
Achieving temporal isolation in multiprocessor
mixed-criticality systems

Sanjoy Baruah

The University of North Carolina

baruah@cs.unc.edu

Alan Burns

The University of York

alan.burns@york.ac.uk

Abstract—Upon mixed-criticality environments, the execution
of high-criticality functionalities must be protected from interfer-
ence from the execution of less critical functionalities. A means
of achieving this objective upon multiprocessor environments is
by forbidding less critical functionalities from executing any-
where upon the platform while more critical functionalities are
executing upon any processor. This approach towards ensuring
temporal isolation between the different criticalities that are
co-implemented upon a common platform is explored in this
paper, under both the global and partitioned paradigms of
multiprocessor scheduling.

I. INTRODUCTION

Thus far, mixed-criticality scheduling (MCS) theory has

primarily concerned itself with the sharing of CPU computing

capacity in order to satisfy the computational demand, as

characterized by the worst-case execution times (WCET), of

pieces of code. However, there are typically many additional

resources that are also accessed in a shared manner upon a

computing platform, and it is imperative that these resources

also be considered in order that the results of MCS research

be applicable to the development of actual systems. An in-

teresting approach towards such consideration was advocated

by Giannopoulou et al. [4] in the context of multiprocessor

platforms: during any given instant in time, all the processors

are only allowed to execute code of the same criticality level.

This approach has the advantage of ensuring that access to

all shared resources (memory buses, cache, etc.) during any

time-instant are only from code of the same criticality level;

since code of lower criticality are not allowed to execute

simultaneously with code of higher criticality, the possibility

of less critical code interfering with the execution of more

critical code in accessing shared resources is ruled out.
In this paper, we seek to better understand the multi-

processor scheduling of mixed-criticality systems under this

constraint of only executing jobs of a particular criticality

at any given instant in time. To our knowledge, not much

is known such scheduling problems; accordingly, we start

out with a very simple model in which there are just two

criticality levels (designated, as is standard, as HI and LO),

and the workload is represented as a specified collection of

independent jobs that all have a common release date and

a common deadline. We consider the scheduling of such

mixed-criticality systems both when jobs are permitted to

migrate between processors (global scheduling), and when

inter-processor migration is forbidden (partitioned scheduling).
Global scheduling necessarily assumes a preemptive model of

execution; for partitioned scheduling, preemption is not needed

when all jobs have the same release date and deadline.

Organization. The remainder of this paper is organized as

follows. In Section II, we elaborate upon the workload model

that will be assumed in the reminder of this paper. We

discuss the global scheduling of mixed-criticality task systems

represented using this model in Section III, and partitioned

scheduling in Section IV.

II. MODEL

A mixed-criticality job ji = (χi, ai, Ci(LO), Ci(HI), di) is

characterized by a criticality level χi ∈ {LO, HI}, a release

time ai, a deadline di, and two WCET estimates ci(LO) and

ci(HI). We assume that ai, di, Ci(LO), and Ci(HI) are all ∈
R+, the non-negative real numbers.

We seek to schedule a mixed-criticality instance I , consist-

ing of a given collection of mixed-criticality jobs that all have

the same release time (without loss of generality, assumed to

be equal to zero) and the same deadline (denoted D) upon a

platform of m unit-speed processors. Let ILO denote the LO-

criticality jobs in I , and IHI the HI-criticality jobs in I . As is

standard in mixed-criticality scheduling, we assume that the

exact amount of execution required by a job is not known

beforehand. If each job ji completes upon executing for no

more than Ci(LO) units, we say that the system exhibits LO-

criticality behavior; if some ji executes more than Ci(LO), but

no more than Ci(HI), units, we say that the system exhibits

HI-criticality behavior. The correctness requirement is that all

jobs should complete by their deadlines in all LO-criticality

behaviors, while only the HI-criticality jobs need to complete

by their deadlines in any HI-criticality behavior.

