
Incorporating The Notion of Importance into
Mixed Criticality Systems

Tom Fleming
Department of Computer Science,

University of York, UK.
Email: tdf506@york.ac.uk

Alan Burns
Department of Computer Science,

University of York, UK.
Email: alan.burns@york.ac.uk

Abstract—Mixed criticality systems offer the opportunity to
integrate system components with different levels of assurance
that previously may have been placed on different nodes. While
the vast majority of mixed criticality work features a HI and a
LO criticality level, LO criticality tasks should not be mistaken
for tasks with little value. Such tasks might contain mission
critical functionality and are still vital for the correct and
efficient operation of the system. A large portion of earlier
work immediately suspends all LO criticality functionality upon
a criticality change. It is clear that suspending tasks at all is
highly undesirable, let alone all tasks of a single criticality level
at the same time. In this work we consider this issue, we propose
a scheme to maintain the operation of lower criticality tasks
for as long as possible, even when the system is executing in a
higher mode. We introduce the notion of importance as a means
of deciding which tasks are suspended first. This is done with
the aim of allowing the system designer to make these decisions
and have greater control over the way their system degrades.
We conclude that by using essentially the same analysis and
functionality that facilitates multiple criticality levels we are able
to provide improved lower criticality performance.

I. INTRODUCTION

The area of Mixed Criticality Systems builds upon an
increasing desire to consolidate functionality of different
criticality levels onto one platform. This is driven further
by the development of more powerful hardware and pressure
from industrial sectors, such as aerospace and automotive.
A system that consolidates its functionality onto one platform
looks to save space, power, weight and reduce hardware costs.
Such systems must seek to satisfy two properties, efficient
utilisation and isolation of high integrity tasks. Systems may
be subject to certification against safety standards such as
IEC 61508 or DO-178B, therefore the challenge is providing
a means of producing a certifiable system with high overall
utilisation.

The initial mixed criticality model proposed by Vestal [11]
and used by others such as [3] has a strict notion of a
criticality change. A dual criticality system begins executing
in the LO criticality mode, if any HI criticality tasks overruns
its LO criticality Worst Case Execution Time (WCET) then a
criticality change occurs. LO criticality tasks are suspended
(although active jobs are allowed to complete), HI criticality
tasks are allowed to run to their maximum HI WCET. It is
becoming increasingly apparent that the original notion of
completely dropping all LO criticality tasks when a criticality
change occurs is unacceptable. Although a task might be
considered LO criticality, it might still contain mission critical
functionality, as such these tasks should not be suspended un-
less absolutely necessary. It is also clear that simply dropping

LO criticality tasks provides the system designer with little
control over how their system degrades in the event of an
overrun.

The work presented here seeks to address both the issue
of immediately dropping all LO tasks and the lack of control
over system degradation during overload. This is done by
introducing the notion of importance, I . Importance levels
are assigned to all tasks except those at the highest criticality
level. Importance provides a greater degree of control and
granularity over how a system degrades. This controlled
degradation is facilitated by a more realistic view on the
behaviour of a task during an overrun. When a task overruns
its LO criticality WCET, it is unlikely that it will execute to
its HI WCET. It is more likely that such a task might only
overrun by a small margin. Rather than immediately dropping
all LO criticality tasks our approach seeks to only drop tasks
when absolutely required. Control over this degradation is
given back to the system designer as the order in which tasks
are dropped is determined by the assignment of importance
(least important tasks are dropped first). We extend this
further by considering groups of tasks as a single application.
In this case applications are assigned an importance value,
applications are dropped according to importance rather than
individual tasks. We show the effectiveness of this technique
via experimental results on randomly generated sets of tasks.

The remainder of this document is structured as follows:
Section II covers related work, Section III introduces and
describes Importance, Section IV evaluates the technique via
experimental results and Section V provides some concluding
remarks.

II. RELATED WORK

In this section we consider related work where the primary
focus is investigating the possible use of existing system slack
to improve the level of service provided to LO criticality
tasks.

