re)′′

(8)

x ≤ 1− (UHI
HI (pri) + UHI

HI (re) + ULO
LO (pri) + ULO

LO (re)
′
)

ULO
LO (re)′′

(9)

40

The ULO
LO (re)

′
in inequality 8 and the ULO

LO (re)
′′

in inequality

9 denote, of the LO-criticality tasks, the utilization for the

reserved re-execution and the utilization of the re-execution

not reserved, respectively.

We notice that when an execution of a LO-criticality task is

moved from a denominator to a numerator, The gap between

the two boundaries is narrowed. A similarity can be found

between the problem and the bin-packing problem. Intuitively,

the smallest first approach is a good way to optimize the

solution. We demonstrate our solution in Algorithm 1 (Max.

Re-executions). In the input, U1 represents the numerator

of inequality 6 or 8, U2 represents the sub-tractor in the

numerator of inequality 7 or 9, and U3 is equal to the

remaining, total utilization for un-reserved executions. The

x1 and x2 are the left and right boundaries of x and when

the final boundaries are found we set x = x2. Utilizations

of LO-criticality tasks that are not reserved are sorted from

small to large as part of the input. The primary executions are

allocated for reservations before the re-executions. Line 8 and

Line 9 tell that before the loop starts if x2 < x1, the system is

not able to reserve all HI-criticality tasks’ primary executions

and re-executions. From Line 11 to Line 24, the loop adds

one primary execution of a LO-criticality execution a time,

from small to large, to the reserved ones. If all LO-criticality

primary executions can be reserved, it will try to reserve more

LO-criticality re-executions. It calculates x1 and x2 in each

iteration by using the updated utilizations. The x is returned

while the gap between x1 and x2 is minimized. If a system

is schedulable with the virtual deadlines, during LO-criticality

mode the value of x× di is assigned as the relative deadlines

to all HI-criticality tasks for both primary and re-executions,

and to all LO-criticality tasks for their reserved executions.

The executions from LO-criticality tasks that are not reserved,

use their original deadlines in the LO-criticality mode and are

abandoned or run in background in the HI-criticality mode.

Compared with using the approaches discarding all LO-

criticality tasks, Algorithm 1 not only guarantees the HI-

criticality tasks’ deadlines and fault-tolerance in both HI and

LO-criticality modes, some LO-criticality tasks’ executions are

also reserved if the resource is sufficient. The guarantee of

meeting the reserved executions’ deadlines during both criti-

cality modes and the mode conversion is proved in Theorem

1.

Theorem1: There is no deadline miss if it uses the x
returned by Algorithm 1 to calculate the virtual deadlines used

in LO-criticality mode for all reserved executions and discard

the un-reserved re-executions during the HI-criticality mode.

The proof is supported by two facts. The first one is the

mapping of our task set to the task set used in the proof in

[4] to support the validity using virtual deadlines. Algorithm

1 in fact makes the following executions’ behavior as HI-

criticality: primary and re-executions of HI-criticality tasks,

and reserved LO-criticality executions. By using the calculated

virtual deadlines, every task’s reserved execution does not miss

its deadline. The correctness directly follows the Theorem 1

and Theorem 2 in [4]. The second fact is that by using EDF,

any reduction of execution does not cause a deadline violation.

In our problem, if a primary execution completes correctly,

Input : τ , Γ, ξ, U1, U2, x1, x2;

Output: the scaling factor x;

1 initialization:

2 Γ = τHI(pri) ∪ τHI(re), ξ = τLO(pri) ∪ τLO(re)
3 U1 = ULO

HI (pri) + ULO
HI (re)

4 U2 = UHI
HI (pri) + UHI

HI (re)
5 U3 = ULO

LO (pri) + ULO
LO (re)

6 ξ is sorted from small to large using utilization for the

primary and re-executions, respectively. The primary

executions are ordered before the re-executions.