Approach. The over-all approach that we advocate here is to

first schedule the HI-criticality jobs during run-time — this can

be thought of as a generalization of the criticality monotonic
(CM) priority-assignment approach, which was previously

shown [1] to be optimal for scheduling instances in which all

jobs have equal deadlines (such as the instances considered

here) upon uniprocessor platforms. If each HI-criticality job

signals completion upon having executed for no more than

its LO-criticality WCET, we recognize that we are in a LO-

criticality behavior and begin execution of the LO-criticality

jobs.

Notice that under the advocated approach, LO-criticality

jobs only begin to execute after no HI-criticality jobs remain

21

χi ai Ci(LO) Ci(HI) di
j1 LO 0 6 6 10
j2 LO 0 6 6 10
j3 LO 0 6 6 10
j4 HI 0 2 10 10
j5 HI 0 2 10 10
j6 HI 0 4 4 10
j7 HI 0 4 4 10

TABLE I
AN EXAMPLE MIXED-CRITICALITY TASK INSTANCE.

that need to be executed. The problem of scheduling these LO-

criticality jobs therefore becomes a “regular” (i.e., not mixed-

criticality) scheduling problem. Hence we can first determine,

using techniques from conventional scheduling theory, the

minimum duration (the makespan) of a schedule for the LO-

criticality jobs. Once this makespan Δ is determined, the

difference between D and this makespan (i.e., (D−Δ)) is the

duration for which the HI-criticality jobs are allowed to execute

to completion in any LO-criticality schedule. Determining

schedulabilty for the mixed-criticality instance is thus reduced

to determining whether IHI can be scheduled in such a manner

that

• If each job ji ∈ IHI executes for no more than Ci(LO),
then the schedule makespan is ≤ (D −Δ); and

• If each job ji ∈ IHI executes for no more than Ci(HI),
then the schedule makespan is ≤ D.

Note that we do not in general know, prior to actually

executing the jobs, whether each job will complete within

its LO-criticality WCET or not. Hence it is not sufficient to

construct two entirely different schedules that separately sat-

isfy these two requirements above; instead, the two schedules

must be identical until at least that point in time at which

some job executes for more than its LO-criticality WCET.

(This observation is further illustrated in the context of global

scheduling in Example 1 below.)

III. GLOBAL SCHEDULING

We start out considering the global scheduling of instances

of the kind described in Section II above. Given a collection

of n jobs with execution requirements c1, c2, . . . , cn, Mc-

Naughton [8, page 6] showed as far back as 1959 that the

minimum makespan of a preemptive schedule for these jobs

on m unit-speed processors is

max

(∑n
i=1 ci
m

,
n

max
i=1

{ci}
)

(1)

A direct application of McNaughton’s result yields the conclu-

sion that the minimum makespan Δ for a global preemptive

schedule for the jobs in ILO is given by

Δ
def
= max

(∑
χi=LO

Ci(LO)

m
, max
χi=LO

{
Ci(LO)

})
(2)

Hence in any LO-criticality behavior it is necessary that the

HI-criticality jobs in I — i.e., the jobs in IHI — must be

scheduled to have a makespan no greater than (D −Δ):

max

(∑
χi=HI

Ci(LO)

m
, max
χi=HI

{
Ci(LO)

}) ≤ D −Δ . (3)

(Here, the makespan bound on the LHS follows again from

a direct application of McNaughton’s result.) Additionally, in

order to ensure correctness in any HI-criticality behavior it is

necessary that the makespan of IHI when each job executes

for its HI-criticality WCET not exceed D:

max

(∑
χi=HI

Ci(HI)

m
, max
χi=HI

{
Ci(HI)

}) ≤ D (4)

(where the LHS is again obtained using McNoughton’s result.)

One might be tempted to conclude that the conjunction

of Conditions 3 and 4 yields a sufficient schedulability test.

However, this conclusion is erroneous, as is illustrated in

Example 1 below.

Example 1: Consider the scheduling of the mixed-

criticality instance of Table I upon 3 unit-speed processors.

For this instance, it may be validated that

• By Equation 2, Δ evaluates to max(6+6+6
3 , 6) or 6.