Santy et al. [8] consider situations where LO criticality
tasks do not need to be dropped during a criticality change.
They showed that some slack often exists before any LO
criticality task must be suspended. This period of slack is
known as the ‘allowance’. Allowance is shared across all HI
criticality tasks, if it is used up LO criticality tasks must be
suspended. Their work is based on the observations made
about a previously developed technique OCBP [2], they claim
that: it is never necessary to drop jobs that have a lower
criticality but a higher priority than the current level. Although
this assumption seems counter-intuitive, it must be noted

33



that OCBP is an older technique which considers a finite
set of jobs where ‘no job is allowed to execute for more
than its WCET at is own specified criticality’[4]. In short the
schedulability test considers all jobs executing in each level,
jobs may execute up to their own Cj(Lj) or their Cj(Li)
where Cj is the WCET and Lj is the criticality level of task
j. They use sensitivity analysis to calculate the allowance
(slack) available for HI criticality tasks. On top of this, the
possibility of returning the system to the LO criticality mode
is considered. The system looks for a level-� (where � is the
criticality level) idle time, a time where no jobs of at least
criticality level � are waiting to execute. They use this point as
the time where the criticality of the system may be reduced.

Su and Zhu [9] consider an Earliest Deadline First based
technique ER-EDF (Early Release - EDF). This technique
seeks to allow LO criticality tasks to release earlier than
their maximum period if there is slack available from the HI
criticality tasks. This work is based upon an Elastic Mixed
Criticality task model which allows for variable periods from
a desired Ti to a maximum Tmax

i . The minimum service
requirement for LO tasks can be determined by its largest
period, LO tasks may execute more frequently if there is no
impact on HI criticality tasks. They evaluate their work by
assuming reductions of 2 or 5 times to LO criticality periods.
The performance of ER-EDF is compared against EDV-VD
and is shown to have improved performance. Su et al. [10]
extended this work to a multi-core platform.

Both of these techniques represent an attempt to provide
some level of service for LO criticality tasks when a system
enters the HI mode. Our work goes one step further, as well
as considering the potential of using slack to schedule all LO
tasks if the overrun is small we also consider the way and
order tasks are dropped during a more severe overload.

III. IMPORTANCE

In this section we will introduce and expand on the notion
of importance. We use an adaptation of the standard system
model initially defined in [11]. A system constitutes a finite
set of applications K. Each of these applications is assigned
a criticality level, L (designated by the system designer) and
consists of a finite set of sporadic tasks1. Each task, τi, is

defined as τi = {−→Ci, Ti, Di, Li} where
−→
Ci is a vector of

WCETs (one for each criticality), Ti is the period, Di is the
deadline and Li is the criticality level. Each task gives rise
to an unbounded series of jobs. Additionally we consider Ii
as the importance of a LO criticality τi. Importance might
also be assigned to LO criticality applications, which in turn
applies this importance level to a group of tasks. In this work
we constrain ourselves to consider only criticality dependent
WCETs and dual criticality systems with Ci(LO) ≤ Ci(HI).

In this work we group sets of tasks at the same criticality
level into applications. Applications are designed to better
represent a more realistic system model where a group of
tasks contribute to a single application. In this case if one
task of an application must be suspended, then all other
tasks associated with the application must also be suspended.
Applications are assigned an importance value, rather than
each task individually. It is worth noting that although tasks

1All tasks within one application are of the same criticality level.

within an application are of the same criticality, priorities may
be interleaved between applications and criticality levels. In
the description and examples presented below we consider the
case of systems composing of tasks rather than applications.
This is to allow for simpler examples that show more clearly
the effect of importance.