7 x1 = U1

1−U3
, x2 = 1−U2

U3
, x=x2;

8 if (x2 < x1) then
9 not schedulable;

10 else
11 while |ξ| > 1 do
12 Ui = the first execution’s utilization in ξ ;

13 U1 = U1 + Ui;

14 U2 = U2 + Ui;

15 U3 = U3 − Ui

16 x1 = U1

1−U3
, x2 = 1−U2

U3
;

17 if x1 ≤ x2 then
18 Γ = Γ ∪ τLO(Ui);
19 x = x2;

20 ξ = ξ − τLO(Ui);
21 else
22 return x;

23 end
24 end
25 return x;

26 end
Algorithm 1: Maximize Re-executions

its reserved re-execution is not performed. This is the same

as reducing the re-execution’s running time to be zero which

will not cause any deadline violation.

p X c(LO) c(HI) x dpri dre
τ1 30 HI 3 4.5 0.8 24 24

τ2 100 HI 5 12 0.8 80 80

τ3 200 LO 10 none 0.8 160 160

τ4 50 LO 3 none 0.8 40 50

τ5 50 LO 7 none 0.8 40 50

Table 1. Calculated relative deadlines of primary and

re-executions of a 5-tasks set

Table 1 gives an example of using Algorithm 1 to calculate

the virtual deadlines for a task set of 5 tasks. In the task set,

there are two HI-criticality tasks and three LO-criticality tasks.

It is not possible to schedule all tasks for guaranteeing both

of their primary and re-executions during the HI-criticality

mode because the total utilization is larger than 1. Instead of

discarding all LO-criticality tasks in the HI-criticality mode,

we can ensure all of the primary executions for all tasks

and the re-executions of τ1, τ2 and τ3. The calculated virtual

deadlines are shown in the table.

41

III. AN ON-LINE SLACK RECLAIMING ALGORITHM

The strategy of using re-executions to preserve the reliability

is relatively conservative. It is expected that most job instances

in a system do not produce errors and therefore the resource for

the reserved re-executions is wasted. Also, it is well adopted

that in most of the time a real-time task does not use up

its WCET. Clearly, slack is generated in these two cases.

When a fault is detected by a LO-criticality job without a

re-execution reserved, the slack may not be large enough to

re-execution. However, if we accept a small probability of a

sacrifice of the predictability, we may be able to borrow some

slack from a future execution to increase the amount of the

available slack at that time. Figure 1 shows an example of

Fig. 1. Borrowing another job’s future re-execution to the current re-execution

three tasks in the HI-criticality mode: τ1 is a HI-criticality task

with c1(HI) = 2.01, and τ2 and τ3 are two LO-criticality

tasks with the same c(LO) = 1. Both τ1 and τ2 have a

re-execution reserved. Assume that time t is a LCM (Least

Common Multiple) of the three tasks and their periods are 7,

8 and 7. So, for each task there is a job arriving at t. The HI-

criticality mode is assumed to be the mode at and after time t.
Now suppose that both the first jobs of τ1 and τ2 in the figure

have a fault detected at their completion. The left schedule

shows that the first job of τ3 will miss its deadline at time

t+7 if a re-execution is performed using the slack generated

from the no-operation of τ2’s re-execution. The right schedule

shows a possible solution that a future re-execution of τ2 can

be borrowed to re-execute the job of τ3 early. If the job of τ2
completes without errors, no impact is posed to it. Even if the

job of τ2 ends with an incorrect result due to a lack of the

re-execution, the consequence is not catastrophic because both

jobs are not HI-criticality. Considering the small likelihood of

a fault actually occurring, the idea behind this solution has

the potential to increase the overall reliability and system’s

performance.

Now, we are ready to present our on-line slack reclaiming

algorithm. When an additional re-execution not reserved is

needed to perform, the slack generated from the early comple-

tion of jobs (including no-operations of reserved re-executions)

and system idle time are firstly used because they are most

safe. A borrowing from the future is performed only if the

slack in the previous cases is not sufficient. The borrowing

only happens at a future re-execution of a LO-criticality task

because HI-criticality tasks require the highest level of fault-

tolerance. Algorithm 2 is based on the approach in [5, 6]

(CASH) and a modification to allow the borrowing of future

re-executions is applied.

1) Each task τi is associated with a server Si characterized

by a current budget bi and an ordered pair (qi, pi), where

qi is the maximum budget and pi is the period of the

server and the task. If a task has a re-execution statically

reserved, qi = 2× ci; otherwise, qi = ci.
2) When the system in the LO-criticality mode, the ci for a

HI-criticality task is the LO one, and the pi is equal to its

virtual relative deadline. If a mode conversion occurs, all

HI-criticality tasks will use their HI-criticality execution

time for ci and their original relative deadline as pi.
3) At each time (k − 1) × pi, k ∈ N

+, the server budget

bi is recharged at the maximum value qi and the new

deadline of the server is di,k = k × pi. The τi,k with a

total execution time equal to bi is inserted into a waiting

queue, and scheduled using the server’s deadline.