• The LHS of Condition 3 evaluates to max(2+2+4+4
3 , 4),

or 4. Condition 3 therefore evaluates to true.

• The LHS of Condition 4 evaluates to

max(10+10+4+4
3 , 10), or 10. Condition 4 therefore

also evaluates to true.

However for this example, the schedule that causes Condi-

tion 3 to evaluate to true must have jobs j6 and j7 exe-

cute throughout the interval [0, 4), while the one that causes

Condition 4 to evaluate to true must have j4 and j5 execute

throughout the interval [0, 10) — see Figure 1. Since we only

have three processors available, during any given execution of

the instance at least one of the four jobs j4–j7 could not have

been executing throughout the interval [0, 2).

• If one of {j4, j5} did not execute throughout [0, 2) and

the behavior of the system turns out to be a HI-criticality

one, then the job not executing throughout [0, 2) will miss

its deadline.

• If one of {j6, j7} did not execute throughout [0, 2) and the

behavior of the system turns out to be a LO-criticality one,

then the job ∈ {j6, j7} not executing throughout [0, 2)
will not complete by time-instant 4, thereby delaying

the start of the execution of the LO-criticality jobs to

beyond time-instant 4. These jobs will then not be able

to complete by their common deadline of 10.

The example above illustrates that the conjunction of Con-

ditions 3 and 4, with the value of Δ defined according

to Equation 2, is a necessary but not a sufficient global

schedulability test. Below, we will derive a sufficient global

schedulability test with run-time that is polynomial in the

representation of the input instance; we will then illustrate,

in Example 2, how this test does not claim schedulability of

the instance from Example 1. This schedulability test is based

upon a network flow argument, as follows. We will describe a

22

�
0 1 2 3 4 5 6 7 8 9 10

Proc1

Proc2

Proc3

j4 j5

j7

j6

�
0 1 2 3 4 5 6 7 8 9 10

j4

j5

j7j6

Fig. 1. Schedules for IHI for the task system of Example 1. The left schedule is for a LO-criticality behavior, and has a makespan of four; it thus bears
witness to the fact that this mixed-criticality instance satisfies Condition 3. The right schedule is for a HI-criticality behavior – it has a makespan of ten,
thereby bearing witness that the instance satisfies Conditions4 as well. Observe that the schedules are different at the start: job j5 does not execute over [0, 2)
in the left schedule but it does in the right schedule, while job j7 does not execute over [0, 4) in the right schedule but it does in the left schedule.

polynomial-time reduction from any dual-criticality instance I
to a weighted digraph G with a designated source vertex and

a designated sink vertex, such that flows of a certain size or

greater from the source to the sink in G correspond exactly

(in a manner that will be made precise) to a valid global

schedule for the instance I . Thus, the problem of determining

global schedulability is reduced to determining the size of a

maximum flow in a graph, which is known to be solvable

in polynomial time using, for instance, the Floyd-Fulkerson

algorithm [3].
We now describe below the construction of a weighted

digraph G from an input instance I . First, we compute the

value of Δ for this input instance according to Equation 2. The

graph we build is a “layered” one: the vertex set V of G is the

union of 6 disjoint sets of vertices V0, . . . , V5, and the edge

set E of G is the union of 5 disjoint sets of edges E0, . . . , E4,

where Ei is a subset of (Vi × Vi+1 × R+), 0 ≤ i ≤ 4. The

digraph G is thus a 6-layered graph — see Figure 2 — in

which all edges connect vertices in adjacent layers. The sets

of vertices in G are as follows:

V0 = {source},
V1 = {〈1, ji〉 | ji ∈ IHI)},
V2 = {〈2, ji, LO〉, 〈2, ji, HI〉 | ji ∈ IHI},
V3 = {〈3, ji, α〉, 〈3, ji, β〉 | ji ∈ IHI},
V4 = {〈4, α〉, 〈4, β〉}, and

V5 = {sink}.
Intuitively speaking, each vertex in V1 represents a HI-

criticality job; for each such job, there are two vertices in

V2 representing respectively its LO-criticality execution and

the excess execution (beyond its LO-criticaliy WCET) in case

of HI-criticality behavior. The vertex 〈3, ji, α〉 will correspond

to the amount of execution job ji actually receives over the

interval [0, D − Δ) – i.e., during the interval within which

it must complete execution within any LO-criticality behavior;

the vertex 〈3, ji, β〉 will correspond to the amount of execution

job ji receives over the interval [D − Δ, D). The vertices

〈4, α〉 and 〈4, β〉 represent the total amount of execution

performed upon the platform during the intervals [0, D −Δ)

and [D −Δ, D) respectively.