A. Overview

This work introduces the notion of importance, each task
within the LO criticality level2 is assigned an importance
value, this provides an order in which tasks might be
suspended during an overload. The purpose of this is to
provide the designer of the system with more control over
the graceful degradation of their system during an overrun.
Whereas criticality levels typically involve the assignment of
a SIL (Safety Integrity Level) or equivalent, importance is
assigned according to how the designer wishes the system to
degrade. The difference between criticality and importance is
discussed3 in [6] which considers the properties of a criticality
change compared to other mode changes. As mentioned
above, the typical response to a criticality change is to drop
all tasks of a lower criticality. By assigning importance we
suspend tasks in order, lowest importance first. This is done
only when the HI criticality overrun is severe enough to
warrant the suspension of a task. If the overrun is not severe
and there is sufficient slack in the system, it is possible that
the system might move into the HI criticality mode, while
maintaining all of its LO criticality tasks. As soon as an
overrun reaches the point in which a LO criticality task must
be dropped, the task with the lowest importance is suspended.
Importance provides an extra level of granularity within a
level of criticality. The key difference between these two
assignments is that criticality is typically assigned due to
certification requirements, whereas levels of importance are
decided by the system designer. We are using ‘importance’
as an ordinal scale [7] which allows questions such as ‘is
application A more important than application B?’ to be
answered. We do not extend the notion to an interval or
stronger scale that would allow an answer to the following
question to be used at run-time: ‘Is application A and B more
important than application C?’

Sensitivity analysis is used to determine the severity of
the overrun required to drop a particular level of importance.
Such analysis begins by checking if the system has any
initial slack. It seeks to find a point during the HI criticality
overrun at which the system is unschedulable and such a LO
criticality task must be dropped. Once a point is found at
which a task must be dropped, that point is recorded and the
analysis begins to search for the next point by increasing the
severity of the overrun. This process is repeated until a point
is recorded at each time a LO criticality task must be dropped.
It is possible that not all LO criticality tasks will be dropped,
this depends on the properties of a task set, in particular its HI
criticality utilisation. During runtime if a HI criticality task
overruns its LO WCET up to the first recorded point, the

2For a dual criticality system, LO/HI, a system with greater than two
criticality levels would see importance assigned within all but the highest
level.

3Although importance is not named explicitly.

34



least important LO criticality task is suspended. This process
continues if the overrun continues to increase.

We note here that in the case of high priority, high
importance LO criticality tasks, we mostly consider their
effect on the schedulability of the system even after they
have been suspended. In order to do this we must consider
their bounded interference on the task set up to the point
that they are suspended. This is similar to the way AMC [3]
(Adaptive Mixed Criticality) bounds the interference created
by high priority LO criticality tasks during a criticality
change. Consider the set of tasks in Table I:

L P I

τk LO 1 1

τj LO 2 2

τi HI 3 -

TABLE I
BASIC EXAMPLE.

Initially we consider the schedulability of the LO and HI
mode as well as the criticality change 4. The calculations for
the LO mode and the change are shown in Equations (1) and
(2) respectively, we exclude the HI mode as there is only one
HI criticality task:

Ri(LO) = Ci(LO)+

⌈
Ri(LO)

Tk

⌉
Ck(LO)+

⌈
Ri(LO)

Tj

⌉
Cj(LO)

(1)

Ri(HI) = Ci(HI)+

⌈
Ri(LO)

Tk

⌉
Ck(LO)+

⌈
Ri(LO)

Tj

⌉
Cj(LO)

(2)
Such that:

Ri(HI) <= Di

Where Ri(HI) and Ri(LO) are the response times of τi in
the HI and LO criticality modes respectively.

We increase the overrun of τi from Ci(LO) until we
determine a point at which τj , the least important task, τj
at I = 2, must be dropped.

RI2
i (LO) = CI2

i (LO) +

⌈
RI2

i (LO)

Tk

⌉
Ck(LO)+

⌈
RI2

i (LO)

Tj

⌉
Cj(LO)

Ri(HI) = Ci(HI) +

⌈
RI2

i (LO)

Tk

⌉
Ck(LO)+

⌈
RI2

i (LO)

Tj

⌉
Cj(LO)

(3)

Next we attempt to increase the overrun until τk must be
dropped. We use the response time just calculated, RI2

i (LO)
to bound the possible interference of τj .

4According to AMCrtb [3].