4) A server Si is said to be active at time t if there are

jobs associated with it pending; otherwise, it is said to

be idle.

5) There is a slack queue such as the one used in [11].

Whenever τi,k is scheduled for execution, it always uses

the slack with the earliest deadline such that dq ≤ di,k.

Otherwise, its own budget bi is used. When τi,k is

executed, the slack in the slack queue or the server

budget is decreased by the same amount. When a slack

capacity in the queue becomes zero, it is removed from

the queue.

6) When a fault of a completion of τi,k’s primary execution

is detected at t, the total execution time of τi,k is

increased by ci.
7) When the server Si is active and bi becomes zero at

t, it finds the first LO-criticality job with an execution

reserved in the queue which has not finished its primary

execution (if any). Then, do the following:

a) The job’s server donates a budget of its re-

execution to Si,

b) Si’s deadline is set to dd − c
′
d, where dd is the

deadline of the donating server of the job and c
′
d is

the remaining primary execution time of the server

from the donating task.

If no such LO-criticality jobs in the waiting queue exist,

the re-execution of τi,k only runs while the system

becomes idle.

8) When a job’s deadline is reached, even though it has

not been finished yet, the job is terminated and its new

instance in the next interval starts as in step 3.

9) When a job finishes or is terminated, the residual budget

of its server, if any, is inserted into the slack queue using

its server’s deadline.

10) Whenever the system becomes idle for an interval of

time, the slack with the earliest deadline, if any, in the

slack queue is decreased by the same amount of time

until the queue becomes empty.

Algorithm 2: CBS-FT (CBS-Fault Tolerance)

The step 7 states how the server Si borrows and uses a

42

capacity of time from a donating server by setting a new

deadline, dd− c
′
d, which is the latest time to use that capacity.

We restrict to use our on-line algorithms in the cases where

all LO-criticality tasks have their primary executions reserved.

Otherwise, we just execute the un-reserved executions using

the regular slack.

We use the same example in Figure 1 to explain the process.

At time t+5.02, a fault is detected for τ3 and another WCET

(1.0) is added to the execution time requirement. At this point

S3’s server budget is equal to zero and it finds S2 from the

waiting queue. S2 donates a capacity of time of 1.0 to S3 so

that now b3 = 1 and b2 = 1. S3’s new deadline is set to be t+8-

1=t+7 so τ3 is scheduled before τ2 and the re-execution of τ3
completes in time. Later, τ2 completes its primary execution

correctly and the budget for its reserved re-execution is not

wasted. In this case, all tasks finally complete with the correct

results.

IV. PERFOMANCE AND DISCUSSIONS

In this section, we perform simulations to evaluate the

performance of our off-line Max. Re-executions and on-line

CBS-FT algorithm. For the algorithm Max. Re-execution, each

time a task set of ten periodic tasks is randomly generated. The

total utilization of the task set is larger than 1.0 so that not all

tasks have their primary and re-executions reserved. In these

ten tasks, four are HI-criticality and the other six are LO-

criticality. We apply the off-line Max. Re-execution algorithm

to the task set so that the reserved executions for the LO-

criticality tasks can be maximized. We perform this experiment

100 times and each time the number of reserved primary

and re-execution for the LO-criticality tasks are recorded. The

results are shown as in Figure 2 and Figure 3. It can be seen

that instead of discarding the executions of all LO-criticality

tasks, we can nicely reserve a great number of their primary

executions. The average is 4.26 of 6 LO-criticality tasks. Since

we reserve a re-execution only if all primary executions of

the LO-criticality tasks are reserved, the average number of

the reserved re-execution is relatively small as 1.32 task per 6

tasks. Despite, there are about 40% of the cases in which at

least one LO-criticality task becomes fault-tolerant during the

HI-criticality mode.