Next, we list the edges in G. An edge is represented by a

3-tuple: for u, v ∈ V and w ∈ R+, the 3-tuple (u, v, w) ∈ E
represents an edge from u to v that has a capacity w. The sets

of edges in G are as follows:

E0 = {(source, 〈1, ji〉, Ci(HI)) | ji ∈ IHI},
E1 = {(〈1, ji〉, 〈2, ji, LO〉, Ci(LO)),

(〈1, ji〉, 〈2, ji, HI〉, Ci(HI)− Ci(LO)) | ji ∈ IHI},
E2 = {(〈2, ji, LO〉, 〈3, ji, α〉, Ci(LO)),

(〈2, ji, HI〉, 〈3, ji, α〉, Ci(HI)− Ci(LO)),

(〈2, ji, HI〉, 〈3, ji, β〉, Ci(HI)− Ci(LO)), | ji ∈ IHI},
E3 = {(〈3, ji, α〉, 〈4, α〉, D −Δ),

(〈3, ji, β〉, 〈4, β〉,Δ) | ji ∈ IHI, and

E4 = {(〈4, α〉, sink,m(D −Δ)), (〈4,Δ〉, sink,mΔ)}.
We now try and explain the intuition behind the construction

of G. The maximum flow that we will seek to push from the

source to the sink is equal to
∑

ji∈IHI
Ci(HI). Achieving this

flow will require that Ci(HI) units of flow go through 〈1, ji〉,
which in turn requires that Ci(LO) units of flow go through

〈2, ji, LO〉, and (Ci(HI) − Ci(LO)) units of flow go through

〈2, ji, HI〉, for each ji ∈ IHI. This will require that all Ci(LO)
units of flow from 〈2, ji, LO〉 go through 〈3, ji, α〉; the flows

from 〈2, ji, HI〉 through the vertices 〈3, ji, α〉 and 〈3, ji, β〉
must sum to (Ci(HI) − Ci(LO)) units. The global schedule

for IHI is determined as follows: the amount of execution
received by ji during [0, D −Δ) is equal to the amount of
flow through 〈3, ji, α〉; the amount of execution received by
ji during [D−Δ, D) is equal to the amount of flow through
〈3, ji, β〉. Since the outgoing edge from 〈3, ji, α〉 has capacity

(D −Δ), it is assured that ji is not assigned more execution

than can be accommodated upon a single processor; since the

outgoing edge from 〈4, α〉 is of capacity m(D − Δ), it is

assured that the total execution allocated during [0, D − Δ)
does not exceed the capacity of the m-processor platform to

accommodate it. Similarly for the interval [d−Δ, D): since the

outgoing edge from 〈3, ji, β〉 has capacity Δ, it is assured that

ji is not assigned more execution than can be accommodated

23

upon a single processor; since the outgoing edge from 〈4, β〉
is of capacity mΔ, it is assured that the total execution

allocated during [D −Δ, D) does not exceed the capacity of

the m-processor platform to accommodate it. Now for both the

intervals [0, D −Δ) and [D −Δ, D), since no individual job

is assigned more execution than the interval duration and the

total execution assigned is no more than m times the interval

duration, McNaughton’s result (Condition 1) can be used to

conclude that these executions can be accommodated within

the respective intervals.

This above informal argument can be formalized to establish

the following lemma; we omit the details.

Theorem 1: If there is a flow of size∑
ji∈IHI

Ci(HI)

in G then there exists a global schedule for the instance I .