RI1
i (LO) = CI1

i (LO) +

⌈
RI1

i (LO)

Tk

⌉
Ck(LO)+

⌈
RI2

i (LO)

Tj

⌉
Cj(LO)

Ri(HI) = Ci(HI) +

⌈
RI1

i (LO)

Tk

⌉
Ck(LO)+

⌈
RI2

i (LO)

Tj

⌉
Cj(LO)

(4)

In this way we account for the possible LO criticality,
high priority interference up to the point at which a task is
suspended.

B. Priority assignment

During sensitivity analysis, as the HI criticality tasks over-
run is increased, it is likely that a particular LO criticality
task will miss its deadline and cause the system to be seen as
unschedulable. As we must drop our LO criticality tasks in
order of Importance we may not be able to drop the task that
might make the set immediately schedulable again. In extreme
cases several other LO tasks might need to be dropped before
the offending LO task can be dropped and the system can be
seen as schedulable at a particular overload level. In a fixed
priority system it is highly likely that the task which misses
its deadline will be at the lowest priority. By slightly adapting
Audsley’s priority assignment technique [1] we can attempt
to place tasks of lower importance at a lower priority. This is
much the same as aiming to give lower criticality tasks lower
priorities. This approach would work as follows:

For each priority level, beginning at the lowest. Check the
schedulability of each task at this level. If more than one
task is schedulable first differentiate by assigning the lower
priority to the lower criticality. If many tasks that might be
assigned a particular priority are of LO criticality, assign the
priority to the task with the lowest importance value.

for Each priority level do
for Each task do

if criticalityLevel < currentTask then
if importanceLevel < currentTAsk then

currentTask=task;

end
end

end
Assign priority level to currentTask;

end
Algorithm 1: Audsley’s Approach [1] with importance.

By assigning lower importance tasks lower priorities this
reduces the chance of having to drop multiple tasks in order
to make the system schedulable again.

C. Examples

A simple example can be used to illustrate the basic
functionality of Importance. Consider the task set in Table
II:

35



C(LO) C(HI) T=D L P I

τ1 2 6 8 HI 1 -

τ2 1 - 6 LO 2 1

τ3 2 - 6 LO 3 2

TABLE II
A SIMPLE EXAMPLE.

If τ1 were to exceed its C1(LO) by 2, τ3 would have to be
dropped as it would miss its deadline and cause the system
to be unschedulable. Finally at an overrun of 4, τ2 must be
suspended. It is worth noting that such tasks would need to
be suspended at time 3 for τ3 and 5 for τ2 if τ1 does not
signal completion at each of these times.

If the HI criticality tasks are also HI priority, they do not
need to worry about interference from LO criticality tasks
during their execution. Importance provides us with a set of
points at which LO criticality tasks will be prevented from ex-
ecuting. These points give the system designer greater control
over HI criticality degradation and allow the system resources
to remain highly utilised. Crucially, regardless of the priority
levels involved, this approach provides an improved level
of service for LO criticality tasks, potentially reducing their
likelihood of being suspended.

A second example can be used to highlight some interesting
behaviour. Table III shows an example task set with impor-
tance assigned to the LO criticality tasks. Sensitivity analysis
has been carried out on this set to determine the points at
which each task must be dropped during an HI criticality
overrun.

C(LO) C(HI) T=D L P I

τ1 5 15 25 HI 3 -

τ2 5 - 20 LO 4 3

τ3 2 - 8 LO 1 2

τ4 1 - 5 LO 2 1

TABLE III
A MORE COMPLEX EXAMPLE.

The least important task, τ2 must be dropped when an
overrun of HI criticality task τ1 reaches 5 units of execution
without signalling completion. In other words, τ2 must be
dropped as soon as an overrun is detected. Tasks τ3 and τ4
may continue to execute, if τ1 does not complete after 10
units of execution, τ3 and τ4 must be suspended.

At each stage of the sensitivity analysis we re-check the
schedulability of the system. For example if we assume an
overrun of 1 to τ1 then essentially we do the following
calculation.