While all primary executions are reserved, we can use the

borrow from future technique as implemented in Algorithm

2. A task set of five periodic tasks is generated randomly

and the task set is selected if all tasks have their primary

execution reserved. Among the five tasks, two are randomly

selected as HI-criticality tasks and the rest are LO-criticality

tasks. Algorithm 1 is used to determine which re-executions

are reserved. A valid test case used to evaluate the Algorithm

2 should contain at least one LO-criticality task with a re-

execution reserved. The tasks’ periods range from 30 to 200

and they are scheduled within an interval of one million time

units. Within that interval each time the total number of job

instances generated is expected between 60,000 to 100,000. A

fault occurrence rate between 0.05 and 0.5 is used to control

whether or not a job completes with a fault in its primary

execution. A fault is recorded if the job’s re-execution does

Fig. 2. The Number of Reserved Primary Executions using Algorithm 1

Fig. 3. The Number of Reserved Re-Executions using Algorithm 1

not successfully complete. For each experiment, we perform

it 10 times using the same parameters and the average is used

for our results.

In the experiments, the fault rate has a big impact to our

results and another factor is the lower bound of each job’s

actual execution time. The smaller the fault occurrence rate/the

lower bound of the actual execution times, the larger amount

of regular slack that can be used to recover faults and the lower

risk of missing deadline for the jobs lending their re-execution

slack. We investigate the effects of these two factors in our

experiments and the results are shown in Table 2 and Table 3.

In Table 2, each row is a set of data for a specific fault rate.

The data compares of a slack reclaiming method using the

regular slack only (no borrow from future) and our CBS-FT

algorithm. The number of final faults are recorded when these

two approaches are used. The percentages of faults recovery

are also calculated. It can be seen that the CBS-FT with the

borrowing of future slack always outperforms the approach

using regular slack only. If we compare the number of faults

recorded, an improvement of about 30% in performance can

43

Fault Rate Faults in Primary
Execution

Faults Recorded
(Regular Slack)

Faults Recovered
(Regular Slack)

Faults Recorded
(CBS-FT)

Faults Recovered
(CBS-FT)

Faults on Jobs w/ Re-execution
Originally Reserved

0.05 4,379 1,178 73% 843 81% 0.00%
0.2 17,647 4,989 72% 3,611 80% 0.14%
0.3 26,554 7,944 70% 5,484 79% 0.5%
0.4 35,324 10,905 69% 7,685 78% 1.42%
0.5 43,832 14,074 68% 9,868 77% 2.95%

Table 2. Experimental results based on the fault occurrence rate (lower bound of actual execution times is 1.0)

Execution
Times’ Range

Faults in Pri-
mary Execution

Faults Recorded
(Regular Slack)

Faults Recovered
(Regular Slack)

Faults Recorded
(CBS-FT)

Faults Recovered
(CBS-FT)

Faults on Jobs w/ Re-execution
Originally Reserved

0.9 - 1.0 43,298 13,935 68% 9,715 78% 2.20%
0.8 - 1.0 44,021 13,401 70% 9,366 79% 0.4%
0.7 - 1.0 43,589 11,887 73% 8,319 81% 0.06%
0.6 - 1.0 43,420 10,816 75% 7,607 82% 0.00%
0.5 - 1.0 43,489 9,922 77% 7,022 84% 0.00%
0.2 - 1.0 44,019 5,291 88% 3,828 91% 0.00%

Table 3. Experimental results based on the lower bound of actual execution times of jobs (fault-rate = 0.5)

be seen by using our CBS-FT.

With using our algorithm, it is possible that a LO-criticality

task originally having its re-execution reserved violates its

deadline because it lends its budget to another task to recover

from fault. The last column in the table shows the percentages

of the faults caused by this scenario. As we explained it earlier,

since later jobs have a bigger chance of not executing the re-

execution or using the regular slack generated later, a borrow-

ing of slack from future re-execution does not significantly

degrade the overall performance a lot. While the fault rate is

small, nearly no lending jobs miss their deadline for recovering

from their faults. Even if the fault rate is as high as 0.5, the

number of faults on the jobs with the re-execution originally

reserved is relatively small so that the system’s performance

is well maintained. Table 3’s results are similar, based on

the lower bounds of the actual execution times. The results

are obtained by using a fixed fault occurrence rate of 0.5. A

specific range that represents the lower bound of the actual

execution time is used in each set. For example, 0.5 - 1.0

means that the actual execution time is between 50% and

100% of the WCET, using an even distribution. While tasks

are more likely to use less time for execution, more faults

can be recovered by using both approaches but our CBS-FT

always does the job better. Also, while the lower bound of the

actual execution time becomes lower and lower, the difference

of the fault recovery rate between the two approaches becomes

smaller and smaller. This is because when the jobs complete

earlier, their slack can be used by other jobs earlier. While

more jobs use the regular slack to recover faults, fewer jobs

need to borrow slack from the future re-executions.