Example 2: Let us revisit the task system described in Ex-

ample 1 — for this example instance, we had seen by instan-

tiation of Equation 2 that Δ = 6. The digraph constructed for

this task system would require each of j4–j7 to transmit at least

their corresponding Ci(LO)’s, i.e., 2, 2, 4, and 4, respectively,

units of flow through the vertex 〈4, α〉, which is do-able since

the platform capacity over this interval is 3 × 4 = 12. But

such a flow completely consumes the platform capacity during

[0, 4), which requires that all of j4 and j5’s (Ci(HI)−Ci(LO))
flows, of (10 − 2) = 8 units each, flow through the edges

(〈3, j4, β〉, 〈4, β〉, 6) and (〈3, j5, β〉, 〈4, β〉, 6). But such a flow

would exceed the capacity of the edge (which is six units),

and is therefore not feasible. The digraph constructed for the

example instance of Example 1 thus does not permit a flow

of size
∑

ji∈IHI
Ci(HI), and Theorem 1, does not declare the

instance to be globally schedulable.

As previously stated, determining the maximum flow

through a graph is a well-studied problem. The Floyd-

Fulkerson algorithm [3], first published in 1956, provides an

efficient polynomial-time algorithm for solving it. In fact, the

Floyd-Fulkerson algorithm is constructive in the sense that it

actually constructs the flow – it tells us how much flow goes

through each edge in the graph. We can therefore use a flow of

the required size, if it exists, to determine how much of each

job must be scheduled prior to (D −Δ) in the LO-criticality

schedule, and use this pre-computed schedule as a look-up

table to drive the run-time scheduler.

IV. PARTITIONED SCHEDULING

We now turn to partitioned scheduling, which was the

context within which Giannopoulou et al. [4] had initially

proposed the paradigm of only executing jobs of one criticality

at any instant in time. In partitioned scheduling, we will

partition the entire collection of jobs – both the HI-criticality

and the LO-criticality ones – amongst the processors prior

to run-time. We will also determine some time-instant S,
0 ≤ S ≤ D, such that only HI-criticality jobs are executed

upon all the processors during [0, S), and only LO-criticality

jobs are executed during [S,D). A run-time protocol needs to

be defined and supported that will manage the change from

HI-criticality to LO-criticality execution. As HI-criticality and

LO-criticality jobs cannot execute concurrently, any processor

that is still executing a HI-criticality job at some time t must

prevent all other processors from switching to LO-criticality

jobs. Such a protocol would need to be ether affirmative (“its

OK to change”) or negative (“do not change”):

• affirmative: each processor broadcasts a message (or

writes to shared memory) to say it has completed all its

HI-criticality jobs; when each processor has completed its

own HI-criticality work and has received (m − 1) such

messages it switches to LO-criticality work.

• negative: if any processor is still executing its HI-

criticality work at time S it broadcasts a message to

inform all other processors; any processor that is not in

receipt of such a message at time S+δ will move to its

LO-criticality work (where δ is a deadline for receipt of

the ‘no-change’ message, determined based upon system

parameters such as maximum propagation delay).

In terms of message-count efficiency, the negative message

is more effective since normal behavior would result in no

messages being sent; whereas the affirmative protocol would

generate m broadcast messages. The affirmative protocol is,

however, more resilient and less dependent on the temporal

behavior of the communication media.

If shared memory is used then a set of flags could indicate

the status of each processor. However, spinning on the value

of such flags could cause bus contention issues for those

processors attempting to complete their HI-criticality work.

We now turn to the problem of partitioning the jobs amongst

the processors prior to run-time. Let us first consider the

scheduling of just the LO-criticality jobs — i.e., the jobs in

ILO. Determining a schedule of minimum makespan for these

jobs is equivalent to the bin-packing [6] problem, and is hence

highly intractable: NP-hard in the strong sense. Hochbaum and

Shmoys [5] have designed a polynomial-time approximation
scheme (PTAS) for the partitioned scheduling of a collection

of jobs to minimize the makespan that behaves as follows.