R2(LO) = 5 +

⌈
22

25

⌉
6 +

⌈
22

8

⌉
2 +

⌈
22

5

⌉
1 = 22 (5)

The result of this shows that τ2 will overrun its deadline if τ1
exceeds its LO criticality execution by 1. As such it is clear
that τ2 must be suspended as soon as τ1 reaches 5 units of
execution without signalling completion.

The lowest priority task is now τ1. At an overrun of 10 (9
without signalling completion) the task set is unschedulable.

R1(LO) = 10 +

⌈
21

8

⌉
2 +

⌈
21

5

⌉
1 = 21

R1(HI) = 15 +

⌈
21

8

⌉
2 +

⌈
21

5

⌉
1 = 26

(6)

Thus giving the result of 26, and making an overrun of
10 with both tasks being unschedulable. In this case τ3 is
suspended leaving just τ1 and τ4 executing. If we just include
these two tasks it would seem that τ4 does not need to be
suspended, the calculation would be as follows:

R1(LO) = 15 +

⌈
19

5

⌉
1 = 19

R1(HI) = 15 +

⌈
19

5

⌉
1 = 19

(7)

However when calculating the schedulability of this situation
we must include the prior interference from τ3, we use the
previously calculated LO response time at overrun 95 to cap
the possible interference caused by τ3.

R1(LO) = 9 +

⌈
19

8

⌉
2 +

⌈
19

5

⌉
1 = 19 (8)

R1(LO) = 10 +

⌈
19

8

⌉
2 +

⌈
21

5

⌉
1 = 21

R1(HI) = 15 +

⌈
19

8

⌉
2 +

⌈
21

5

⌉
1 = 26

(9)

Here it is clear that if τ1 reaches an overrun of 9 without
signalling completion both τ3 and τ4 must be suspended in
order to allow τ1 to meet its deadline. This can be shown
further by considering the execution trace shown in Figure 1.
This trace shows the situation where the interference from τ3
is not considered. However, it is clear that τ4 may not remain
scheduled as the example then shows τ1 executing until time
26 and exceeding its deadline. If both τ3 and τ4 were dropped
after an overrun of 96, τ1 would meet its deadline. As such,
it is clear that when considering higher priority LO criticality
tasks that are suspended, we must account for their impact
throughout the execution. This is similar to including the
bounded impact of LO criticality tasks on HI criticality tasks
during a criticality change.

This example raises a very interesting point. As in the first
instance, when trying to find a time in which τ3 must be
dropped we maximised the possible overrun of τ1, it is clear
that at this point τ4 must also be suspended. This is because
we must include the interference suffered from τ3 until it
is suspended. We know that all 3 tasks are not schedulable
beyond point 9, as such both must be suspended at the same
instant. This is due to the fact we must include the same
amount of interference from τ3 as the previous calculation. It
seems likely that as we include interference from previously
suspended higher priority LO criticality tasks, most higher
priority LO criticality tasks will be dropped at the same
instant. It is worth noting that even if such high priority LO
tasks are only able to remain schedulable up to a HI criticality
overrun of 10%, the likelihood of the system overrunning by
10% may be relatively low.

D. Further points

One of the fundamental assumptions of this work is that
HI criticality overruns are not likely to be as severe as their
HI WCET suggests. To support this assumption we can look

5The last schedulable point before suspension.
6Time 19.

36



Fig. 1. An execution trace of Table III.

at work carried out on probabilistic real-time systems. Rather
than the traditional view of a LO and HI criticality value,
this work considers the space between the two values as
a large number of points. Each point has its own degree
of confidence. This set of points is known as the pWCET
distribution. If such a pWCET distribution for a system
showed that the likelihood of a task overrunning by more
than 60% was extremely small (for example: 10−9 failure
rate per hour), then simply dropping all LO criticality tasks
when a criticality change occurs is poor use of the system
resources. Importance is able to improve on this by allowing
LO criticality tasks to continue execution, providing they
do not effect the execution of HI criticality tasks. Although
some LO criticality tasks may have to be dropped, it is
likely that a good percentage of these tasks will be able to
continue to execute throughout the HI criticality mode. If such
a pWCET is known for a system, it would be possible to
make predictions on the likelihood of a particular task being
dropped. In this way the use of importance and probabilistic
reasoning could help provide more detailed guarantees of
system performance.