V. DISCUSSION AND SUMMARY

This paper studies a novel problem of scheduling a set

of mixed-criticality, real-time tasks and considering the fault-

tolerance issue. Two algorithms are proposed. The static

algorithm works for maximizing the reserved executions of

the LO-criticality tasks including their primary and back-

up executions. The on-line algorithm improves the regular

approach by exploiting a technique to borrow slack from

future executions. The evaluation results show that both of

our algorithms significantly improve the performance. For the

sake of simplicity, we assume that the system has two levels

of criticality but the results can be generally expanded to have

multiple levels. Also, we assume that using one re-execution

sufficiently satisfies the requirement of fault-tolerance. How to

handle with multiple number of faults will become the target

to extend this paper. Finally, another common technique used

in fault-tolerance is checkpointing. It will be an interesting

problem how to use checkpointing in mixed-criticality systems

for fault-tolerance.

REFERENCES

[1] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
N. Megow and L. Stougie, Scheduling Real-Time Mixed-Criticality Jobs,
IEEE Transactions on Computers, Vol. 61, No. 8, August 2012.

[2] D. de Niz, K. Lakshmanan, and R. Rajkumar, On the Scheduling of Mixed-
Criticality Real-Time Task Sets, in RTSS, pages 291-300, 2009.

[3] K. Lakshmanan, D. de Niz, R. Rajkumar, and G. Moreno, Resource
Allocation in Distributed Mixed-Criticality Cyber-Physical Systems, in
ICDCS pages 169178, 2010.

[4] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
S. van der Ster and L. Stougie, The Preemptive Uniprocessor Scheduling
of Mixed-Criticality Implicit-Deadline Sporadic Tas Systems, in ECRTS,
pages 147-155, 2008.

[5] S. Baruah, H. Li, and L. Stougie, Towards the design of certifiable mixed-
criticality systems, In RTAS, pages 13-22, 2010.

[6] F. Santy. L. George, P. Thierry, and J. Goossens, Relaxing mixedcriticality
scheduling strictness for task sets scheduled with fp. In ECRTS, pages
155-165, 2012.

[7] X. Castillo, S.R. McConnel, and D.P. Siewiorek, Derivation and Cal-
iberation of a Transient Error Reliability Model, IEEE Transactions on
Computers, Vol. 31, No. 7, 1982.

[8] R.K. Iyer and D.J. Rossetti, A Measurement-Based Model for Workload
Dependence of CPU Errors, IEEE Transactions on Computers, Vol. 35,
No. 6, 1986.

[9] S. Ghosh, R. Melhem and D. Mosse, Fault-tolerant scheduling on a hard
real-time multiprocessor system, in IEEE Parallel Processing Symposium,
Page 775-782, 1994.

[10] R. Al-Omari, A. K. Somani, and G. Manimaran, Efficient Overloading
Techniques for Primary-backup Scheduling in Real-Time Systems, in
Journal of Parallel Distributed Computing, Vol. 64, Issue 5, 2004.

[11] M. Caccamo, G. Buttazzo, and L. Sha, Capacity Sharing for Overrun
Control, in RTSS, pages 295-304, 2000.

[12] C. Lin, and S. Brandt, Improving Soft Real-Time Performance Through
Better Slack Reclaiming, in RTSS, pages 410-421, 2005.

[13] C. L. Liu and J. Layland, Scheduling algorithms for multiprogramming
in a hard real-time environment, in Journal of the ACM, Vol 20, Issue 1,
Pages 4661.

[14] R. M. Pathan, Fault-tolerant and real-time scheduling for mixed-
criticality systems, in Real-Time Systems, Vol 50, Issue 4, pages 509-547.

[15] P. Huang, H. Yang and L. Thiele, On the Scheduling of Fault-Tolerant
Mixed-Criticality Systems, in DAC, Pages 1-6, 2014.

44