Given any positive constant φ, if an optimal algorithm can

partition a given task system τ upon m processors each of

speed s, then the algorithm in [5] will, in time polynomial in

the representation of τ , partition τ upon m processors each

of speed (1 + φ)s. This can be thought of as a resource
augmentation result [7]: the algorithm of [5] can partition,

in polynomial time, any task system that can be partitioned

upon a given platform by an optimal algorithm, provided it

(the algorithm of [5]) is given augmented resources (in terms

of faster processors) as compared to the resources available to

the optimal algorithm.

We can use the PTAS of [5] to determine in polyno-

mial time, to any desired degree of accuracy, the minimum

makespan of any partitioned schedule of the LO-criticality

jobs in the instance I . Let ΔP denote this makespan. Hence

24

�
�

�
�

source
�
�

�
�〈1, ji〉

�
�

�
�

�
�

�
�

〈2, ji, HI〉

〈2, ji, LO〉

�
�

�
�

�
�

�
�

〈3, ji, β〉

〈3, ji, α〉

�
�

�
�

�
�

�
�

〈4, β〉

〈4, α〉

�
�

�
�

sink�Ci(HI)�
�
���

�
���

���
��	

�

�
�

�
���

Ci(LO)

�
�

�
���

Ci(HI) − Ci(LO)

�Ci(LO)

�

Ci(HI) − Ci(LO)

�
�
�
�
�
�
�
���

Ci(HI) − Ci(LO)

�D − Δ

�Δ

�
�

��

��
�

��
�

�
��

�
�

��

��
�

��
�

�
��

�
�

�
��

m(D − Δ)

�
�

�
��mΔ

Fig. 2. Digraph construction illustrated. All vertices and edges pertinent to the job ji are depicted. Additional edges emanate from vertex sink to a vertex
〈1, j�〉, for each j� ∈ IHI; additional edges enter the vertices 〈4, α〉 and and 〈4, β〉 from vertices 〈3, j�, α〉 and 〈3, j�, β〉 respectively, for each j� ∈ IHI.

to ensure a correct schedule we need to complete schedul-

ing all the HI-criticality jobs in I within the time interval

[0, D − ΔP); i.e., with a makespan (D − ΔP). (The time-

instant S mentioned above in the context of the run-time

management of the system is therefore equal to D − ΔP .)

Now, determining whether I can be successfully scheduled

using partitioned scheduling reduces to determining whether

there is a partitioning of just the HI-criticality jobs — i.e., the

jobs in IHI — satisfying the properties that

P1. If each job ji ∈ IHI executes for no more than Ci(LO),
then the schedule makespan is ≤ (D −ΔP); and

P2. If each job ji ∈ IHI executes for no more than Ci(HI),
then the schedule makespan is ≤ D.

(Note that both these properties must be satisfied by a single
partitioning of the jobs in IHI – it is not sufficient to identify

one partitioning that satisfies P1 and another that satisfies P2.)
This partitioning problem turns out to be closely related to

the vector scheduling problem. Vector scheduling is the natural

multi-dimensional generalization of the partitioning problem

to minimize makespan, to situations where jobs may use multi-

ple different kinds of resources and the load of a job cannot be

described by a single aggregate measure. For example, if jobs

have both CPU and memory requirements, their processing

requirements are appropriately modeled as two dimensional

vectors, where the value along each dimension corresponds to

one of the requirements. Clearly, an assignment of vectors to

the processors is valid if and only if no processor is overloaded

along any dimension (i.e., for any resource). Chekuri and

Khanna [2] give a PTAS for solving the vector scheduling

problem when the number of dimensions is a constant.
It is not difficult to map our problem of partitioning the

HI-criticality jobs (discussed above) to the vector scheduling

problem. Each HI-criticality job ji ∈ IHI is modeled as a two-

dimensional load vector 〈Ci(LO), Ci(HI)〉, and the capacity

constraint for each processor is represented by the vector

〈(D − ΔP), D〉. We can therefore use the PTAS of [2] to

determine whether IHI can be partitioned in a manner that

satisfies the properties P1 and P2 above, to any desired degree
of accuracy in time polynomial in the representation of the

instance.