Importance is a useful means of providing a more detailed
picture of system performance under HI criticality/overload
conditions while passing more control over system degrada-
tion to the designer.

IV. EVALUATION

The notion of importance is relatively easy to explain,
however, its effectiveness is not so easy to quantify. As
schedulability is not improved via the use of this technique
another means of showing its effectiveness is required. In our
evaluation we firstly illustrate simply how our approach is
able to stagger the process of dropping LO criticality tasks
and secondly we consider a probabilistic view that considers
the severity of an overrun. Both illustrations show how our
approach is able to reduce the chance of LO criticality tasks
being suspended.

Our experimental data was produced from 10,000 randomly
generated tasks with a total LO utilisation of 85%, these
were created as follows. Utilisation values were generated via
the UuniFast Algorithm [5], periods between X and Y were
generated in a log uniform distribution. Our task sets are dual
criticality, C(LO) values were created from the periods and
utilisations generated C = U∗T , C(HI) values were 2 times
C(LO). 25 LO criticality tasks and 5 HI criticality tasks were
generated per task set. The LO criticality tasks we randomly
grouped into 5 applications (5 tasks per application), each
application was randomly assigned a level of importance.
HI criticality tasks were left as individual tasks rather than
applications and no assignment of importance is required
for this level. Priorities were assigned via our version of
Audsley’s algorithm [1] as seen in Section III, part B.

It is worth noting that in experiments such as this, there
are a huge number of parameters which will affect what
the results look like. The total number of tasks will effect
the results, as will the distribution of these tasks between
HI and LO criticality. The relative utilisation of the HI
and LO modes has a big impact as to when LO criticality
applications must be dropped, as does the difference between
a HI criticality task, τi’s, Ci(LO) and Ci(HI). We have
described the values we used in our experimentation, different
parameters will produce different looking graphs. However,
the key result remains the same regardless of the parameters
used, introducing levels of importance will provide a better
level of service for LO criticality tasks.

In our work we also introduced the notion of groups
of tasks as applications. Tasks of one application share a
level of importance and will therefore be suspended as a
group. It is worth noting that although applications share a
level of importance, the priorities of individual tasks may be
interleaved. The purpose of this is to better capture the nature
of applications as groups of tasks, although these tasks might
be interconnected we only consider independent tasks in this
work.

Our experiments firstly ran each generated task set through
the schedulability test AMCrtb [3] to ascertain schedulability
and if schedulable, provide a priority ordering. Each task set
that passed this test was then run through sensitivity analysis
to determine the points at which LO criticality applications
must be dropped, these points were recorded and used later to
present the results. In some cases a task set might only need
to drop one application and in others it might need to drop all
5. During sensitivity analysis all HI criticality WCET values
are increased by the same percentage, this seemed like a
reasonable assumption as it is difficult to model the likelihood
of each HI criticality task individually overrunning. On top
of this, a single HI criticality task overrunning its LO WCET
is not likely to have that much of an impact on the system,
especially as our HI criticality tasks do not have particularly
high utilisations individually.

Figure 2 shows the number of applications dropped on the
Y axis against the severity of the overrun as a percentage
increase from C(LO) on the X axis. The graph clearly
shows that our approach is able to maintain LO criticality
functionality for a significantly increased amount of time.
This is even more apparent if you consider that the probability
of an overrun occurring even beyond the 5% initial slack
becomes exponentially more unlikely. Figure 3 shows the
potential likelihood of an overrun reaching each point and
causing a task to be suspended. The probabilities used here
are merely designed to illustrate the point and are not meant
as realistic values.

37



Fig. 2. Results from 10,000 random task sets.

Fig. 3. Example probability of overrun in log scale.

If we consider Figure 3 with a linear scale it is easy to see
that, even if the system can maintain all LO tasks during an
overrun of 5%, this is still a significant improvement when
taking into account the probability of the overrun actually
reaching that level. This is shown in Figure 4:

Fig. 4. Example probability of overrun in linear scale.

V. CONCLUSION

It is clear that as we move to consider more realistic mixed
criticality implementations, simply dropping LO criticality
tasks when a criticality change occurs is unacceptable. In
this work we have introduced the notion of importance, we
discussed the reasoning and illustrated the benefits through
discussion and experimental results. Importance provides the
designer of a system with a greater level of control and
knowledge over the likely behaviour of their system during a
criticality change. We show the effectiveness of importance
by considering the reduced number of tasks dropped and

the increased HI criticality system utilisation. This is done
via experimental evaluation on randomly generated task sets.
During the experimentation we introduced the notion of
several tasks grouped as applications, applications aim to
provide a more realistic system model. Further work might
consider importance at greater than two criticality levels or it
might consider a means of re-introducing LO criticality tasks
when recovering from an overrun. To summarise, we have
introduced importance as a means to provide a greater level
of control and guarantees for LO criticality tasks during a
criticality change.

Acknowledgements
The authors acknowledges the support and funding pro-

vided for this work by BAE Systems, and the ESPRC (UK)
via MCC grant (EP/K011626/1).

REFERENCES

[1] N. Audsley. Optimal priority assignment and feasibility
of static priority tasks with arbitrary start times, 1991.

[2] S. Baruah, V. Bonifaci, G. DAngelo, H. Li, A. Marchetti-
Spaccamela, N. Megow, and L. Stougie. Schedul-
ing real-time mixed-criticality jobs. In P. Hlinn and
A. Kuera, editors, Mathematical Foundations of Com-
puter Science 2010, volume 6281 of Lecture Notes
in Computer Science, pages 90–101. Springer Berlin
Heidelberg, 2010.

[3] S. Baruah, A. Burns, and R. Davis. Response-time
analysis for mixed criticality systems. In Real-Time
Systems Symposium (RTSS), 2011 IEEE 32nd, pages 34
–43, 29 2011-dec. 2 2011.

[4] S. Baruah, H. Li, and L. Stougie. Towards the design
of certifiable mixed-criticality systems. In Real-Time
and Embedded Technology and Applications Symposium
(RTAS), 2010 16th IEEE, pages 13 –22, april 2010.

[5] E. Bini and G. Buttazzo. Measuring the performance of
schedulability tests. Real-Time Systems, 30(1-2):129–
154, 2005.

[6] A. Burns. System mode changes - general and
criticality-based. volume WMC RTSS 2014, 2014.

[7] D. Prasad, A. Burns, and M. Atkin. The measurement
and usage of utility in adaptive real-time systems. Jour-
nal of Real-Time Systems, 25(2/3):277–296, 2003.

[8] F. Santy, L. George, P. Thierry, and J. Goossens. Relax-
ing mixed-criticality scheduling strictness for task sets
scheduled with fp. In Real-Time Systems (ECRTS), 2012
24th Euromicro Conference on, pages 155 –165, july
2012.

[9] H. Su and D. Zhu. An elastic mixed-criticality task
model and its scheduling algorithm. In Design, Au-
tomation Test in Europe Conference Exhibition (DATE),
2013, pages 147–152, 2013.

[10] H. Su, D. Zhu, and D. Mosse. Scheduling algorithms
for elastic mixed-criticality tasks in multicore systems.
In Embedded and Real-Time Computing Systems and
Applications (RTCSA), 2013 IEEE 19th International
Conference on, pages 352–357, Aug 2013.

[11] S. Vestal. Preemptive scheduling of multi-criticality sys-
tems with varying degrees of execution time assurance.
In Real-Time Systems Symposium, 2007. RTSS 2007.
28th IEEE International, pages 239 –243, dec. 2007.

38