V. CONTEXT AND CONCLUSIONS

Mixed-criticality scheduling (MCS) theory must extend con-

sideration beyond simply CPU computational demand, as char-

acterized by the worst-case execution times (WCET), if it is

to be applicable to the development of actual mixed-criticality

systems. One interesting approach towards achieving this goal

was advocated by Giannopoulou et al. [4] — enforce temporal

isolation amongst different criticality levels by only permitting

functionalities of a single criticality level to execute at any

instant in time. Such inter-criticality temporal isolation ensures

that access to all shared resources are only from equally critical

functionalities, and thereby rules out the possibility of less

critical functionalities compromising the execution of more

critical functionalities while accessing shared resources.

We have considered here the design of scheduling al-

gorithms that implement this approach. For a very simple

workload model — a dual-criticality system that is represented

as a collection of independent jobs that share a common

release time and deadline — we have designed asymptotically

optimal algorithms for both global and partitioned scheduling:

• For global scheduling, we have designed a polynomial-

time sufficient schedulability test that determines whether

a given mixed-criticality system is schedulable, and an

algorithm that actually constructs a schedule if it is.

• For partitioned scheduling, we have shown that the

problem is NP-hard in the strong sense, thereby ruling

out the possibility of obtaining optimal polynomial-time

algorithms (unless P = NP). We have however obtained

what is, from a theoretical perspective, the next best thing

– a polynomial-time approximation scheme (PTAS) that

determines, in polynomial time, a partitioning of the task

system that is as close to being an optimal partitioning

algorithm as desired.

The work reported here should be considered to be merely a

starting point for research into the particular approach towards

mixed-criticality scheduling advocated in [4]. While the PTAS

25

for partitioned scheduling is likely to be the best we can

hope for (in asymptotic terms), we do not have a estimate

as to how far removed from optimality our global schedu-

lability test is. We also plan to extend the workload model

to enable consideration of jobs with different release dates

and deadlines, and later to the consideration of recurrent task

systems. An orthogonal line of follow-up research concerns

the implementation of the global and partitioned approaches

presented here – experimentation is needed to determine how

they behave upon actual systems.

ACKNOWLEDGEMENTS

This research is partially supported by NSF grants CNS

1016954, CNS 1115284, CNS 1218693, and CNS 1409175;

ARO grant W911NF-09-1-0535; and ESPRC grant MCC

(EP/K011626/1).

REFERENCES

[1] S. Baruah, H. Li, and L. Stougie, “Towards the design of certifiable
mixed-criticality systems,” in Proceedings of the IEEE Real-Time Tech-
nology and Applications Symposium (RTAS). IEEE, April 2010.

[2] C. Chekuri and S. Khanna, “On multi-dimensional packing problems,”
in Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete
Algorithms, January 1999, pp. 185–194.

[3] L. Ford and D. Fulkerson, “Maximal flow through a network,” Canadian
Journal of Mathematics, vol. 8, 1956.

[4] G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele, “Scheduling of
mixed-criticality applications on resource-sharing multicore systems,” in
International Conference on Embedded Software (EMSOFT), Montreal,
Oct 2013, pp. 17:1–17:15.

[5] D. Hochbaum and D. Shmoys, “Using dual approximation algorithms for
scheduling problems: Theoretical and practical results,” Journal of the
ACM, vol. 34, no. 1, pp. 144–162, Jan. 1987.

[6] D. S. Johnson, “Near-optimal bin packing algorithms,” Ph.D. dissertation,
Department of Mathematics, Massachusetts Institute of Technology, 1973.

[7] B. Kalyanasundaram and K. Pruhs, “Speed is as powerful as clairvoy-
ance,” Journal of the ACM, vol. 37, no. 4, pp. 617–643, 2000.

[8] R. McNaughton, “Scheduling with deadlines and loss functions,” Man-
agement Science, vol. 6, pp. 1–12, 1959.

26

